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Abstract

Observational studies suggest that obese men have a lower risk of incident prostate cancer, but an increased risk of
advanced and fatal cancers. These observations could be due to confounding, detection bias, or a biological effect of
obesity. Genetic studies are less susceptible to confounding than observational epidemiology and can suggest how
associations between phenotypes (such as obesity) and diseases arise. To determine whether the associations between
obesity and prostate cancer are causal, we conducted a genetic association study of the relationship between a single
nucleotide polymorphism known to be associated with obesity (FTO rs9939609) and prostate cancer. Data are from a
population-based sample of 1550 screen-detected prostate cancers, 1815 age- and general practice matched controls with
unrestricted prostate specific antigen (PSA) values and 1175 low-PSA controls (PSA ,0.5 ng/ml). The rs9939609 A allele,
which was associated with higher BMI in the sample, was inversely associated with overall (odds ratio (OR) versus all
controls = 0.93; 95% confidence interval (CI): 0.85–1.02 p = 0.12 per allele) and low-grade (OR = 0.90; 0.81–0.99 p = 0.03 per
allele) prostate cancer risk, but positively associated with high-grade cancer among cases (OR high- versus low-grade cancer
= 1.16; 0.99–1.37 p = 0.07 per allele). Although evidence for these effects was weak, they are consistent with observational
data based on BMI phenotypes and suggest that the observed association between obesity and prostate cancer is not due
to confounding. Further research should confirm these findings, extend them to other BMI-related genetic variants and
determine whether they are due to detection bias or obesity-related hormonal changes.
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Introduction

Prostate cancer is a major cause of morbidity and mortality

worldwide [1]. Advancing age, skin colour and a family history of

prostate cancer are known predisposing factors [2], but little is

known about modifiable risk factors for the disease. Knowledge of

such factors may aid in the development of preventative and

treatment strategies. Since obesity has been found to be a risk

factor for many forms of cancer [3], and since it is highly prevalent

among westernized societies, it seems reasonable to investigate

whether it could also be a risk factor for prostate cancer.

Observational studies of obesity and prostate cancer have

produced mixed results. A meta-analysis published in 2006 of 22

prospective cohort studies found that obesity was associated with a

small increase in prostate cancer risk [4]. However, when a

stratified analysis was carried-out, the authors found that the

increase was limited to advanced rather than localised disease [4].

Since this meta-analysis, several studies have been published which

indicate that obesity is associated with an increased risk of

advanced or fatal prostate cancer, but with a decreased risk of

localised disease [5–9].

There are several potential explanations for these findings. They

may have arisen as a result of confounding by factors such as

diabetes mellitus. Obesity strongly predisposes to type 2 diabetes

mellitus (T2DM) and epidemiological studies (including our own

[10]) have consistently reported an inverse association between

T2DM and prostate cancer (meta-analysis pooled relative risk,

RR = 0.84, 95% CI: 0.76–0.93) [11].

A further explanation could be that obesity makes prostate

cancer identification more difficult, thus predisposing obese men

to present later with more severe disease, but reducing the

identification of low-grade, low volume disease (detection bias,

generating positive association with advanced cancer but inverse

associations with localised disease). This possibility has been

suggested because digital rectal examination is technically more

difficult in obese patients [9], biopsies are more likely to lead to
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false negative findings due to enlarged tissue [9] and epidemio-

logical studies have found that prostate specific antigen (PSA)

concentrations are lower in obese than in non-obese men [12–14],

possibly due to greater plasma volume in obesity resulting in

haemodilution and therefore lower relative concentrations of PSA

[15]. However, the recent Prostate Cancer Prevention Trial

reported that differences in cancer grade and stage were

maintained even amongst a cohort of men who all underwent

prostate biopsy [5], suggesting that detection bias due to lower

PSA levels among obese individuals cannot account for all of the

observed effects. In addition, obesity was positively associated with

clinical progression in men with prostate cancer (i.e. who all

underwent prostate biopsy), independent of cancer grade, stage

and primary treatment [16].

