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Abstract 

 
Our goal here is a more complete understanding of how information about luminance contrast is encoded 

and used by the binocular visual system. In two-interval forced-choice experiments we assessed observers' 

ability to discriminate changes in contrast that could be an increase or decrease of contrast in one or both 

eyes, or an increase in one eye coupled with a decrease in the other (termed IncDec). The base or pedestal 

contrasts were either in-phase or out-of-phase in the two eyes. The opposed changes in the IncDec 

condition did not cancel each other out, implying that along with binocular summation, information is also 

available from mechanisms that do not sum the two eyes' inputs. These might be monocular mechanisms. 

With a binocular pedestal, monocular increments of contrast were much easier to see than monocular 

decrements. These findings suggest that there are separate binocular (B) and monocular (L,R) channels, but 

only the largest of the three responses, max(L,B,R), is available to perception and decision. Results from 

contrast discrimination and contrast matching tasks were described very accurately by this model. Stimuli, 

data, and model responses can all be visualized in a common binocular contrast space, allowing a more 

direct comparison between models and data.  Some results with out-of-phase pedestals were not accounted 

for by the max model of contrast coding, but were well explained by an extended model in which gratings 

of opposite polarity create the sensation of lustre. Observers can discriminate changes in lustre alongside 

changes in contrast. 

 

Keywords:   contrast discrimination, binocular vision, dichoptic masking, contrast  

matching, binocular lustre, computational model 

 

 

1 Introduction  

 

1.1 Functional architecture of binocular vision   

      from psychophysics  

 

Two eyes are better than one, but not always. 

Observers with normal binocular vision typically 

show faster reaction times, better spatial acuity and 

higher contrast sensitivity using two eyes rather 

than one (for reviews see Blake, Sloane, & Fox, 

1981; Blake & Fox, 1973).  When measured with 

forced-choice techniques, contrast thresholds with 

one eye are on average 1.6 to 1.7 times higher than 

with two eyes (Meese, Georgeson, & Baker, 2006; 

Simmons & Kingdom, 1998; Simmons, 2005) - 

consistently higher than the classical figure of √2 

(1.41) (Campbell & Green, 1965). It seems clear 

that this binocular advantage in visual performance 

arises from binocular summation of signals from 

each eye (Fig. 1a), carried out by binocular cells in 

the primary visual cortex (Hubel & Wiesel, 1962; 

Anzai, Bearse, Freeman, & Cai, 1995).  

 

Surprisingly however, the binocular advantage in a 

variety of spatial tasks (Landolt C acuity, letter 

recognition, orientation discrimination) tends to 

evaporate at higher contrasts (Bearse & Freeman, 

1994; Home, 1978).  We focus here on another 

simple visual task – contrast discrimination – 

which also appears to show no binocular advantage. 

The task is to decide which of two otherwise-

identical sinewave gratings has the higher contrast. 

When the base or pedestal contrast (C) is above 

threshold, then the contrast difference DC required 

to distinguish the two contrasts, C and C+DC, is the 

same whether the test gratings are shown to one eye 

or to both eyes (Legge, 1984; Maehara & Goryo, 

2005; Meese, Georgeson, & Baker, 2006). This 

may seem paradoxical, but it does not imply that
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Figure 1.  Some basic ideas about binocular combination. (a) Binocular summation: a single binocular output channel (B, 

red) combines monocular responses to contrasts (cL, cR) in the left and right eyes. Blue disks are monocular units. (b) 

Monocular outputs (L,R) in parallel with the binocular one. (c) In this paper we explore the idea that parallel outputs are 

available initially, but only the largest of them, max(L,B,R), is selected for further processing.  

 

binocular summation is absent above threshold.  

Rather, this and related results reveal that the 

process of binocular summation is accompanied by 

a process of interocular suppression that operates 

in addition to the self-suppression that is common 

in contrast gain control models of contrast 

discrimination (e.g. Legge & Foley, 1980). When 

the same image is in both eyes, the benefit of 

binocular summation is almost exactly offset by the 

doubling of suppression, leaving signal:noise ratio 

and visual performance unchanged (Meese et al, 

2006).  Interestingly then, binocular summation 

does not always lead to binocular advantage. 

 

A similar relationship was seen in fMRI responses 

to grating contrast. At 2% contrast, BOLD 

responses to binocular input were notably larger 

than to monocular input, but at 10% contrast there 

was no difference in response, and this lack of 

additivity was attributed to interocular suppression 

or binocular contrast normalization (Moradi & 

Heeger, 2009). 

 

A functionally important consequence of this 

balance between binocular summation and 

interocular suppression is ocularity invariance. 

Despite the marked difference in contrast 

thresholds, the perceived contrast of supra-

threshold gratings is almost the same for one eye 

and for two eyes (Baker, Meese, & Georgeson, 

2007; Ding, Klein, & Levi, 2013; Legge & Rubin, 

1981). This form of perceptual constancy is likely 

to be important where the view of an object is 

partly obscured by a nearer one, such that part of 

the object’s surface is seen by both eyes while the 

occluded part is seen by one eye (a ‘half-

occlusion’).  Without ocularity invariance this 

switch in viewing conditions across the surface 

could be falsely taken as a change in contrast – a 

texture boundary - on the object itself. 

 

Despite ocularity invariance, and the associated 

lack of binocular advantage in contrast 

discrimination, we found direct evidence that 

binocular summation occurs at all levels of contrast. 

The novel tactic here was to keep suppression 

almost constant by using a binocular pedestal 

grating of contrast C, and then to compare the 

detectability of monocular versus binocular contrast 

increments DC.  A binocular advantage was 

revealed at all contrast levels C, because it was not 

offset by a corresponding increase in suppression 

(Meese et al, 2006). 

 

Beginning with the pioneering work of Legge 

(1984), studies of this kind have aimed to make 

systematic and fairly precise measurements of 

contrast-difference thresholds over a wide range of 

binocular conditions, and from these increasingly 

rich datasets to construct and evaluate models for 

the functional architecture of signal-processing in 

binocular vision  (Baker, Meese, & Summers, 2007; 

Baker, Meese, & Hess, 2008; Ding & Sperling, 

2006; Hou, Huang, Liang, Zhou, & Lu, 2013; 

Huang, Zhou, Zhou, & Lu, 2010; Maehara & 

Goryo, 2005; Meese et al., 2006; Ding & Levi, 

2016). Such models must specify the nature of the 

pathways from each eye, what the relevant signals 

are and how they interact, how the signals are 

combined, what and where the nonlinearities are, 

where the performance-limiting noise occurs, and 

how trial-by-trial perceptual decisions are made on
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Figure 2.   A: Graphical representation of the 11 different contrast discrimination tasks (Table 1). Pedestal contrast C (grey 

bars, dashed lines) may be increased (red) or decreased (blue) by some amount DC in the test interval.  The observer's 2AFC 

task was to identify the test interval.  B: Binocular contrast space. The 11 tasks can be seen as probing the visual system's 

response to changes in binocular contrast in the directions indicated by red lines, labelled with the corresponding condition 

numbers shown in panel A and Table 1. Red circles mark the pairs of pedestal contrasts (cL, cR); these could be in-phase, 

antiphase or monocular. The values of (cL, cR)  were counter-balanced across left and right eyes, and across the sign of 

contrast (+ or -), and this led the 11 basic conditions to be reflected about the positive and negative diagonals, yielding a total 

of 40 distinct test vectors (red lines) for each pedestal contrast C. In our data analysis we assumed symmetry across the eyes, 

and across sign of contrast, and this reduced the number of different tasks back to 11.  
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the basis of one or more available outputs.  

Successful models for these contrast 

discriminations are likely to offer further insight 

into other binocular processes, such as binocular 

fusion, rivalry and stereoscopic vision.   

 

In the present paper we extend the discrimination 

experiments of Meese, Georgeson & Baker (2006) 

with a set of critical new conditions that enable us 

to refine and expand our account of the functional 

architecture of human binocular contrast coding. 

The new experiments include conditions where (i) 

the target is a decrement of contrast rather than an 

increment, (ii) the target is an increment in one eye 

but a decrement in the other eye, and (iii) for each 

type of target, the pedestal gratings are out-of-phase 

('antiphase') in the two eyes, rather than in-phase. 

Combining 6 new and 7 previous datasets gives us 

a total of 13 different discrimination functions (also 

known as TvC [threshold versus contrast] functions, 

or 'dipper functions') that need to be accounted for. 

The 13 functions comprise 11 distinct tasks, plus 

two replicates. This great variety of related 

discrimination tasks puts strong constraints on 

possible models of binocular signal processing.  Put 

simply, we found that many models can fit data 

from some or even most of the eleven tasks; we 

found only one that accurately accounted for all 

eleven tasks at all contrast levels. 

