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We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine 
the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field 
equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying 
their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and 
scalar field.
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1. Introduction

In the phenomenon of charge superradiance, a classical charged 
scalar field wave incident on a Reissner–Nordström black hole is 
scattered with a reflection coefficient of greater than unity if the 
frequency, ω, of the wave satisfies the inequality [1]

0 < ω < q�h, (1)

where q is the charge of the scalar field and �h is the electrostatic 
potential at the event horizon of the black hole. By this process, 
the charged scalar field wave extracts some of the electrostatic 
energy of the black hole. If a charged scalar field wave satisfy-
ing (1) is trapped near the event horizon by a reflecting mirror 
of radius rm , the wave can scatter repeatedly off the black hole, 
and is amplified each time it is reflected. This can lead to an in-
stability (the “charged black hole bomb”) where the amplitude of 
the wave grows exponentially with time [2–5], providing the scalar 
field charge q and mass μ satisfy the inequality [5]

q

μ
>

√√√√ rm
r− − 1
rm
r+ − 1

> 1, (2)
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where r+ and r− are, respectively, the radius of the event hori-
zon and inner horizon of the black hole. The inequality (2) ensures 
that the area of the event horizon increases as the scalar field 
evolves [2], and implies that for fixed q and μ, the mirror radius 
rm must be sufficiently large for an instability to occur. Physically, 
the scalar field wave must extract more charge than mass from the 
black hole, so that the black hole evolves away from extremality.

What is the ultimate fate of this charged black hole bomb in-
stability? To answer this question, it is necessary to go beyond 
the test-field limit and consider the back-reaction of the charged 
scalar field on the black hole geometry. Recently, we studied static, 
spherically symmetric, black hole [6] and soliton [7] solutions of 
Einstein charged scalar field theory in a cavity, in the case where 
the scalar field mass μ is set equal to zero. For both soliton and 
black hole solutions, the scalar field vanishes on the mirror. We 
examined the stability of these charged-scalar solitons and black 
holes by considering linear, spherically symmetric, perturbations of 
the metric, electromagnetic field, and massless charged scalar field. 
In the black hole case [6], we found that if the scalar field has no 
zeros between the event horizon and mirror, then the black holes 
appear to be stable. On the other hand, if the scalar field vanishes 
inside the mirror then the system is unstable. The situation for 
solitons is more complex [7]. Even if the scalar field has no zeros 
inside the mirror, there are some solitons which are unstable. The 
unstable solitons have small mirror radius and large values of the 
electrostatic potential at the origin.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2016.10.073
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:supakchai.p@gmail.com
mailto:E.Winstanley@sheffield.ac.uk
http://dx.doi.org/10.1016/j.physletb.2016.10.073
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.10.073&domain=pdf


88 S. Ponglertsakul, E. Winstanley / Physics Letters B 764 (2017) 87–93
In [6] we conjectured that the stable black holes with charged 
scalar field hair could be possible end-points of the charged black 
hole bomb instability. This conjecture has been tested recently 
[8,9] by evolving the fully coupled, time-dependent, spherically 
symmetric, Einstein–Maxwell–Klein–Gordon equations in a cavity. 
Starting from a Reissner–Nordström black hole in a cavity with a 
small charged scalar field perturbation, the system evolved to a 
hairy black hole in which some of the charge of the original black 
hole was transferred to the scalar field.

For a massless charged scalar field, the work of [9] confirms 
our conjecture in [6] – the ultimate fate of the charged black hole 
bomb is an equilibrium black hole with scalar field hair. However, 
in [8,9] a massive charged scalar field is also considered. In this pa-
per we therefore study the effect of introducing a scalar field mass 
on the soliton and black hole solutions found in [6,7]. Our aim is to 
examine whether the end-points of the charged black hole bomb 
instability found in [8,9] correspond to stable equilibrium solutions 
of the Einstein–Maxwell–Klein–Gordon equations.

To this end, we begin in section 2 by introducing Einstein mas-
sive charged scalar field theory. We study numerical soliton and 
black hole solutions of the static, spherically symmetric field equa-
tions in section 3, paying particular attention to the effect of the 
scalar field mass on the phase space of solutions. The stability of 
the solutions is investigated in section 4, before our conclusions 
are presented in section 5.