Whilst detection of prostate cancer may be more difficult

amongst obese men, the treatment received by those obese

patients who do develop prostate cancer may be less effective than

that received by non-obese patients, for example, as a result of

technical difficulties during surgery [17] or difficulty in targeting

radiotherapy [18].

It is also possible that hormonal changes associated with obesity

increase the proliferative potential of prostate cancer. In vitro and

epidemiological studies have demonstrated that steroid hormones,

leptin and insulin-like growth factor-1 (IGF-1), all of which are

raised among obese individuals, increase prostatic tumour cell

proliferation [19,20].

In summary, whilst epidemiological studies have identified

differences in prostate cancer risk between obese and non-obese

men, the possibility of confounding and bias means that a causal

effect of obesity on prostate cancer risk has not yet been

conclusively demonstrated. Genetic studies are less susceptible to

confounding than observational epidemiology [21] and may offer

a complimentary study design [22]. The existence of genetic

variations that alter risk of developing both obesity and prostate

cancer could constitute evidence in favour of a causal link between

the two diseases.

A single nucleotide polymorphism (SNP), known to be

associated with obesity (FTO rs9939609), has been robustly

associated with increased body mass index (BMI) and obesity in

multiple study populations [23–26]. It has been suggested that this

effect is mediated through a reduction in satiety [27] and

consequent increased food consumption [28]. The rs9939609

SNP may, therefore, present an un-confounded exposure with

which to investigate the causal association between obesity and

prostate cancer.

We hypothesised that the AA genotype of rs9939609, which is

associated with an increase in BMI, would protect against non-

aggressive prostate tumours whilst increasing the risk of aggressive

prostate tumours. To test this hypothesis, we present data from a

large, case-control study nested within the population-based phase

of the ProtecT (Prostate testing for cancer and Treatment study)

trial.

Materials and Methods

Study participants
Participants in this study were selected from the Prostate testing

for cancer and Treatment study (ProtecT), which is a randomized

controlled trial taking place in nine regions of the UK with the aim

of evaluating the efficacy, cost effectiveness, and acceptability of

treatments for localized prostate cancer. All men aged 50–69 years

from approximately 300 general practices and without known

prostate cancer, were invited to attend a nurse-led prostate check

clinic and have a PSA test. The invitations were sent between 2001

and 2008 and over 89,000 men attended the prostate check clinic.

Participants with a single raised PSA level over 3.0 ng/ml were

invited to attend the centre’s urology department for digital rectal

examination (DRE), repeat PSA test, and transrectal ultrasound

(TRUS) guided biopsy (10 cores), or referred to a urologist if the

PSA level was over 20 ng/ml, to confirm prostate cancer status.

The age of the participants when they attended the prostate check

clinic, PSA level, height, weight, smoking status, physical exercise

and self-reported ethnicity and diabetes were collected either by

questionnaire or by nurse interview. In this study, our case

population consisted of all men with prostate cancer identified at

prostate check clinics conducted before the end of November 2006

who gave consent for genotyping.

Prostate cancer stage was defined according to the 2002 TNM

staging system [29]. Patients with cancer stage between T0-T2

were defined as having localized stage cancer, while individuals

with a cancer stage greater than T2 were defined as advanced

stage cases. Histological cancer grade was defined by Gleason

score using grade 7 as the cut-off (lower grade: ,7; higher grade:

$7). We found little overlap between more aggressive prostate

cancer cases defined by these two methods. Only 19.4% of

patients with Gleason score $7 have cancer stage $T2, whereas

72.2% of patients at stage $T2 have Gleason score $7.

Two non-overlapping groups of controls were randomly

selected from the pool of men who attended the prostate check

clinics and did not have prostate cancer diagnosed. One control

group included only participants without a diagnosis of prostate

cancer and with a PSA concentration ,0.5 ng/ml (‘low PSA/

super-normal controls’). The other group included only partici-

pants without a diagnosis of prostate cancer and placed no

restriction on PSA concentration (‘unrestricted controls’). Unre-

stricted controls were stratum matched to cases by age (5-year

bands) and the primary care centre (general practice) from which

men were recruited; low PSA controls were matched to cases

where possible, but if a matched low PSA control was not

available, an unmatched low PSA control was selected. Multi-

centre Research Ethics Committee approval was obtained from

Trent MREC, and written consent for performing anonymized

genotyping on stored blood was obtained from individual

participants. Detailed descriptions of the ProtecT study and the

protocol for nested case-control selection are published elsewhere

[30–32].