 

1.2 The discrimination tasks 

 

The 11 tasks are defined schematically in Fig 2A. 

Grey bars represent the pedestal contrasts presented 

to one or both eyes; increments of contrast 

magnitude are shown in red, decrements of contrast 

magnitude in blue. Giving a short, unambiguous 

name to each task is not easy, but we have 

attempted to do so (see panel headings in Fig. 2A). 

The names can be cumbersome, so we rely a good 

deal on the numbering of tasks 1-11 throughout the 

paper, and invite the reader to decode the numbers 

via Fig. 2A.  

 

It is also not easy to see much order or structure in 

the 11 conditions of Fig. 2A.  The structure 

emerges clearly, however, when we consider the 

experiment in a two-dimensional binocular contrast 

space, whose axes are (cL,cR) - the contrasts shown 

to the left and right eyes (Fig. 2B). Monocular 

pedestals lie on the cardinal axes, binocular in-

phase pedestals lie on the positive diagonal, and 

binocular antiphase pedestals lie on the negative 

diagonal (red symbols in Fig. 2B). Any change in 

(cL,cR) can be seen as a displacement from the 

pedestal point in some direction through this space. 

Red lines in Fig. 2B are test vectors, defining the 

direction of binocular contrast change for a given 

condition (1-11). For example, condition 2 (BinInc) 

has a binocular in-phase pedestal (top right in Fig 

2B), and a binocular contrast increment that is an 

oblique displacement up and to the right. Condition 

9 (IncDec) has the same binocular pedestal, but an 

increment in the left eye coupled with a decrement 

in the right eye, and this gives a test vector that 

points down and to the right. Counterbalancing 

across left and right eyes, and across absolute sign 

of contrast, reflects the 11 tasks about the positive 

and negative diagonals, yielding a total of 40 test 

vectors. This gives a pleasing symmetry to the 

experimental design, but more importantly it means 

that the set of pedestal positions and test directions 

gives a fairly comprehensive sampling of the 

discriminations that are possible in this space. This 

in turn puts strong constraints on the nature of 

binocular mechanism responses, and these can be 

expressed as response surfaces over the same 

space. The binocular contrast space (Fig. 2B) is a 

domain in which we can express the stimuli, the 

experimental design, the experimental results, and 

possible explanatory models. 

 

1.3 Encoding contrast: monocular and binocular 

channels? 

 

It is self-evident that the optic nerve fibre tracts 

leading from each eye are monocular pathways. 

Although the left- and right-eye layers of the LGN 

have the potential to interact with each other, and 

could be the earliest site for binocular rivalry 

(Haynes, Deichmann, & Rees, 2005), the earliest 

site for binocular summation appears to be the 

primary visual cortex.  In most, perhaps all, 

quantitative models of binocular summation (Ding 

et al., 2013; Ding & Sperling, 2006; Legge, 1984; 

Maehara & Goryo, 2005; Meese et al., 2006; Meese 

& Hess, 2004), it has been tacitly assumed that only 

the binocularly-summed outputs are available to 

later stages of perception and decision, while the 

monocular pathways are not. They serve only as the 

input to binocular combination (Fig. 1a). The 

possibility of monocular outputs has been 

considered (eg. Legge, 1984), but to our knowledge 

there has been no critical discrimination experiment 

that would test for the availability of monocular 

outputs in parallel with the binocular ones (Fig. 1b).  

  

Evidence from visual aftereffects suggests that it 

would be worthwhile to devise a rigorous test for 

monocular outputs. After adaptation through one 

eye, the tilt and motion aftereffects, and the contrast 

threshold elevation effect, can be observed when 

testing the same eye, and to a lesser degree when 

testing the other eye. The usual interpretation of 

such partial interocular transfer (Blake, Overton, & 

Lema-Stern, 1981; Moulden, 1980), and the finding 

of separate monocular and binocular motion 

aftereffects (Anstis & Duncan, 1983), is that 

distinct monocular and binocular neurons have been 

adapted. The monocular outputs might be 

separately available to perception, as in Fig. 1(b), 

but a single-output scheme (Fig. 1a) might also 

explain these aftereffects, provided the monocular 

input units were adaptable. In short, the 

involvement of monocular neurons in early visual 

coding seems very likely, but their functional 
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organization remains unclear.  We aim to clarify 

these and other questions through discrimination 

experiments - a more incisive tool than adaptation. 

 

1.4 The increment-decrement task 

 

We define a monocular mechanism as one that is 

driven by contrast in one eye, but is unaffected by 

the other eye. A key test for the existence of 

separate monocular mechanisms is fairly 

straightforward.  Suppose we perform a 2AFC 

discrimination task in which the non-target interval 

shows pedestal gratings of (say) 10% contrast to 

both eyes, while the target interval shows gratings 

of 12% to one eye but 8% to the other eye.  The 

observer has to identify the target interval. If only 

the binocular summing mechanism exists (Fig. 1a), 

this task should be difficult or impossible because 

there should be little or no change in the binocular 

output between intervals. The extra response to 

contrast increment in one eye should be cancelled 

by the decrement in the other.  Whether the 

cancellation was complete (making the task 

impossible) or partial would depend on the degree 

of nonlinearity in the contrast response before 

summation, but we can reasonably expect the 

contrast response function to be approximately 

linear over a narrow input range (eg 10±2 %), and 

so this increment-decrement task (henceforth 

IncDec, condition 9) should show poor 

performance from a binocular-summing 

mechanism.  A monocular mechanism, on the other 

hand, should suffer no such difficulty because its 

response to the increment should, by definition, be 

unaffected by the decrement in the other eye (Fig. 

1b). In short, performance on the IncDec task may 

reveal the presence, or absence, of specifically 

monocular mechanisms accessible to perception. 

 

2 Methods 
 

2.1 Visual display – conditions 1-6 

 

Achromatic, horizontal, sinewave gratings of 1 

c/deg were shown on a Clinton fast phosphor, high 

brightness CRT monitor at 120 Hz frame rate. The 

images were generated on a PC and displayed via a 

VSG interface card (CRS Ltd) which was 

synchronized with a pair of FE-1 ferro-electric 

shutter goggles (CRS Ltd) that enabled images to 

be shown separately to the left and right eyes on 

alternate frames. It is reasonable to consider such 

fast alternation of raster-scan images between the 

eyes to be effectively equivalent to a simultaneous 

steady presentation to each eye.  At these frame 

rates (60 Hz per eye) no screen flicker is seen.  

Careful photometric measurements through the 

frame-interleaving goggles showed that the degree 

of ‘crosstalk’ between the eyes (the extent to which 

the left eye’s image was visible to the right eye, or 

vice-versa) was negligible. The mean luminance of 

the display was 153 cd/m
2
, but through the goggles 

this was attenuated by a factor of eight to 19 cd/m
2
. 

A fixation point (dark dot, 2x2 pixels) was present 

throughout. Viewing distance was 57 cm, at which 

distance there were 28 pixels per deg of visual 

angle. The display luminance was gamma-corrected 

(linearized in relation to pixel greyscale values) 

using the CRS OptiCal photometer. 

 

The gratings were defined by sinusoidal 

modulations of the mean luminance, restricted to a 

central window 5 deg in diameter (see insets to Fig. 

3).  The circular aperture W of the grating was 

smoothed by a 1 deg half-period of a raised sine-

wave. This meant that a grating patch of contrast C 

was reduced to contrast C/2 at a radius of 2 deg, 

and to zero at 2.5 deg.  This reduced truncation 

artefacts – sharp edges that might be a spurious cue 

to detection. Thus the horizontal grating L(x,y) was 

defined by its modulation of the mean luminance 

L0:  

 

𝐿 𝑥, 𝑦 = 𝐿&{1 + 𝑊 𝑥, 𝑦 . 𝐶
± ∆𝐶 sin 2𝜋𝑓𝑦 − 𝜙 } 

 

where f is spatial frequency, f is phase in radians, C 

is the pedestal contrast magnitude, and DC is the 

change in contrast that defines the target interval on 

each trial. Phase relative to the screen centre (y=0) 

was the same in both intervals of a given trial, but 

varied randomly [f = 0, p/2, p, or 3p/2] across 

trials.  We must make a clear distinction between 

phase and polarity.  Whatever the chosen spatial 

phase value, the pedestal grating might have the 

same polarity in each eye (C,C) or the opposite 

polarity (C,-C). For consistency with previous 

work, we also refer to the same-polarity conditions 

as in-phase, and the opposite-polarity conditions as 

antiphase. Finally, for any phase and polarity, the 

target grating might be defined by a contrast 

increment (C+DC) or a decrement (C-DC). An 

increment in one eye might be accompanied by an 

increment, a decrement or no change in the other 

eye. Table 1 lists the full range of 11 different 

tested conditions defined in this way; conditions 12 

and 13 replicate conditions 1 and 2. For 

decremental targets we ensured that DC <= C, so 

that variations in DC never entailed a reversal of 

grating polarity.   