2. Einstein massive charged scalar field theory

We consider a self-gravitating massive charged scalar field cou-
pled to gravity and an electromagnetic field, and described by the 
action

S = 1

2

∫ √−g d4x

[
R − 1

2
Fab F ab

− gab D∗
(a�

∗Db)� − μ2�∗�
]

(3)

where g is the metric determinant, R the Ricci scalar, Fab =
∇a Ab − ∇b Aa is the electromagnetic field (with electromagnetic 
potential Aa), � is the complex scalar field, �∗ its complex conju-
gate and Da = ∇a − iq Aa with ∇a the usual space-time covariant 
derivative. Round brackets in subscripts denote symmetrization of 
tensor indices. The scalar field charge is q and μ is the scalar field 
mass. We use units in which 8πG = 1 = c and metric signature 
(−, +, +, +).

Varying the action (3) gives the Einstein–Maxwell–Klein–
Gordon equations

Gab = T F
ab + T �

ab, ∇a F ab = J b, Da Da� − μ2� = 0, (4)

where the stress-energy tensor Tab = T F
ab + T �

ab is given by

T F
ab = Fac Fb

c − 1

4
gab Fcd F cd,

T �
ab = D∗

(a�
∗Db)� − 1

2
gab

[
gcd D∗

(c�
∗Dd)� + μ2�∗�

]
, (5)

and the current J a is

J a = iq

2

[
�∗Da� − �

(
Da�

)∗]
. (6)

We consider static, spherically symmetric, solitons and black 
holes with metric ansatz

ds2 = − f (r)h(r)dt2 + f −1(r)dr2 + r2
[
dθ2 + sin2 θ dϕ2

]
, (7)
where the metric functions f and h depend only on the radial 
coordinate r. It is useful to define an additional metric function 
m(r) by

f (r) = 1 − 2m(r)

r
. (8)

By a suitable choice of gauge (see [6,7] for details), we can take 
the scalar field � = φ(r) to be real and depend only on r. The 
electromagnetic gauge potential has a single non-zero component 
which depends only on r, namely Aμ = [A0(r),0,0,0]. Defining a 
new quantity E = A′

0, the static field equations (4) generalize those 
in [6,7] to include a nonzero scalar field mass and take the form

h′ = r
(

q A0φ f −1
)2 + rhφ′ 2, (9a)

E2 + μ2hφ2 = −2

r

[
f ′h + 1

2
f h′ + h

r
( f − 1)

]
, (9b)

0 = f A′′
0 +

(
2 f

r
− f h′

2h

)
A′

0 − q2φ2 A0, (9c)

0 = f φ′′ +
(

2 f

r
+ f ′ + f h′

2h

)
φ′ +

(
q2 A2

0

f h
− μ2

)
φ. (9d)

3. Soliton and black hole solutions

We now consider soliton and black hole solutions of the static 
field equations (9). In both cases we have a mirror at radius rm , 
on which the scalar field must vanish, so that φ(rm) = 0. As in [7], 
here we consider only solutions where the scalar field has its first 
zero on the mirror, since it is shown in [6] that black hole solutions 
for which the scalar field has its second zero on the mirror are 
linearly unstable.

3.1. Solitons

In order for all physical quantities to be regular at the origin, 
the field variables have the following expansions for small r:

m =
(

φ2
0

[
a2

0q2 + h0μ
2
]

12h0

)
r3 + O (r5),

h = h0 +
(

q2a2
0φ

2
0

2

)
r2 + O (r4),

A0 = a0 +
(

a0q2φ2
0

6

)
r2 + O (r4),

φ = φ0 −
(

φ0
[
a2

0q2 − h0μ
2
]

6h0

)
r2 + O (r4), (10)

where φ0, a0 and h0 are arbitrary constants. By rescaling the time 
coordinate (see [7] for details), we can set h0 = 1 without loss of 
generality. A length rescaling [7] can then be used to fix the scalar 
field charge q = 0.1. For each value of the scalar field mass μ, 
soliton solutions are then parameterized by the two quantities a0
and φ0.