DNA extraction and genotyping
DNA extraction was performed by Tepnel (http://www.tepnel.

com). The FTO rs9939609 variant was genotyped in ProtecT

participants as part of a genetic association study examining the

effect of 70 diet/nutrition relevant SNPs on prostate cancer risk

and was undertaken by KBioscience Ltd (www.kbioscience.co.uk),

who use their own form of competitive allele-specific PCR

(KASPar) and TaqmanTM, for SNP analysis. Samples with more

than 10% genotype failure (7 SNPs) were defined as having poor

DNA quality (2.6%) and dropped from further analysis. Geno-

typing was repeated in 10% of the study samples (with

independent assessment) and for 99.98% of those samples there

was exact agreement between the two.

Statistical analysis
A Pearson x2-test was performed amongst controls to ensure

that genotype distribution satisfied Hardy-Weinberg equilibrium.

We tested for differences in demographic and lifestyle character-

istics between cases and controls and between low PSA and other

controls. We also tested for differences in these characteristics

between genotypes. We used Student’s t-test for quantitative
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variables, such as age, BMI, PSA level (log transformed), exercise

intensity scores and weekly drinking and x2 tests for ordered

categorical variables, such as smoking status (current smoker, ever

smoker and non-smoker) and social class (professional, intermedi-

ate and manual). Associations of rs9939609 with all prostate

cancers and prostate cancer stage or grade were calculated using

unconditional logistic regression models adjusted for exact age at

prostate check clinic and study centre (9-level variable).

Instrumental variable (IV) estimation of the effect of BMI on

prostate cancer was performed by dividing the genotype-outcome

log odds ratios by the genotype-BMI association from the controls,

known as the Wald type estimator or ratio of coefficients approach

[33,34]. This estimate was exponentiated to give a causal odds

ratio per unit change in BMI. The standard error of the IV

estimate on the log scale was calculated using a Taylor series of the

ratio of two means [35] Statistical analyses were carried out in

Statastatistical software (version 10; Stata Corporation, College

Station, TX). P-values are two-sided.

Results

DNA samples from 4664 participants were submitted for

genotyping. We excluded 91 individuals who reported being of

ethnicities other than white European in an attempt to avoid

population stratification in our analysis. The distributions of co-

variables in the remaining population are outlined in Table 1.

Cases were more likely to have a family history of cancer than

controls and more likely to be non-smokers, but did not differ in

relation to BMI, waist-hip ratio, exercise intensity score, alcohol

intake, or social class. Low PSA controls were younger, had a

higher BMI and drank more alcohol than the ‘unrestricted’

controls.

Genotyping was successfully carried out for 1550 of 1566

(99.0%) cases, 1815 out of 1824 (99.5%) controls, and 1175 of

1183 (99.3%) controls. Genotypes conformed to Hardy-Weinberg

equilibrium in all 3 groups (cases p = 0.91, ‘unrestricted’ controls

p = 0.36, low PSA controls p = 0.14). Four hundred and forty nine

out of 1545 men in whom histological grade was confirmed were

defined as having high-grade cancer, whereas only 196 out of 1546

cases were defined as having advanced-stage cancer.

Table 2 shows the association between the FTO rs9939606

genotype and the baseline characteristics of the ‘unrestricted’

control population. There were no differences in the distribution

of these variables by genotype; they cannot, therefore, confound

the association between genotype and disease risk.

Table 3 shows the association between genotype and mean

BMI among cases, ‘unrestricted’ controls and ‘low-PSA’ controls.

The difference between AA and TT genotypes was similar among

the 3 groups with an overall difference of 0.56 kg/m2 (p = 0.007).