 

2.2 Procedure – conditions 1-6 

 

Detectability of the contrast difference DC was 

assessed with a 2-interval forced-choice staircase 

method. The task was to identify which of two 

200ms presentations, defined by audible tones and 

separated by a 500 ms blank (mean luminance) 

period, contained the contrast difference DC. To 

enable learning and to encourage best performance, 

auditory feedback about correctness (a high or low 

tone) was given after each trial. Trials for a given 

condition (numbers 1-6; table 1) were tested in 

separate sessions, and different pedestal contrasts C 

were tested in different blocks of trials within a 



Georgeson, Wallis, Meese & Baker (2016) Vision Research 

doi: 10.1016/j.visres.2016.08.001 

This post-print version was created for open access dissemination through institutional repositories. 

 
6 

session. Sessions and blocks were randomly 

ordered. The staircase rule reduced contrast by 1 

step after 3 correct trials, and increased it by 1 step 

after each incorrect trial. The step size within each 

block was initially large (8 dB) but reduced to 4 dB 

after the first reversal of staircase direction, and 

then to its final value of 2 dB after the second 

reversal. Each staircase ran for 50 trials.  

 

Observers were two of the authors (SAW, DHB), 

who had much previous experience of contrast 

detection and discrimination experiments, and a 

third less practised observer (ASB). Informed 

consent was obtained and the work was carried out 

in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki). All 

observers were given about ten minutes practice in 

condition 2 before starting the experiment. We did 

not attempt to define the subjective impressions that 

might be created by the various dichoptic test 

conditions.  Instead, observers were instructed to 

respond so as to maximise the number of correct 

feedback tones and were not informed about which 

condition was being tested in a given session. For 

every left eye/right eye condition defined in table 1, 

we also ran a corresponding right eye/left eye 

condition and the data were pooled to average out 

any ocular asymmetries, which generally appeared 

to be small, perhaps because the spatial frequency 

(1 c/deg) was not high.   

 

 

 

2.3 Analysis – conditions 1-6 

 

For each observer, raw data were pooled across 5 

repeated sessions, and across corresponding left 

eye/right eye conditions.  Psychometric functions 

(cumulative Gaussians, defined by proportion 

correct as a function of log(DC)) were fitted by 

probit analysis, and each fitted function was 

summarized by its threshold value – the contrast 

required to achieve 75% correct. Thus each 

threshold was derived from a total of 500 trials. 

 

2.4 Analysis – conditions 7-13 

 

Thresholds for conditions 7-13 were drawn from 

our previous studies, as listed in table 1. Procedure 

was very similar to that described above, though 

some details differed. The main factors – 2AFC 

staircase procedure, grating orientation and spatial 

frequency, grating patch size, pedestal contrast 

levels – were common to all conditions. Conditions 

9-13 used a mirror stereoscope instead of stereo 

goggles, and 100ms duration instead of 200ms. The 

published thresholds were defined at 81.6% correct 

(d'=1.3) on a fitted Weibull function, but thresholds 

were re-computed here for 75% correct to match all 

the other conditions, and are shown as the 

geometric means of the two observers (MAG, 

TSM).  Conditions 7 and 8 report the geometric 

mean thresholds for 2 observers (DHB, LP) again at 

75% correct.   

 

Table 1:  Pedestal (C) & Test contrast (DC) relations in the 13 conditions 

 

 
Notes: Reference to left and right eyes is nominal; all conditions were counter-balanced across left and right eye 

presentation.  B&M = Baker & Meese (2007); M,G&B = Meese, Georgeson & Baker (2006);  *unpublished data 

from the study of M,G&B. 

 

 

 

 

Cond 

No. 

 Fig.4 

panel 

Source Condition name Test interval Non-test Type of 

pedestal 

No. 

of Ss 

Dur, 

msec L eye R eye L eye R eye 

1 A New MonInc C+DC 0 C 0 Monocular 3 200 

2 A New BinInc C+DC C+DC C C Binocular 3 200 

3 B New BinInc Anti C+DC -(C+DC) C -C  

Antiphase 

3 200 

4 B New IncDec Anti C+DC -(C-DC) C -C 3 200 

5 C New HalfBinInc Anti C+DC -C C -C 3 200 

6 C New HalfBinDec Anti C-DC -C C -C 3 200 

7 D B&M Dich DC C 0 C Dichoptic 2 200 

8 D B&M Dich Anti DC -C 0 -C 2 200 

9 E M,G&B* IncDec C+DC C-DC C C  

Binocular 

2 100 

10 E M,G&B  HalfBinInc C+DC C C C 2 100 

11 E M,G&B* HalfBinDec C-DC C C C 2 100 

12 F M,G&B MonInc C+DC 0 C 0 Monocular 2 100 

13 F M,G&B BinInc C+DC C+DC C C Binocular 2 100 
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Figure 3.  Levels of processing in the model architecture, from the pair of input contrasts (cL,cR) to observed discrimination 

performance (d'OBS). Subscripts L,R,B denote Left eye, Right eye, and Binocular respectively.  The binocular response RB is 

the same as in our earlier model (Meese et al, 2006) and incorporates both interocular suppression (red links) at Stage 1 and a 

nonlinear response function at Stage 2 (not illustrated, but see Appendix 1 for model equations). Superscripts '+' and '-' 

denote separate responses to stimuli of opposite contrast polarity (e.g. gratings of opposite phase). For in-phase pedestals 

(e.g. both '+') the model is relatively simple; only the positive-polarity pathway (shaded) leading to the contrast cue needs to 

be considered. With inputs of opposite polarity to the two eyes, lustre is assumed to be a second possible cue. The two cues, 

contrast and lustre, are perturbed by late noise. The observer is assumed to make use of both cues to perform the 

discrimination task.   

 

3 Model development 

 
In a well-established tradition of modelling (Foley, 

1994; Legge, 1984; Legge & Foley, 1980; Legge, 

1979), the present model greatly extends our earlier 

2-stage binocular channel model (Meese et al., 

2006) particularly by (i) introducing separate 

mechanisms for opposite contrast polarities, not 

previously considered in 2006, but introduced by  

Baker & Meese (2007), (ii) introducing monocular 

mechanisms in parallel with the binocular-summing 

channel, and (iii) introducing signal selection and 

decision rules based on the Minkowski sum, and 

the MAX operator, to handle the multiplicity of 

outputs.  The rationale for these key modifications 

will unfold as we analyze and fit models to the 

results, but first we describe informally the 

architecture (Fig. 3) that emerged as most 

consistent with the full pattern of our findings. 

Appendix 1 gives the full set of equations that 

define the model's responses and behaviour. 
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3.1 Signal processing stages 1 and 2 

 

We assume polarity-specific signals right from the 

start. Responses in each eye proportional to retinal 

contrast are carried by separate channels for 

positive and negative sign of contrast (Fig. 3).  The 

likely neural basis for such a separation is the 

division of retinal ganglion cells into two classes, 

ON-centre and OFF-centre.  

 

The binocular channel, with monocular inputs rL, rR 

and combined output RB, is essentially identical to 

the 2-stage model of Meese et al (2006), but with 

polarity-specificity now made explicit. As in Meese 

et al (2006), the two monocular responses rL, rR  are 

subject to ipsiocular and interocular suppression 

(contrast gain control), and the output RB is subject 

to a form of smoothed thresholding (determined by 

the value of the saturation constant, z), and a 

power-law nonlinearity at higher response levels 

(determined by the difference between exponents in 

the numerator and denominator, p-q).   

 

A major new addition is the introduction of truly 

monocular channels in parallel with the binocular 

ones. These have inputs uL (or uR), with output RL 

(or RR), and are the same as the binocular channel 

in all respects except that any influence from the 

other eye at stage 1 and stage 2 is deleted. This 

proves to be a useful and parsimonious assumption 

that introduces no new parameters. It implies that 

for a monocular input image (e.g. in the left eye), 

RL = RB.  