Scalar field profiles for some typical soliton solutions are shown 
in Fig. 1. From the expansions (10), it can be seen that if the scalar 
field mass vanishes, μ = 0, and φ0 > 0 then close to the origin 
the scalar field is decreasing [7]. This is no longer necessarily the 
case when μ > 0. For φ0 > 0 and h0 = 1, if |a0| > μ/q then the 
scalar field is decreasing close to the origin, and, for the numerical 
solutions investigated, it monotonically decreases to zero on the 
mirror. If |a0| < μ/q then the scalar field is increasing close to the 
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Fig. 1. Scalar field profiles for some typical soliton solutions with scalar field charge 
q = 0.1 and mass μ = 0.03.

origin and must therefore have a maximum before decreasing to 
zero on the mirror. This behaviour can be seen in Fig. 1.

We find that the phase space of solitons depends on the scalar 
field mass μ, see Fig. 2. As in the massless case [7], for nonzero μ
there appears to be no upper bound on the value of |a0| for which 
there are soliton solutions; accordingly only a portion of the phase 
space is shown in Fig. 2. When μ = 0, in [7] we found solitons for 
|a0| arbitrarily small (but nonzero). However, when μ > 0, we find 
that solitons exist only for |a0| above some lower bound, which 
increases as μ increases. If φ0 > 0 and |a0| is too small, then the 
scalar field is increasing sufficiently rapidly close to the origin that 
it is unable to decrease to zero before either the metric function 
f (r) has a zero or the solution becomes singular.

The other interesting feature in Fig. 2 is the existence of solitons 
with μ > q. For such values of the scalar field mass, there is no 
charged black hole bomb instability in the test-field limit (2). We 
therefore now explore whether there are also black hole solutions 
when μ > q.

3.2. Black holes

We consider black holes with event horizon radius rh , which 
can be set equal to unity using a length rescaling [7]. In a neigh-
bourhood of the event horizon, the field variables have the expan-
sions

m = rh

2
+ m′

h(r − rh) + O (r − rh)
2,

h = 1 + h′
h(r − rh) + O (r − rh)

2,

A0 = Eh(r − rh) + A′′
h

2
(r − rh)

2 + O (r − rh)
3,

φ = φh + φ′
h(r − rh) + φ′′

h

2
(r − rh)

2 + O (r − rh)
3, (11)

where

m′
h = r2

h

4

(
μ2φ2

h + E2
h

)
, h′

h = 4r3
hφ2

h

(
μ4 + q2 E2

h

)
[
2 − r2

h

(
μ2φ2

h + E2
h

)]2
,

φ′
h = 2rhμ

2φh

2 − r2
h

(
μ2φ2

h + E2
h

) , (12)

and A′′
h and φ′′

h are given in terms of q, μ, rh , φh and A′
h = Eh . For 

fixed μ and q, with rh = 1, black hole solutions are parameterized 
by φh and Eh . In order for the event horizon to be nonextremal, 
we find that E2

h + μ2φ2
h < 2 when rh = 1, which restricts the black 

hole phase space.
Some typical scalar field profiles for black hole solutions are 

shown in Fig. 3. When the scalar field is massless, φ′ = 0 and φ′′

h h
Fig. 2. Portions of the phase spaces of soliton solutions with scalar field charge 
q = 0.1 and three values of the scalar field mass μ. Shaded regions indicate where 
solutions exist. The curves are contours at constant mirror radius rm = 20, 40, 60, 
80, 100 and 300. The darkest regions have rm < 20; for the lightest regions, the 
mirror radius rm > 300.

Fig. 3. Scalar field profiles for some typical black hole solutions with event horizon 
radius rh = 1, scalar field charge q = 0.1 and mass μ = 0.07.
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has the opposite sign to φh [6]. Therefore, for μ = 0 and φh > 0, 
the scalar field is decreasing close to the horizon. For a massive 
scalar field, from (12) we see that φ′

h has the same sign as φh . 
Therefore, when φh > 0, the scalar field is increasing close to the 
event horizon and has a maximum between the event horizon 
and mirror. This behaviour can be seen in the scalar field profiles 
shown in Fig. 3, and in the final scalar field configurations resulting 
from the time-evolution of the charged black hole bomb instability 
[8,9].

The phase spaces of black hole solutions for various values of 
the scalar field charge q and mass μ are shown in Fig. 4. When 
μ > 0, we find that there is a minimum value of |Eh| for which 
there are nontrivial black holes. This minimum is very small when 
q is large and μ is small, when the gap in the phase space for 
small |Eh| is not visible in Fig. 4. Below this minimum, the scalar 
field does not have a zero before either f (r) has a second zero or 
the solution becomes singular.