We also assessed the association between genotype and log PSA

level among the cases and normal (‘unrestricted’) controls

(Table 4), but not amongst the low PSA controls (because these

were selected to have extremely low PSA levels (,0.5 ng/ml)

which is around the limit of detection and it is therefore likely that

the ability to detect differences in PSA levels by genotype will be

low in this group). We found no strong statistical evidence of any

differences in log PSA level by genotype (mean log PSA differences

comparing AA versus TT were 20.07 and 20.06 amongst cases

and controls, respectively).

Table 5 shows the results of our analyses of associations

between genotype and prostate cancer risk. Those with the A allele

had a lower odds of all- or low-grade cancers, compared to those

with the TT genotype (p-values for per allele effects were between

0.03 and 0.18). The results for all cases versus all controls

Table 1. Characteristics of the study population.

Matched
‘unrestricted’
controls

Prostate cancer
cases p-value Low PSA controls p-value

No. of participants 1824 1566 — 1183 —

Family history

Yes 95 (5.2) 116 (7.4) 0.008 46 (3.9) 0.10

No 1730 (94.8) 1450 (92.6) 1137 (96.1)

Age in years (mean6sd), year 62.765.0 62.565.1 0.36 60.865.4 ,0.0001

PSA (mean6sd)*, ng/ml 1.361.4 9.3626.1 ,0.0001 0.3660.1 N/A

BMI (mean6sd), kg/m2 26.863.7 26.763.6 0.41 27.564.1 0.0001

WHR (mean6sd), unit 0.9360.002 0.9360.002 0.95 0.9360.002 0.99

Exercise intensity scores (mean6sd)*, unit 22.6633.6 23.2634.9 0.07 22.8633.6 0.75

Weekly drinking (mean6sd)*, unit 19.0617.8 17.7616.7 0.09 21.7619.8 0.009

Social class (n,%)

Professional 722 (44.0) 721 (46.7) 0.26 398 (47.9) 0.18

Intermediate 279 (15.9) 245 (15.8) 122 (14.7)

Manual 703 (40.1) 579 (37.5) 311 (37.4)

Smoking (n, %)

Non-smoker 405 (32.6) 430 (37.3) 0.045 277 (32.7) 0.75

Ever smoker 661 (53.3) 561 (48.6) 441 (52.1)

Current Smoker 175 (14.1) 163 (14.1) 129 (15.2)

‘Unrestricted’ controls are the baseline group for comparison,
*p-values are calculated based on log transformed data.
doi:10.1371/journal.pone.0013485.t001
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(‘unrestricted’ plus ‘low-PSA’) suggested a 7% reduction per A

allele (95% CI = 22% to 15%). There was evidence of a 10%

reduction (1% to 19%) in risk of low grade prostate cancer per A

allele (p = 0.03). There was no association with having high grade

or advanced stage cancer per se, but among cases the results for

high-grade versus low-grade cancer suggested that risk of high

grade disease was increased by 16% per A allele (95% CI-1% to

37%, p = 0.07). However, p-values were not sufficiently small to

provide strong evidence against the null hypothesis. Adjustment by

whether men had diabetes or not (self-report) made no difference

to the results (not shown).

Instrumental variable estimates (Table 6) gave an OR of 0.77

(95% CI 0.52, 1.15) for prostate cancer per unit increase in BMI

(using the per allele estimates for genotype) and an OR of 1.35

(95% CI 0.90, 2.03) for high-grade versus low-grade cancer per

unit increase in BMI.

Discussion

To our knowledge, this is the first study to look for a possible

association between a SNP predisposing to obesity and prostate

cancer. Our large, population-based, nested case-control study has

found weak evidence that the rs9939609 A allele, which has

previously been associated with obesity and is associated with

raised BMI amongst our study population, protects against

prostate cancer incidence, and stronger evidence that the same

genotype protects against low-grade prostate cancer. This

supports findings from epidemiological studies including our own

[36], which have noted that obesity protects against localised

prostate cancer. Our study found some evidence that rs9939609 A

allele increases the risk of high-grade versus low-grade cancer

among cases but FTO genotype was not associated with the

presence of high grade or advanced stage disease per se (i.e. in

Table 2. Characteristics of the matched ‘unrestricted’ control population by FTO rs9939609 genotype.