 

3.2 Signal selection 

 

The two triplets of L,B,R channels thus create 6 

signals (3 for each polarity) that need to be dealt 

with. There are many possibilities.  In the main 

experiment, and in pilot experiments, we found that 

with a binocular in-phase pedestal, detecting a 

decrement of contrast in one eye (condition 11) was 

very much harder than detecting a similar 

increment in one eye (condition 10). For example, 

if the [L,R] pair of pedestal contrasts (in %) was 

[10, 10], then discriminating that from the 

monocular decrement [8, 10] was much more 

difficult than for the corresponding increment [12, 

10].  This reliable finding prompted the idea that 

the visual system might simply use the largest of 

the L,B,R signals - a MAX operator - rather than 

combining them in any more substantial way (Fig. 

1c). As a useful intuition, note that there's no 

difference between max(10,10) and max(8,10) so a 

MAX operator applied to the pair of monocular 

contrasts could never detect the monocular 

decrement, but would detect the monocular 

increment (the max increases from 10 to 12). But 

we must also consider the B channel. Suppose the B 

channel averaged the monocular contrasts, and then 

one signal was selected as max(L,B,R). The 

selected pedestal response then becomes 

max(10,10,10), to be compared with the 

incremental case max(12,11,10), versus the 

decremental case max(8,9,10). The outcome is 

unchanged from the 2-channel example. Thus 

polarity-specific signal selection, R = max(RL, RB, 

RR) was a plausible candidate to be added to the 

output of stage 2. This reduced the six responses to 

two: R
+
 and R

-
, representing the positive and 

negative contrasts irrespective of ocularity (Fig. 3). 

For monocular or in-phase inputs, one of R
+
 or R

-
 

would always be zero; but for antiphase inputs, 

both would be active. This presents a potential 

conflict that we propose is resolved by creating two 

perceptual cues that are the subjective basis for 

discrimination: contrast and lustre. 

 

3.3 Contrast and Lustre 

 

The simultaneous presence of opposite polarities 

has been studied a good deal in the context of stereo 

vision, binocular brightness and contrast 

perception, binocular summation and binocular 

fusion. There is little or no binocular advantage for 

antiphase signals at contrast threshold (Green & 

Blake, 1981), no evidence for binocular fusion 

(single vision) for antiphase signals (Georgeson & 

Wallis, 2014; Schor, Wood, & Ogawa, 1984), and 

no sense of stereo depth when one image of a 

random-dot stereo pair is reversed in contrast 

(Cumming, Shapiro, & Parker, 1998; Julesz, 1971). 

This large literature on the perception of opposite 

polarities (also see Howard & Rogers, 1995) 

supports our assumption above that binocular 

summation (in the B channels) is polarity-specific, 

but also has two other implications.  

 

First, in earlier work we found that binocular 

antiphase gratings could appear to have about the 

same perceived (matched) contrast as in-phase 

gratings (Baker, Wallis, Georgeson, & Meese, 

2012). But at lower standard contrast levels 

antiphase contrasts appeared lower than in-phase, 

and more similar to monocular gratings. Zhou, 

Georgeson, & Hess (2014) showed that these 

contrast-matching data, and spatial phase-matching 

data, were well explained by a model that included 

a noisy max over monocular and binocular response 

amplitudes, regardless of their spatial phase. We 

adopt the same idea here, using max(R
+
, R

-
) as the 

code for contrast (RMAX in Fig. 3). It implies that 

dichoptic contrast perception is determined by 

whichever polarity has the larger response at a 

given time.  

 

Second, we should consider a possible contribution 

from the opposite polarity. Lustre is a kind of shiny, 

metallic appearance that often arises when opposite 

polarities are shown to the two eyes, or rapidly 

flickered over time in one eye (Anstis, 2000; von 

Helmholtz, 1925). For references to 19th and 20th 

century research, see Bixby (1928), Mausfeld, 

Wendt, & Golz (2014). Wolfe & Franzel (1988) 

found that visual search for a lustrous target 

amongst non-lustrous distractors was rapid and 
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independent of distractor set size, implying parallel 

search, and suggesting that lustre, like contrast, 

might be a basic feature in early vision. 

Interestingly, search for rivalrous targets did not 

have these characteristics, suggesting that rivalry is 

not a basic feature. Lustre may be "vision’s 

response to two conflicting signals from one region 

of the visual field" (Anstis, 2000) and it could be a 

second cue for discrimination in those of our tasks 

that involve antiphase gratings. 

 

How should we model the response to lustre?  We 

begin with the working hypothesis that lustre is, in 

some manner, a perception of light and dark at the 

same time. This is consistent with many earlier 

observations (von Helmholtz, 1925), and subjective 

descriptions (e.g. Bixby, 1928) and previous 

experiments (Anstis, 2000). It suggests that in the 

model we should create a signal that pools over (R
+
, 

R
-
). Suppose, for example, that this signal (RMIX) 

was the quadratic sum of (R
+
, R

-
).  RMIX would pool 

responses to opposite polarities, but it would also 

respond to non-lustrous inputs (R
+ 

or R
- 
alone). To 

create a more specific response to lustre (RLUSTRE), 

we need to remove the non-lustrous component, 

and this idea suggests a general formulation (Fig. 

3): 𝑅9:;<=> = 𝑅?@A − 𝑅?BA .  The nature of RMIX 

remains to be determined, but with the requirement 

that for non-lustrous inputs 𝑅?@A = 𝑅?BA.   

 

 

 

 
 
Figure 4.  Experimental discrimination thresholds (symbols) and model fitting (curves). A-C: new data (conditions 1-6); 

geometric mean thresholds across 3 observers. D-F: data re-plotted from our previous studies (conditions 7-13, see Table 1); 

geometric means across 2 observers. Model fit was excellent: RMS error = 1.16 dB; R
2
 = 0.984. Black and red horizontal 

dashed lines are the model's monocular and binocular contrast thresholds respectively. Oblique dashed line is the locus of 

points where DC = C; it is the upper limit of testable DC values for contrast decrements (conditions 4,6,9,11).  Binocular 

contrast increment detection (condition 2 or 13, red curve) is a useful baseline against which to judge other conditions. This 

baseline is copied into the other panels as a red dashed curve (curve 2 into panels B,C,D; curve 13 into panel E).  
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4 Results 

 
4.1 ‘Dipper’ functions 

 

Results from the 11 different monocular, 

binocular and dichoptic contrast discrimination 

tasks (Fig. 2A) are summarized in Fig. 4 as log-

log plots of just-discriminable contrast change 

DC versus pedestal contrast C. Thirteen separate 

'dipper functions' are shown, because conditions 

1,2 replicated conditions 12,13 (see Table 1). 

Some key features of the results in Fig. 4 are: 

 

• For in-phase gratings, binocular advantage 

occurred only at low contrasts. Binocular 

contrast discrimination thresholds (condition 2) 

were lower than monocular (condition 1) only for 

low or zero pedestal contrasts. This is not new, 

but it reinforces the soundness of similar findings 

by Legge (1984), Maehara & Goryo (2005), and 

Meese et al (2006) whose data are re-plotted here 

as conditions 12, 13. There was no binocular 

advantage when the pedestal was visible, above 

about 1% contrast. And yet, when the pedestal 

was binocular, thresholds for increments in one 

eye (condition 10, termed 'half-binocular' 

increments) were about a factor of 2 (mean 

5.2dB) higher than for binocular increments on 

the same binocular pedestal (condition 13), 

implying binocular summation across the whole 

range of contrasts. These results together imply 

that binocular summation can  confer a binocular 

advantage, but does not always do so (cf. Meese 

et al, 2006).  

 

• For antiphase grating detection without a 

pedestal, there was only a very small binocular 

advantage over monocular detection (mean 0.89 

dB), consistent with previous studies. Binocular 

summation is evidently phase- or polarity-

specific (Cogan, 1987; Cohn & Lasley, 1976; 

Green & Blake, 1981), and that rules out 

binocular energy summation as a candidate 

mechanism, since that would show binocular 

advantage for antiphase as well as in-phase 

(Westendorf & Fox, 1973).   

 

• For antiphase pedestal gratings, thresholds for 

discriminating an increase of contrast in both 

eyes (condition 3) were equal to those for 

increments on a monocular pedestal (condition 

1), even with low contrast pedestals. The mean 

threshold difference across all pedestal levels 

was tiny and insignificant (0.35 dB). It is perhaps 

surprising that, in the face of possible rivalry, 

antiphase discrimination thresholds were not 

higher than corresponding monocular thresholds. 

It could be that antiphase signals simply fail to 

sum, but do not cancel each other out. This could 

be achieved by half-wave rectification before 

summation. Alternatively, antiphase signals 

might cancel each other in a binocular summing 

mechanism, while performance is carried by 

monocular channels in parallel with the binocular 

ones (Fig. 1b). These questions cannot be 

answered from the data alone, but can be 

addressed by modelling. 