For each value of the scalar field charge q, we find a maxi-
mum value of the scalar field mass μ for which there are hairy 
black hole solutions. In Fig. 5 we plot the region of the (q, μ)-plane 
(with event horizon radius rh = 1 and 0 < q < 1) for which there 
are black hole solutions. It is clear that, for each value of the scalar 
field charge q, the maximum scalar field mass is always larger 
than q, in other words we find nontrivial black holes with μ > q.

4. Stability analysis

We now examine the stability of the soliton and black hole so-
lutions under linear, spherically symmetric, perturbations of the 
metric, electromagnetic field and scalar field. The method is largely 
unchanged from that employed in [6,7] in the massless case. We 
therefore simply state the perturbation equations and briefly dis-
cuss the numerical results, referring the reader to [6,7] for details 
of the derivation and numerical method used.

4.1. Perturbation equations

We begin by introducing two new field variables:

γ = f h1/2, ψ = rφ, (13)

where now γ , f , h, A0, φ and ψ depend on the radial coordi-
nate r and time t . We write the field variables as, for example, 
f (t, r) = f̄ (r) + δ f (t, r) where barred variables are static equilib-
rium quantities and δ f (with similar notation for the other vari-
ables) are time-dependent perturbations. All perturbations are real, 
apart from the scalar field perturbation δψ , which we write in 
terms of its real and imaginary parts as [6]:

δψ(t, r) = δu(t, r) + iδẇ(t, r), (14)

where δu and δw are real. The derivation of the linearized pertur-
bation equations is essentially the same as in the massless case 
[6,7]. The metric perturbations can be eliminated to give three 
perturbation equations for δu, δw and δA0. The final perturbation 
equations are slightly modified by the inclusion of the scalar field 
mass μ, and take the form

0 = δü − γ̄ 2δu′′ − γ̄ γ̄ ′δu′ +
[

3q2 Ā2
0 + γ̄ γ̄ ′

r
− f̄ h̄

(
ψ̄

r

)′ 2

+ f̄ Ā′ 2
0

2

((
ψ̄

r

)2

+ ψ̄ ′ 2

)
− f̄ ψ̄ψ̄ ′ Ā′ 2

0

r

+ μ2 f̄ h̄

{
1 + ψ̄

(
ψ̄

r

)′ (
2 + ψ̄

2

(
ψ̄

r

)′)}]
δu
+ 2q Ā0γ̄
2δw ′′

+ q f̄ Ā0

[
2
√

h̄γ̄ ′ +
(

− Ā′
0

Ā0
A+ h̄

r
+ r Ā′ 2

0

2

)(
ψ̄

r

)′
ψ̄

− μ2h̄ψ̄2

r

(
1 + ψ̄

2

(
ψ̄

r

)′)]
δw ′ + q Ā0

[
2q2 Ā2

0 − 2γ̄ γ̄ ′

r

+ γ̄ ψ̄ ′
(

ψ̄

r

)′ (
γ̄ Ā′

0

Ā0
− γ̄ ′ − γ̄

r

)

+ μ2 f̄ h̄
(−2r + ψ̄ψ̄ ′)

r

]
δw, (15a)

0 = δẅ − γ̄ 2δw ′′ +
[
−γ̄ γ̄ ′ + q2 Ā0ψ̄

2

r2 Ā′
0

A
]

δw ′

+
[
−q2 Ā2

0 − q2 Ā0ψ̄ψ̄ ′

r2 Ā′
0

A+ γ̄ γ̄ ′

r
+ μ2 f̄ h̄

]
δw

− q Ā0

[
2 + ψ̄

(
ψ̄

r

)′]
δu

+ q Ā0ψ̄

Ā′
0

δA′
0 − qψ̄δA0, (15b)

0 = qψ̄

Ā′
0r2

Aδw ′′ + qψ̄ Ā0

r2

[
γ̄ ′

Ā0 Ā′
0γ̄

A− q2ψ̄2h̄

r2 Ā′ 2
0

]
δw ′

+ qψ̄ Ā0

r2

[
A

r Ā0 Ā′
0γ̄

(
−γ̄ ′ + rq2 Ā2

0

γ̄
− μ2r

√
h̄

)