TT TA p-value AA p-value

Total No. of participants 676 848 — 291 —

Family history

Yes 39 (5.8) 42 (5.0) 0.48 14 (4.8) 0.55

No 637 (94.2) 806 (95.1) 227 (95.2)

Age in years (mean6sd), year 63.065.1 62.465.0 0.03 62.965.0 0.69

PSA (mean6sd)*, ng/ml 1.361.3 1.361.5 0.89 1.261.3 0.30

BMI (mean6sd), kg/m2 26.563.6 27.063.7 0.07 26.964.0 0.22

WHR (mean6sd), unit 0.9360.06 0.9460.06 0.17 0.9460.06 0.31

Exercise intensity scores (mean6sd)*, unit 23.5633.8 20.5628.8 0.43 26.7640.1 0.21

Weekly drinking (mean6sd)*, unit 18.5616.7 20.5619.3 0.23 15.4614.4 0.36

Social class (n,%)

Professional 276 (42.8) 369 (45.2) 0.65 123 (43.5) 0.97

Intermediate 106 (16.4) 127 (15.6) 45 (15.9)

Manual 263 (40.8) 320 (39.2) 115 (40.6)

Smoking (n, %)

Non-smoker 159 (32.9) 179 (32.8) 0.71 65 (31.7) 0.80

Ever smoker 252 (52.0) 294 (53.9) 112 (54.6)

Current Smoker 73 (15.1) 73 (13.3) 28 (13.7)

The TT genotype is the baseline category for comparison,
*p-values are calculated based on log transformed data.
doi:10.1371/journal.pone.0013485.t002

Table 3. Association between BMI and FTO genotype (adjusted by age and centre).

TT TA
Mean difference, 95%
CI (TA minus TT) p AA

Mean difference, 95%
CI (AA minus TT) p per allele effect p

Low PSA Controls 27.364.0 27.463.9 0.05 (20.57, 0.68) 0.86 28.164.7 0.77 (20.06, 1.61) 0.07 0.32 (20.08, 0.73) 0.12

Matched
‘unrestricted’
controls

26.563.6 27.063.7 0.44 (20.04, 0.91) 0.07 26.964.0 0.39 (20.24, 1.03) 0.22 0.24 (20.06, 0.55) 0.11

Cancer Cases 26.563.5 26.663.6 0.08 (20.39, 0.55) 0.74 27.163.6 0.49 (20.16, 1.15) 0.14 0.21(20.10, 0.52) 0.19

All controls 26.863.8 27.163.8 0.29 (20.9, 0.67) 0.13 27.464.3 0.57 (0.06, 1.07) 0.03 0.28 (0.04, 0.53) 0.02

Low grade cancers 26.363.2 26.763.7 0.39 (20.16,0.94) 0.16 27.463.6 1.04 (0.25, 1.83) 0.01 0.49 (0.12, 0.86) 0.01

CI = confidence interval.
doi:10.1371/journal.pone.0013485.t003
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comparison with non prostate cancer controls). In line with these

findings, we did not find an association between BMI and high

grade or advanced stage prostate cancer or even with prostate

cancer risk overall in our observational analysis [36].

Whilst our effect sizes by genotype were relatively modest, it is

important to note that the effect of genotype on BMI was also

modest with a per allele difference of 0.28 kg/m2. The

instrumental variable analysis suggests that prostate cancer risk is

reduced by 23% per BMI unit, which would be quite substantial,

although confidence intervals around this effect are wide reflecting

both the uncertainty in the genotype-BMI association and the

uncertainty in the genotype-prostate cancer association.

In our sub group of the ProtecT study (for which DNA was

available) we did not find any difference in mean BMI between

cases and controls, but a more comprehensive analysis not restricted

to those with DNA found an inverse association of increasing BMI

with localised cancer (unpublished work) suggesting that power may

have been an issue in our study. Approximately one third of men

included in our genotype analysis did not report their BMI and so

could not be included in the BMI - cancer association analysis

presented in Table 1. If there were a tendency for overweight men

to not report their BMI, then this would bias our observational

results, but not our genotype results (as very few eligible men were

excluded from the genotype analysis) towards the null.