 

• Despite the lack of antiphase binocular 

advantage just described (condition 3 vs 1), we 

found that thresholds for antiphase binocular 

increments (condition 3) were moderately but 

systematically better than the corresponding half-

binocular increments (condition 5), by an 

average of 2.7 dB, perhaps implying some weak 

form of antiphase summation.   

 

• If only the binocular summing mechanism B 

existed (Fig. 1a) then we should make two 

predictions, both of which turn out to be 

contradicted by the data. (i) For in-phase 

pedestals, it seems likely that the combined 

increment-decrement (condition 9) should be 

especially hard to detect, because opposite 

changes would cancel in the binocular sum or 

binocular average (see Introduction). In the 

experiment, this was not so; thresholds for 

condition 9, averaged over the 4 pedestal 

contrasts higher than 5%, were only slightly 

(1.5dB) higher than for the 'half-binocular' 

increment (condition 10).  (ii) Conversely, it is 

reasonable to expect increments and decrements 

to be about equally detectable by the B 

mechanism, but in fact 'half-binocular' 

decrements (condition 11) were much harder to 

see than 'half-binocular' increments (condition 

10). Thresholds were a factor 2 (6.4dB) higher 

than for the corresponding increments (condition 

10) (again averaged over the 4 highest pedestal 

contrasts). In short, the condition that should be 

easy for the B mechanism is difficult, and vice-

versa. These two results imply that, even for in-

phase gratings, the B mechanism is not alone. 

Parallel monocular mechanisms seem likely. But 

in highly nonlinear models even simple intuitions 

of this kind can be misleading or depend heavily 

on other unrecognized assumptions. To draw 

firmer conclusions, we need to go beyond 

intuition and be guided by more precisely 

formulated, testable models. 

 

4.2 Model fitting  

 

Discrimination thresholds in dB (means of 2 or 3 

subjects; Table 1) from all 13 dipper functions 

(11 different tasks, N=111 data points) were 
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fitted in the same run of the model, with 9 free 

parameters.  RMS error was 1.16 dB, R
2
 = 0.984, 

an excellent overall fit. Best-fitting parameters 

are given in Table 2. 

 

Curves in Fig. 4 are the threshold curves 

generated by the best-fitting model. The match 

between model and data is strikingly good across 

the whole dataset, with no local anomalies.  This 

is important, because a low RMS error could 

occur when (say) 9 of the 11 tasks fit very well, 

but two fit poorly. It was not difficult to find and 

reject models of that kind, and not easy to find 

the one that fitted well everywhere. The 

functional architecture (Fig. 3) and the parameter 

values (Table 2) are both of great importance. 

And yet there is still an explanatory gap: we need 

to understand how the proposed mechanisms and 

processes lead to correct predictions about the 

observer's behaviour.  To do this we interrogate 

the model in revealing ways, by representing 

mechanism responses in binocular contrast 

space. 

 

 
Figure 5.  Each row represents responses at different stages of the model, mapped over the binocular contrast space. A,B,C: 

the three response maps from stage 2 (Fig. 3), representing positive contrast polarity in the channels for left-eye, binocular 

and right-eye respectively.  E: These three maps are combined via the MAX-like operator, to create the R+ map. D: The 

corresponding L,B,R maps for negative polarity (not shown) are combined to form the R- map. H: The responses R+, R- are 

similarly MAX-ed to create the output cue RMAX which we associate with the perception of contrast. G: The maps R+, R- are 

pooled again, in a way that is less MAX-like in the 2nd and 4th quadrants, to form RMIX. I: The second perceptual cue, 

RLUSTRE, is formed as the difference between panels G and H; RLUSTRE = (RMIX - RMAX).  
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Table 2: Parameters used in the fitted model 

n 30.914 

m 1.31356 

s 1.29675 

p 6.41616 

q 5.19607 

z 0.01297 

s 0.14873 

a 4.3227 

z2 0.15281 

Note: the model in principle has 8 free parameters. 

The ninth parameter (z2) substitutes for z in 

conditions 9-13 only, for pragmatic reasons 

explained in Appendix 1 (Fitting the model). 

 

4.3 Model behaviour: mapping the binocular 

contrast-response surfaces 

 

Mechanism responses were computed from the 

model equations (Appendix 1) using the best-fitting 

parameters (Table 2), and visualized as 3D surfaces 

in binocular contrast space (Fig. 5). That space can 

be divided into four quadrants, defined in Fig. 5F. 

The monocular response 𝑅9
C  (Fig. 5A) increases 

with positive left-eye contrasts (first and fourth 

quadrants), but is insensitive to any right-eye 

contrasts. Its right-eye counterpart ( 𝑅=
C ) is 

equivalent, but rotated by 90
0
 (Fig. 5C). The 

binocular channel (𝑅D
C ) shares one quadrant with 

each of the monocular channels, and (by design) 

shows binocular interaction only in the first 

quadrant where both contrasts are positive (Fig. 

5B).  The 𝑅C response (Fig. 5E) can be envisaged 

as the envelope of these three surfaces. Note how 

its surface shape in the first quadrant differs from 

all three of the input surfaces. The 𝑅E  map (Fig. 

5D) is a reflection of 𝑅C  about the negative 

diagonal. 𝑅C and 𝑅E are combined in two ways to 

form 𝑅?@A  and 𝑅?BA  (Figs. 5G, 5H). 𝑅?@A  and 

𝑅?BA are identical in the first and third quadrants, 

but differ markedly in the second and fourth 

(opposite-sign) quadrants, where  𝑅?@A  shows 

substantial, roughly quadratic, combination of left- 

and right-eye contrasts, while 𝑅?BA  is close to 

winner-take-all. This difference creates the lustre 

response (Fig. 5I), present only in the opposite-sign 

quadrants. 

 

4.4 In-phase pedestals 

 

The value of these maps should now become clear 

as we show how model predictions and observed 

discrimination thresholds can be understood and 

compared directly on the model response surface. 

Fig. 6A shows the 1st quadrant of the RMAX surface 

in grey, and several iso-height contours (lines of 

constant response) are highlighted.  White points 

represent the pedestals, and the outermost black 

curve represents the response level evoked by the 

highest pedestal contrast (31.6%). In signal 

detection theory, it follows from the definition of d' 

that to be just-distinguishable from the pedestal, 

any test condition must evoke a mean response that 

is one standard deviation (s) higher or lower than 

the mean pedestal response. The locus of all such 

threshold points is therefore the pair of surface 

contours (red in Fig. 6A) whose height is s above 

or below the pedestal contour (black). If and when 

RMAX is the cue (decision variable) used by the 

observer, then observed thresholds should lie on 

these contours. More precisely, they should lie at 

the intersection of the test vectors (white) and the 

threshold contours (red). Red symbols in Fig. 6A 

represent observed thresholds on each test vector 

for conditions 9,10,11,13, and it is clear that they 

lie very close to the model's threshold contours. 

Similarly good agreement between model and data 

holds for the lower pedestal contrasts shown in Fig 

6A (orange and green curves), and the even lower 

pedestals plotted in Fig. 6B. The surface contours 

change shape as contrast is reduced, but the data 

hug the model curves about equally well at all 

contrast levels. 

 

This representation of data and model in binocular 

contrast space reveals a functional relation between 

different test conditions that is not evident from the 

'dipper functions' alone. For example, returning to 

the highest pedestal contrast (red in Fig 6A), we can 

see that thresholds for condition 9 (IncDec) are 

higher than condition 13 (BinInc) because the test 

vector for condition 13 takes the shortest route to 

the threshold contour, while in condition 9 it passes 

rather obliquely across the surface, and so requires 

a greater contrast change to reach the same contour.  

We can also infer that condition 9 was detected as 

an increment, like conditions 10 and 13, but the 

decrement in the other eye shifted the direction of 

change, and made the task harder. Condition 11 

(monocular decrement on a binocular pedestal) was 

even more difficult because the test vector ran 

almost parallel to the surface contours, rather than 

across them, and so much greater contrast change 

was needed to reach the threshold contour.  We can 

also infer that condition 11 was seen as a decrement 

in contrast, not an increment. Threshold for the 

corresponding increment (condition 10) was almost 

10dB lower at this pedestal contrast, because its test 

vector enjoyed a much more direct route to the 

threshold contour.  
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Figure 6.  How the response surfaces (Fig. 5) can be used to understand and predict discrimination performance. A,B: Close 

relation between the 1st quadrant of the model output surface RMAX (Fig. 5H; rendered in grey here) and the discrimination 

thresholds for in-phase pedestals (where cL = cR, conditions 9,10,11,13). A: White points represent the 3 highest pedestal 

contrasts (10.0, 17.8, 31.6%), each surrounded by a cluster of 7 data points (4 independent points, plus 3 mirrored across the 

positive diagonal) that represent the pairs of L,R contrasts that are just discriminable from the binocular pedestal in each of 

the 7 test directions (Fig. 2B).  Thin black curves are the 3 iso-response contours of the RMAX surface that pass through the 3 

white pedestal points. Each pair of coloured curves (green, orange, red) represents the locus of all just-discriminable (d'=1) 

responses that lie one noise unit (s) above, or below, the corresponding pedestal response level (black curve). If the model is 

correct, the observed discrimination thresholds (green, orange, red circles) should lie on or close to these curves.  A very 

close fit is observed.  B: As panel A, but zoomed-in to low contrasts, illustrating data for 3 lower pedestal contrasts (1.8, 3.2, 

5.6%). C,D: As panels A,B, but for the 4th quadrant of the RMAX surface, illustrating results for antiphase pedestals (where cR 

= -cL, conditions 3,4,5,6). Thresholds in conditions 3,4,5 fell close to the surface contours predicted by RMAX but for condition 

6 they did not. Condition 6 best reveals the perceptual contribution made by lustre rather than contrast - see Fig. 7. 
 