+ q2h̄ψ̄ψ̄ ′

r2 Ā′ 2
0

]
δw

−
(

ψ̄

r

)′
δu′ −

[(
ψ̄

r

)′′
+

(
1

r
+ γ̄ ′

γ̄

)(
ψ̄

r

)′
− μ2ψ̄

r f̄

]
δu

+
[

δA′
0

Ā′
0

]′
, (15c)

where we have defined

A = f̄ h̄ + r Ā0 Ā′
0. (16)

At the mirror r = rm , the scalar field perturbations δu and δw must 
vanish; there is no restriction on the value of δA0 there. The other 
boundary conditions depend on whether we are considering equi-
librium solitons or black holes.

4.2. Solitons

For soliton solutions, we consider time-periodic perturbations 
of the form [7]

δu(t, r) = Re
[

e−iσ t ũ(r)
]
, δw(t, r) = Re

[
e−iσ t w̃(r)

]
,

δA0(t, r) = Re
[

e−iσ t Ã0(r)
]
, (17)

where ũ, w̃ , Ã0 have the following expansions near the origin

ũ = r
∞∑

u jr
j, w̃ = r

∞∑
w jr

j, Ã0 =
∞∑

α jr
j . (18)
j=0 j=0 j=0



S. Ponglertsakul, E. Winstanley / Physics Letters B 764 (2017) 87–93 91
Fig. 4. Phase spaces of black hole solutions with event horizon radius rh = 1 and various values of the scalar field charge q and mass μ. Shaded regions indicate where 
solutions exist. The curves are contours at constant mirror radius rm = 20, 40, 60, 80, 100 and 300, except in the last two plots (q = 0.8, μ = 0.5, 0.98) where the outermost 
contour is rm = 5. The darkest regions have rm < 20; for the lightest regions, the mirror radius rm > 300. As the scalar field charge q increases, the region containing black 
holes with small rm (the darkest blue region) increases in size. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this 
article.)
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Fig. 5. Phase space of black hole solutions with event horizon radius rh = 1. The 
shaded region denotes those values of scalar field mass μ and charge q for which 
we find hairy black holes. The red dashed line is q = μ. It is clear that we find 
solutions for which μ > q. (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

Fig. 6. Smallest eigenvalue σ 2 for solitons with scalar field charge q = 0.1 and four 
values of the scalar field mass μ. We have fixed φ0 = 1.4.

As in [7], we can use the residual gauge and diffeomorphism free-
dom to set w0 = 0 = α0 and fix u0 since the perturbation equa-
tions (15) are linear. This leaves σ 2 and w2 as free parameters. 
We find that u1, w1, α1 all vanish and subsequent terms in the 
expansions (18) are determined by σ 2, w2 and u0.

In Fig. 6 we plot the smallest eigenvalue σ 2 (which we find 
to be real) for some typical soliton solutions. The results are very 
similar to those found in [7] when the scalar field mass μ = 0. Al-
though including a scalar field mass μ does change the numerical 
values of the eigenvalues σ 2, the qualitative results from [7] are 
unchanged. In particular, for larger values of the mirror radius, all 
soliton solutions we investigated have σ 2 > 0, so that the pertur-
bation frequency σ is real and the solutions are stable. However, 
if the mirror radius is sufficiently small, then we find that some 
solitons have eigenvalues σ 2 < 0, giving a purely imaginary pertur-
bation frequency. In this case there are perturbations which grow 
exponentially with time and hence the solitons are unstable. When 
μ > q, we still find both stable and unstable solitons.