It is important to note that unlike other studies which found that

high grade or advanced stage cancer were more prevalent among

men with a higher BMI, we found BMI to be associated with

prostate cancer grade among cases, but we found no difference in

genotype distributions (and therefore BMI) between high grade

cancers and controls. Also, although we measured more aggressive

prostate cancer using both Gleason grade and TNM staging, the

strongest effects in our study were found using a classification of

Gleason grade. We observed similar effects in an earlier analysis of

vitamin D and prostate cancer progression [we reported and

discussed this in detail in ref 36]. In a study comparing the

predictive ability of the two systems for classifying prostate cancer,

Gleason score has been reported to have higher predictive

accuracy for biochemical recurrence compared with TNM staging

[37]. Interestingly, in the meta-analysis of BMI and prostate

cancer by MacInnes and English [4], the study which showed the

largest effect of BMI on increased risk of more aggressive cancer

was that which used Gleason grading; all other studies used TNM

staging and their results were all compatible with no increased risk.

Alternatively the fact that we and others found no evidence of an

increase risk for advanced stage among men with prostate cancer

could simply be due to low power to detect an effect. In this study

there were only 196 men in the advanced stage group, as opposed

to 449 in the high grade group. Confidence intervals for the effect

estimates for both high grade and advanced stage were

overlapping and compatible with there being an increased risk

for advanced stage as well as high grade cancer. We had around

57% power to detect a 10% increase or decrease in prostate cancer

risk per FTO allele, but only around 14% power to detect a similar

effect with advanced stage cancer. Future studies would need to be

of the order of 2700 cases (or advanced cases, depending on the

question) to have 80% power to detect an effect of this order with

FTO genotype.

Our study has several advantages over traditional epidemiolog-

ical studies. Genetic studies of disease risk are less susceptible to

confounding and reverse causation and we can therefore be

reasonably confident that the protective effect of the rs9939609

genotype is not due to these factors. In this study adjustment by

whether men reported having diabetes or not made no difference to

our results, suggesting that diabetes is not a confounder in the

association between FTO genotype and prostate cancer risk. This is

in line with Gong et al [5] who found in their observational study

that the association between obesity and prostate cancer risk was

independent of diabetes. Furthermore, whilst we cannot rule out the

possibility that our results are due to detection bias, the lack of an

effect of rs9939609 on PSA concentration (Table 4) suggests that

Table 4. Association between log PSA and FTO genotype.

TT TA Mean difference p AA Mean difference p per allele effect p

Matched Controls 20.0960.85 20.1060.83 20.006 (20.09, 0.08) 0.89 20.1560.85 20.06 (20.18, 0.05) 0.30 20.03 (20.08, 0.03) 0.36

Cancer Cases 1.8560.68 1.8160.72 20.03 (20.11,0.05) 0.43 1.7860.62 20.07 (20.17, 0.03) 0.19 20.03 (20.08, 0.02) 0.20

doi:10.1371/journal.pone.0013485.t004

Table 5. Association between FTO genotype and prostate cancer outcomes adjusted by age and study centre.

TA vs TT AA vs TT per allele effect

Odds Ratio (95%CI) p Odds Ratio (95%CI) p Odds Ratio (95%CI) p

Cancer cases (n = 1550) vs matched controls (n = 1815) 0.96 (0.83–1.12) 0.62 0.86 (0.70–1.06) 0.16 0.94 (0.85–1.03) 0.18

Cancer cases (n = 1550) vs low PSA controls (n = 1175) 0.99 (0.83–1.17) 0.87 0.82 (0.65–1.03) 0.09 0.92 (0.82–1.03) 0.14

Cancer cases (n = 1550) vs all controls (n = 2990) 0.98 (0.85–1.12) 0.73 0.84 (0.70–1.02) 0.08 0.93 (0.85–1.02) 0.12

Low grade cancers (n = 1096) vs all controls (n = 2990) 0.94 (0.80–1.09) 0.38 0.78 (0.63–0.97) 0.02 0.90 (0.81–0.99) 0.03