At lower pedestal contrasts (Fig 6B) the surface 

contours change shape, exhibiting a wider range 

over which roughly linear summation of contrasts 

occurs (implied by approximately left oblique 

surface contours), and as a result the thresholds for 

conditions 10 and 11 become much more nearly 

equal. Interestingly, there are some test directions 

lying between conditions 9 and 11 that must be 

expected to have immeasurably high thresholds, at 

any pedestal contrast, because their test vectors 

would never intersect the threshold contour. 

So far then, we have seen that the discrimination 

thresholds plotted in binocular contrast space give 

surprisingly direct information about the 3D shape 

of the response surface - including both the shape 

of surface contours and their vertical spacing in a 

fairly wide neighbourhood around each pedestal 

point.  This conclusion should be sound when only 

one cue - hence a single response surface - is 

involved in the task.  But we now turn from in-

phase to antiphase pedestals, where two cues appear 

to contribute to performance. 
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Figure 7.  Antiphase conditions: how lustre contributes to performance in conditions 4, 6, 8, but not conditions 3 or 5.  A,B: 

Plotting conventions and experimental data are as Figure 6C,D, but the model surface is RLUSTRE rather than RMAX. Note: 

Coloured contours here represent a predicted discriminable decrease of lustre. Decreases were important. Threshold contours 

for discriminable increases of lustre are not shown, because for antiphase pedestals any increase of lustre (condition 3) was 

too small to make any practical contribution to observed performance.  Thresholds for condition 6 are close to the surface 

contours predicted by lustre at all 3 contrasts (green, orange, red) in A, and at 2 of the 3 lower contrasts (orange, red) in B. At 

the lowest pedestal contrast in B (green, 1.8%) the lustre cue was too weak to generate a threshold contour, and this was 

matched by absence of a reliable experimental threshold for condition 6 at this contrast level. Thresholds for condition 4 were 

close to the lustre predictions at higher contrast (A) but less so at lower contrast (B). In conditions 3 and 5, thresholds were 

markedly better (lower) than predicted by lustre.  C,D: An increase of lustre explains performance in test condition 8 

(pedestal in one eye, antiphase test grating in the other eye), except at very low contrast. Pedestal points (white) now lie on 

the cL or cR axes, where RLUSTRE =0. Increasing test contrast DC increases lustre (along the white lines). Observed 

discrimination thresholds (coloured symbols) were mostly very close to the model's threshold contour for detecting lustre 

(yellow curve, defined by d'=1 and RLUSTRE =s; same contour for all the pedestal contrasts of condition 8). At the lowest 

pedestal contrast (1.8%, green, panel D) lustre was again too weak to be detected.  
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4.5 Antiphase pedestals and the lustre cue 

 

Figs. 6C and 6D present the same form of analysis 

as Figs 6A,B, but for the antiphase pedestals. 

Threshold points for conditions 3,4,5 fell close to 

the RMAX contours at all six pedestal levels. This 

consistency of shape (the 'rounded square' corner) 

strongly implies that the surface shape does not 

change much with contrast level. But thresholds for 

condition 6 (monocular decrement) consistently 

failed to fall on the predicted contours. This 

deviation is most obvious at the lower pedestal 

contrasts (Fig. 6D), but even at the higher contrasts 

(Fig. 6C) we should emphasize that the test vectors 

for condition 6 run parallel to the threshold 

contours, and so no adjustment of DC could take the 

threshold points any closer. The RMAX surface thus 

predicts an immeasurably high threshold at all 

pedestal levels in condition 6, but the observed 

thresholds were only 5-6dB above their incremental 

counterpart (condition 5): clearly higher, but not a 

catastrophe. 

 

Figs. 7A and 7B show the same threshold data 

points as Figs 6C,D, but now plotted in relation to 

the RLUSTRE surface. Data points for condition 6 fell 

very close to the threshold contours representing a 

decrease in lustre, and did so consistently at the 5 

pedestal levels for which reliable data were 

obtained. At the lowest pedestal contrast (1.8%) we 

did not obtain reliable discrimination thresholds 

across the three observers, but this also agreed with 

the model since the lustre response at this low 

contrast was too weak to generate a threshold 

contour. On the other hand, conditions 3,4,5 

(already well explained by RMAX) generally did not 

fall close to the threshold contours for lustre.   

 

Lastly, Figs. 7C,D show the lustre analysis for 

condition 8 (dichoptic antiphase). Here the 

monocular pedestal points lie on the cL or cR axis, 

where lustre is zero, and increasing DC increases 

the model's lustre response. The threshold contour 

for condition 8 (yellow) is defined by RLUSTRE = s, 

and is necessarily the same for all pedestal 

contrasts. Data for the three higher pedestal 

contrasts (Fig. 7C) fell very close to this contour, as 

did the data for two of the three lower contrast 

pedestals shown in Fig. 7D. 

 

In summary, most of the antiphase data are 

accurately accounted for by the contrast cue, RMAX, 

and the remainder are well explained by the lustre 

cue. Fig. 8 helps to clarify and quantify this key 

point. Here we computed performance and 

discrimination thresholds based on the two cues 

separately. In conditions 3 and 5, thresholds from 

lustre (dashed curves) were far too high at all 

contrasts, but thresholds from RMAX (solid, coloured 

curves) closely matched the data. The reverse was 

true for condition 6, where, as discussed above 

(Fig. 6C,D), no threshold could be measured for 

RMAX, but the data closely matched the thresholds 

from lustre. In general lustre was too weak to be 

useful at low pedestal contrasts but, in conditions 8 

and 4, cue use depended on contrast level. In 

condition 8, lustre was the more effective cue at 

higher pedestal contrasts, but RMAX was the only 

useful cue at low contrasts, below 3%. In condition 

4, both cues were useful at higher contrasts. 

Conditions 8 and 4 (Fig. 8) illustrate how efficient 

use of the contrast and lustre cues together (thick 

grey curves) provides a more precise account of the 

results than either cue alone.  

 

5 Discussion 
 

We measured the human visual system's ability to 

distinguish changes in contrast for eleven different 

monocular, binocular and dichoptic (antiphase) 

conditions, across a wide range of contrast levels. 

To our knowledge, this is the most comprehensive 

study of contrast discrimination to date, and it 

provides a stringent test for models of binocular 

contrast processing.  We found that the most useful 

way to visualize the tasks, the model responses and 

experimental data was in binocular contrast space 

(Figs. 2, 5, 6, 7). The response of any mechanism 

can be rendered as a 3D surface in this space (Fig. 

5), and if visual performance depends mainly on 

that mechanism then discrimination thesholds for a 

given pedestal should fall on a specific pair of iso-

response contours on that surface. For binocular in-

phase pedestals that was found to be correct: a 

single response surface (RMAX) captured all the data 

points very well (Fig. 6A,B). The clusters of data 

gave direct information about the surface shape in 

quite a large neighbourhood around each pedestal 

point.  