4.3. Black holes

Perturbations of black hole solutions have ingoing boundary 
conditions at the event horizon, so we consider [6]:

δu(t, r) = Re
[

e−iσ (t+r∗)ũ(r)
]
,

δw(t, r) = Re
[

e−iσ (t+r∗) w̃(r)
]
,

δA0(t, r) = Re
[

e−iσ (t+r∗) Ã0(r)
]
, (19)
Fig. 7. Imaginary part of the perturbation frequency σ for black hole solutions with 
scalar field charge q = 0.1 and four values of the scalar field mass. We have fixed 
Eh = 1.2 and the event horizon radius rh = 1.

where the usual tortoise coordinate r∗ is defined by

dr∗
dr

= 1

γ̄
. (20)

The quantities ũ, w̃ and Ã0 have the following expansions near the 
horizon:

ũ = ũ0 + ũ1(r − rh) + O (r − rh)
2,

w̃ = w̃0 + w̃1(r − rh) + O (r − rh)
2,

Ã0 = Ã1(r − rh) + Ã2(r − rh)
2 + O (r − rh)

3. (21)

Since the perturbation equations are linear, we can fix ũ0 without 
loss of generality, and then ũ1, w̃1, Ã1 and subsequent terms in 
the expansions (21) are determined by w̃0 and the eigenvalue σ .

In contrast to the soliton case, for equilibrium black hole solu-
tions the eigenvalue σ is, in general, complex. In Fig. 7 we show 
the imaginary part of σ for some typical black hole solutions. 
Again our results are qualitatively similar to those obtained in [6]
when μ = 0, although the numerical values of σ depend on the 
scalar field mass. In particular, for all the black holes we inves-
tigated (including those with μ > q), we find that the imaginary 
part of σ is negative, so the perturbations (19) are exponentially 
decaying with time and the black holes are stable.

5. Conclusions

We have studied the effect of introducing a scalar field mass μ
on static, spherically symmetric, charged scalar solitons and black 
holes in a cavity, studied for μ = 0 in [6,7]. For black hole solu-
tions, we find that the scalar field must have a maximum outside 
the event horizon if it is positive on the horizon. For solitons, if the 
scalar field is positive at the origin, it may have a maximum either 
at the origin, or between the origin and the reflecting mirror at 
r = rm .

The phase spaces of soliton and black hole solutions have a 
number of interesting new features when μ is nonzero. For fixed 
scalar field charge q, for both solitons and black holes the phase 
space shrinks as μ increases, with a nonzero lower bound on the 
magnitude of either the electrostatic potential at the origin (for 
solitons) or the derivative of the electrostatic potential at the hori-
zon (for black holes). For black hole solutions, for fixed q there is 
a maximum value of the scalar field mass μ for which we find 
solutions.

We have also studied the dynamical stability of our solutions 
under linear, spherically symmetric perturbations of the metric, 
scalar field and electromagnetic field. Recently, the thermodynamic 
stability of solitons and hairy black holes with a massless charged 
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scalar field in a cavity has been studied [10]. A complex thermody-
namic phase space emerges, in some regions of which the solitons 
or the hairy black holes are the thermodynamically stable config-
uration. It would be interesting to investigate the effect of a scalar 
field mass μ on the thermodynamic phase space.

Our work was motivated by the question of the end-point of the 
charged black hole bomb instability, which occurs in the test-field 
limit if the scalar field mass μ and charge q satisfy the inequal-
ity q > μ [2,5]. The hairy black holes we find with q > μ > 0 are 
possible end-points of this instability. When the mirror is located 
at the first zero of the scalar field, the hairy black holes appear to 
be linearly stable. Furthermore, the static equilibrium solutions we 
find here are identical (after a gauge transformation) to the final 
black hole configurations found in [8,9] from a time-evolution of 
a Reissner–Nordström black hole in a cavity with a charged scalar 
field perturbation. The fact that we have a lower bound on |Eh|
for fixed μ and q for hairy black hole solutions sets a limit on the 
amount of charge that the scalar field can extract from the black 
hole during the evolution of the charged black hole bomb (see [8,9]
for detailed studies of the extraction of charge and energy from the 
black hole as the charged black hole bomb evolves).

In this context our solutions with μ > q are particularly in-
teresting. When μ > q, a linearized probe charged scalar field on 
a Reissner–Nordström black hole background does not exhibit a 
charged black hole bomb instability [2,5]. Since we find both soli-
ton and black hole solutions with μ > q, we can nonetheless in-
terpret the hairy black holes as bound states of the solitons and a 
bald Reissner–Nordström black hole. We conjecture that the black 
holes in this case could form from the gravitational collapse of an 
unstable soliton with μ > q. To test this conjecture, a full nonlinear 
time-evolution of the Einstein–Maxwell–Klein–Gordon equations 
would be required, which we leave for future work.
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