Localized stage (n = 1350) vs all controls (n = 2990) 0.95 (0.83–1.10) 0.50 0.87 (0.71–1.05) 0.15 0.94 (0.85–1.03) 0.16

High grade (n = 449) vs low grade (n = 1096) 1.20 (0.94–1.54) 0.14 1.33 (0.95–1.88) 0.10 1.16 (0.99–1.37) 0.07

Advanced stage (n = 196) vs localized stage (n = 1350) 1.27 (0.91–1.77) 0.16 0.79 (0.47–1.34) 0.38 0.99 (0.79–1.23) 0.90

High grade (n = 449) vs all controls (n = 2990) 1.09 (0.87–1.36) 0.45 1.01 (0.75–1.37) 0.94 1.02 (0.89–1.18) 0.78

Advanced stage (n = 196) vs all controls (n = 2990) 1.14 (0.83–1.57) 0.40 0.68 (0.41–1.12) 0.13 0.91 (0.73–1.12) 0.36

doi:10.1371/journal.pone.0013485.t005
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PSA levels did not play a major role in our findings. If we ignore the

p-values and apply a correction factor based on the mean difference

in log PSA levels between controls with the AA and those with the

TT genotype, we find that under-detection due to a lower PSA level

among AA individuals cannot explain our results. The mean

difference in log PSA levels between AA and TT genotypes was

20.06 units; this equates to a geometric mean difference of 0.94, i.e.

a 6% difference on a log scale. If we were to lower our PSA cut-off

by 6% among AA individuals we would have biopsied a further 3

individuals. Since the chance of detecting prostate cancer among

biopsied individuals in our study was 25%, we would expect 0.75

cases to have been missed due to lower PSA levels among AA

individuals. This would not affect the results of our analysis of

genotype and cancer risk. In addition, because our prostate cancer

cases came from a population based cohort study our results are

unlikely to have arisen by survivor bias. However, whilst PSA

detection bias is unlikely to explain our results, it is possible that

detection bias due to biopsy could have occurred. It has been

suggested that biopsies among obese men are more likely to lead to

false negatives due to enlarged tissue [9]. In future studies it will be

important to clarify the degree to which detection bias is responsible

for associations between BMI and prostate cancer and whether

there is another causal mechanism which is responsible for the

observed association. These issues could be addressed by more

thorough examination and a greater number of biopsies among

obese men and also by investigating the extent to which other

pathways such as hormonal pathways could explain the association.

Mendelian randomization offers evidence that is complimentary

to that provided by conventional observational epidemiology, and

can avoid confounding by lifestyle factors and bias due to reverse

causation [21]. However it is important to note that there are

limitations to this approach. The biological consequences of

variation at the FTO locus and the mechanism of the observed

association of this with fat mass are still unclear. Several studies

exist which point to a role for this locus in energy regulation and

hypothalamically regulated patterns of appetite [27–28,38–42].

However, the possibility of pleiotrophy in the association between

FTO genotype and prostate cancer risk cannot be completely

ruled out. In this case, utilizing multiple instruments that is, several

independent genetic variants that are associated with BMI could

help strengthen the causal inference, as pleiotropic effects are

unlikely to influence the effects of each instrument in the same

manner [22]. In addition it is possible to generate multiple

combinations of genetic variants that are independent of each

other to generate many independent variable estimates as

described in [43]. Future studies using multiple genetic instru-

ments could also use combinations of alleles, as allele scores, to

increase power and strengthen the IV estimation [44].

In conclusion, our data provides some evidence (albeit weak)

that the A allele of rs9939609 may protect against prostate cancer

risk or reduce the likelihood of this disease being detected (in

particular low-grade cancer), but may increase the likelihood of

cases having high grade as opposed to low grade prostate cancer at

diagnosis. These observations support the findings from epidemi-

ological studies that obesity protects against localised prostate

cancer but increases the risk of advanced cancer. Further studies of

this SNP and investigations of other obesity associated polymor-

phisms are required to provide clarity in this area.
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