 

5.1 Contrast cue from monocular & binocular 

channels 

 

In our model, the RMAX surface arises as the 

response envelope (max) over six input mechanisms 

- the left-eye, right-eye, and binocular channels for 

positive contrast and for negative contrast (Fig. 5, 

stage 2).  This model incorporates the binocular 

channel that we proposed previously (Meese et al, 

2006), and extends it by adding the parallel 

monocular channels.  This extension did not add 

any free parameters. It is supported by our finding 

that when the model was re-fitted without the 

monocular channels (their responses were set to 0) 

the fit was poor for conditions 9 and 11, but good 

for all other conditions including antiphase 

pedestals (Fig. S7). Success for the antiphase 

conditions, without the Mon channels, rests on (i) 

the existence of separate channels for the two 

polarities, so that out-of-phase cancellation does not 

occur in the binocular responses, and (ii) the fact 

that Mon and Bin channel responses are the same 

for antiphase conditions (Fig. 5), so that removing 

Mon channels had no effect on model responses in 
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Figure 8.  Summary (1). How the two cues (RMAX, RLUSTRE) contributed to discrimination performance in the antiphase 

conditions. Data re-plotted from Fig. 4, conditions 3-8. Using the best-fit parameters (Table 2), model thresholds were 

derived using only RMAX as the decision variable (coloured solid curves) or only RLUSTRE (coloured dashed curves). Neither 

cue alone could explain performance overall, but performance was very well explained when we assumed that the observer 

could use both cues (full model; thick grey curves). Lustre was markedly the better cue for condition 8,  and the only useful 

cue in condition 6, but contrast (RMAX) was much the better cue in conditions 3 and 5 and of variable benefit in condition 4. 

The lustre cue is absent when contrast polarity is the same in both eyes; hence contrast (RMAX) was the only available cue for 

condition 7 here, and for conditions 1,2,9,10-13 (Fig. 4).  

 

the antiphase quadrants. On the other hand, without 

the Mon channels, in-phase thresholds for condition 

9 were predicted to be 2 to 3 times higher than 

observed, and those for condition 11 were up to a 

factor of two lower than observed. In addition, 

thresholds for half-binocular increments and 

decrements (conditions 10 and 11) were predicted 

to be the same (Fig. S7), quite unlike the data where 

the decremental thresholds were 2-3 times higher 

than the incremental. These data (conditions 

9,10,11) were very well fitted, however, when the 

monocular channels were included (Fig. 4E). Those 

mechanisms correctly influenced the shape of the 

response surface in regions away from the positive 

diagonal (Fig. 6A,B), not examined in any earlier 

studies. Thus the need for a monocular contribution 

was revealed most directly by the in-phase 

pedestals with monocular contrast decrements 

(conditions 9 and 11). 

 

Conversely, when the model was re-fitted without 

the binocular channels the resulting fit was 

generally very poor and unsatisfactory (RMS error 

was 3.81 dB, three times larger than the best-fitting 

model). In this model framework, then, both the 

monocular and binocular channels made essential 

contributions to performance.  But unlike contrast 

and lustre, they did not act as separate or 

independent cues. Instead it was their highly 

nonlinear interaction (the max) that accounted for 

observed performance.  

 

Having established that both are necessary, we can 

now ask: what contribution do the monocular and 

binocular channels make to performance of the full 

model? We took the best-fitting full model and 

simply switched off (set to 0) the responses of 

monocular or binocular channels at stage 2 to find 

out what impact this had on predicted thresholds for  
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Figure 9.  Summary (2). How the monocular and binocular responses contributed to discrimination performance in the in-

phase conditions. Data re-plotted from Fig. 4, conditions 1,2,7,9-11. Using the best-fit parameters (Table 2), model 

thresholds were derived using only binocular channels (coloured solid curves) or monocular channels (coloured dashed 

curves). Performance overall was well explained only when both kinds of channel contributed to the contrast cue (RMAX) 

(thick grey curves). Their contributions occurred in different regions of binocular contrast space (Fig. S5). Unlike contrast 

and lustre (Fig. 8) they did not act as separate cues.  

 

in-phase conditions (Fig. 9). For example, deleting 

the monocular channels left predictions unchanged 

in conditions 1 and 2 (Fig. 9; Mon Inc, Bin Inc), so 

we infer that the binocular channels were sufficient 

for those two conditions, and largely so for 

condition 10 (HalfBinInc) as well.  On the other 

hand, the monocular channels contributed to the 

good fit for conditions 7,9,11, because without 

them the 'Bin only' predictions deviated from the 

data. Similarly, the binocular channels were 

necessary in conditions 2,7,9,10,11 where the 'Mon 

only' predictions were insufficient (Fig. 9). 

Performance overall was well explained only when 

both kinds of channel contributed to the contrast 

cue (RMAX) (thick grey curves).  

 

Interestingly, Fig. 9 shows us that in some cases 

observers would have done better to use the 

monocular channels alone (conditions 9 & 10, low-

medium contrasts), or the binocular channels alone 

(conditions 7 & 11, high contrasts). The max 

operator explains the observers' inability to do this: 

observers cannot freely select the most useful of 

these channels, and only have access to the highest 

value amongst them. This implies that the max 

operation is a hard-wired or obligatory process. 

  

5.2 Contrast-matching 

 

If we are correct that RMAX represents contrast, and 

we have inferred its response surface shape 

correctly, then we can make a strong prediction: the 

contours of the RMAX surface should not only predict 

contrast discrimination, but should also predict 

results on dichoptic contrast-matching (Baker et al., 

2007, 2012). Fig. 10 shows that this prediction is 

accurately upheld. Data points of a given colour 

represent pairs of dichoptic contrasts that all match 

the same fixed binocular standard contrast (Fig. 

10A) or monocular standard (Fig. 10B). Since they 

all produce the same response level, each set of 

points must lie on the same iso-response contour. 

Thick black contours (Fig. 10A) show that data 

from Baker et al (2012) fell very close to the model 

contours for all four standard contrast levels, with 

no free parameters. Fig. 10B shows similar 

contrast-matching data from another laboratory 

(Ding et al., 2013) again falling close to the RMAX 
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Figure 10.  Contrast matching for edges (A) and gratings (B).  A:  Solid circles show means of 2 subjects (DHB, SAW) from 

Baker et al 2012, Fig. 6. These data were mirrored about the positive diagonal. Two subjects (open diamonds and squares; 

not mirrored) viewed test and standard images that were single, sharp, step edges, 1 deg long, shown for 200 ms with 4 

standard binocular contrasts (5, 10, 20, 40%; red, green, blue, cyan). Model parameters (Table 2) were used to create the 

RMAX response surface (grey). Black contours are the 4 iso-response contours that predict where the contrast-matching data 

should fall.  B: Solid circles show means of 4 subjects from Ding et al 2013, their Figs. 9 and10. Test and standard images 

were sinewave gratings, with 4 standard monocular (left-eye) contrasts (6, 12, 24, 48%; red, green, blue, cyan). Two subjects 

(JS, KT; open diamonds and squares) viewed test durations of 117 ms; the other two (CG, CF; open circles and triangles) 

were tested at 1000ms. Spatial frequency = 0.68 c/deg, phase disparity = 0. Data were not mirrored about the diagonal. In B, 

just two minor changes were made to the model: to capture the greater linearity at low contrast (6%, red) parameter s was 

increased from 1.3% to 2.5% contrast, and to capture a slight left/right asymmetry in these mean data, we assumed a slight 

difference in contrast gain at the linear front-end of the model: the right eye's initial response to contrast was increased by 5% 

(i.e. 𝑐=
C = 1.05𝑐=).     

 

surface contours (but with two minor parameter 

adjustments; see figure legend for details).  Note 

how the surface contours, and the data, change 

shape with contrast level, showing more 

pronounced 'winner-take-all' behaviour at higher 

contrasts (replicated by Ding & Levi, 2016, their 

Fig. 6). These two analyses - on a task that 

explicitly requires judgement of contrast - provide 

independent confirmation that the RMAX surface 

represents the contrast response of the binocular 

visual system. Note also that the data did not fall 

close to the surface contours of the binocular 

channel alone.  That surface (Fig. 5B) exhibits a 

strong curvature (the Fechner paradox) that is not 

seen in the contrast-matching data, and which is 

eliminated in the model response when the 

monocular channels make their contribution to R
+
, 

inherited by RMAX. 

 

Contrast-matching gives us rather precise 

information about the 2-D shape of the surface 

contours, but not about their vertical spacing or the 

steepness of the surface. Conversely, the 

discrimination tasks (Fig. 6A,B) sampled the 

surface contours more sparsely, but with the 

assumption of late additive noise (s) they give us 

richer information about the 3-D surface shape and 

steepness. It is not trivial that both tasks are 

consistent with a single response surface. Hence the 

model surface in Fig. 10A (same surface as Fig 

6A,B) unites both forms of evidence into a single 

picture of the binocular contrast response for 

horizontal, in-phase (zero disparity) image pairs. 

 

5.3 Previous studies at detection threshold 

 

No previous studies have tested suprathreshold 

discriminations with antiphase pedestals, but 

several have compared detection thresholds 

(without a pedestal) for test stimuli of the same or 

opposite polarity. Fig. 11 shows a quantitative 

comparison (see figure legend for details). Despite 

large differences between the stimuli and methods 

used, there is broad agreement across studies that 

stimuli of the same polarity (1st and 3rd quadrants) 

combine almost linearly at detection threshold, 

while those of opposite polarity are close to winner-

take-all.  Our model was fitted to our entire dataset, 

but it clearly fits our threshold data (red and green 

symbols) very well (grey curve) and also gives a 

good account of two earlier studies. Other models 

can fit these data (Cogan, 1987; Cohn & Lasley, 

1976), but our proposals have the merit of being 

tested and supported by a much wider range of 

conditions than was previously available. 
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Figure 11.   Dichoptic detection thresholds compared 

across studies. Threshold values are scaled so that the 

average monocular threshold = 1 for each study. 

Diamonds: data from Cohn & Lasley (1976), their Fig. 1, 

subject PN. Stimulus was a light spot, 10 min arc 

diameter, briefly incremented or decremented; method of 

adjustment (1 run).  Open squares: as diamonds, but 

subject SK (median of 7 runs). Open circles: data from 

Cogan (1987), his Fig. 7; mean of 6 subjects. Stimulus 

was a briefly flashed increment or decrement (2 msec) of 

a luminous field 12 deg in diameter; method of 

adjustment. Red circles: data from our main experiment, 

with zero-contrast pedestal; means of the 3 subjects (4 

independent points, 4 mirrored).  Green squares: further 

data from our laboratory; means of 5 undergraduate 

subjects (no mirroring), tested in conditions very similar 

to the main experiment (horizontal, 1 c/deg gratings, 

2AFC), except stimulus duration was 500ms. Thin curves 

are model RMAX iso-response contours spaced at equal 

intervals of monocular contrast from 0 to 2%; parameters 

as Table 2. For the model curves, axis values represent 

percent contrast; thick grey curve is the iso-response 

contour at 1% monocular contrast.  

 

5.4 Monocular and binocular regions of binocular 

contrast space 

 

From the fitted model, we can determine where in 

binocular contrast space the monocular and 

binocular channels make their contribution to RMAX. 

This is illustrated in Fig. S5 (supplementary 

material). At high contrasts (say, 20-50%), the 

binocular channel response dominates only in a 

surprisingly narrow region where the left and right 

contrasts are nearly equal (Fig. S5A). Outside this 

region, interocular suppression causes the binocular 

response RB to fall below the monocular ones (RL or 

RR) and then it is the monocular channels that 

deliver the contrast cue via RMAX. At low contrasts, 

however, interocular suppression is relatively weak 

(because the constant s in eqn. 4 is then relatively 

strong), and the binocular channel gains influence 

over a much wider range of interocular contrast 

ratios (Fig. S5B).  As a result, binocular summation 

is much more directly evident at low contrasts both 

in the discrimination data (Fig. 4A) and detection 

data (Fig. 11), and in the oblique orientation of the 

RMAX surface contours at low contrasts (Figs. 6B, 

11, S5B). 

 

5.5 Model variants 

 

The 6-channel 2-cue model accounts for 

performance on a great variety of dichoptic 

discrimination and contrast-matching tasks with 

unusual accuracy.  Yet, as with any model, one can 

ask which features of the model are necessary and 

which are optional.  We saw above that the parallel 

architecture of monocular and binocular channels 

was not optional. 

 

Firstly, we show that it's not crucial for the 

interocular suppressive terms to be polarity-

specific. We re-fitted the model, putting Eqn. 1a in 

place of Eqn. 1:  

 

𝑟9
C =

𝑐9
C J

𝑠 + 𝑐9
C + 𝑐=

C + 𝑐9
E + 𝑐=

E , 	𝑟9
E

=
𝑐9
E J

𝑠 + 𝑐9
C + 𝑐=

C + 𝑐9
E + 𝑐=

E 								 1𝑎  

 

and similarly for Eqn. 2. The suppression 

(denominator terms) could then arise from either 

polarity. This caused substantial suppression of the 

binocular channel response surfaces in the 2nd and 

4th quadrants, but that did not carry through to later 

stages because it was effectively hidden by the 

monocular channel responses. There was little 

change in the R+, R- or  RMAX maps, and essentially 

no change in the fitted parameters or the predicted 

pattern of thresholds.  Goodness of fit (RMS error) 

was unchanged at 1.16dB.  

 

Secondly, we addressed an important question 

about binocular summation within the binocular 

channel.  Like-polarities sum, but do opposite 

polarities cancel ? At low contrasts, binocular 

thresholds were much lower than monocular ones 

(Fig. 4A), but when the gratings were out of phase, 

binocular thresholds were very similar to 

monocular ones (Fig. 4B, Fig. 11). This implies 

polarity-specific summation, as in Eqn. 7. To 

introduce the possibility of cancellation, we 

introduced a 'push-pull' arrangement familiar to 

cortical physiologists, where inputs of the non-

preferred polarity carried a negative sign, rather 

than being ignored. This creates quasi-linear, signed 

summation, before half-wave rectification. Thus we 

replaced Eqn. 7 with Eqn. 7a, creating push-pull 

inputs (bracketed terms), which were set to 0 if 

negative (i.e. half-wave rectification): 
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𝑅D
C =

(𝑟9
C + 𝑟=

C − 𝑟9
E − 𝑟=

E)P

𝑧 + (𝑟9
C + 𝑟=

C − 𝑟9
E − 𝑟=

E)R
, 		𝑅D

E

=
(𝑟9

E + 𝑟=
E − 𝑟9

C − 𝑟=
C)P

𝑧 + (𝑟9
E + 𝑟=

E − 𝑟9
C − 𝑟=

C)R
	.							(7𝑎) 

 

We then re-fitted the model and the outcome was 

very similar to that just described for Eqn. 1a. 

There was a dramatic change in the binocular 

channel response - cancellation between opposite-

polarity inputs - but almost no change in later 

stages of response (see Fig. S9) and no change in 

the predicted thresholds or goodness of fit. Again 

the monocular responses switched in, via the max 

operator, when the binocular response fell away. 

The same was true when both variants (Eqns. 1a 

and 7a) were applied together. 

 

In short, these two analyses show that several 

aspects of the binocular channel remain hidden 

from us. In antiphase conditions monocular channel 

responses play an important role, and because of 

this the data cannot tell us whether the binocular 

channel receives suppression from, or negative 

input from, the non-preferred polarity. The 

modelling reveals more clearly what we don't 

know, and why.  

 

5.6 Contrast & Lustre 

 

Our second set of key findings concerns antiphase 

pedestals.  Here, despite intensive effort, we could 

not find a single response surface that accounted for 

all the observed thresholds. Instead we propose that 

two response surfaces - representing two different 

subjective cues, contrast and lustre - are needed to 

understand performance in antiphase conditions. 

Depending on the direction of change in binocular 

contrast space, some antiphase conditions (3,4,5) 

relied wholly or mainly on the contrast cue, while 

other conditions depended on lustre, responding to 

contrast changes that either decreased lustre 

(condition 6) or increased it (condition 8). The two 

response surfaces are rendered as contour maps in 

Figs. 5H, 5I. The RMAX and RMIX surfaces are 

identical when both eyes view the same contrast 

polarity. Hence the lustre map (RMIX - RMAX, Fig. 5I) 

is zero for in-phase gratings (1st and 3rd 

quadrants), but is positive in the 2nd and 4th 

quadrants, and peaks when the two eyes view equal 

and opposite contrasts (cL=-cR).  

 

When the model was re-fitted with the lustre cue 

removed (set to zero), the fit was poor in many 

conditions, especially for antiphase pedestals (Fig. 

S6). Overall RMS error was more than doubled (to 

2.6 dB), and in a nested-model comparison the fit 

was significantly worse than the full model 

[F(1,102) = 422.9, P<0.00001].  Thus, within our 

model framework, the lustre cue was necessary to 

explain performance accurately in the antiphase 

conditions. 

 

In a study of binocular rivalry between opposite 

polarities, Whittle (1965) conjectured that "Lustre 

... occurs when stimuli to both rivalry (contours of 

opposite sign) and fusion (contours of the same 

sign) are presented."  Our antiphase gratings do not 

contain contours of the same sign in the same 

location, but our scheme could still satisfy Whittle's 

conjecture. RMAX might be the code normally 

associated with single vision (either by fusion or by 

suppression; Georgeson & Wallis, 2014), while 

RLUSTRE is the signal that encodes the simultaneous 

presence of opposite signs. We now consider 

whether any other evidence supports this view that 

lustre arises solely from opposite polarities, and not 

more generally from the ability to sense differences 

in contrast (Formankiewicz & Mollon, 2009). 

 

 
Figure 12.  Ratings of lustre (symbols; from Anstis, 2000, Fig 2a, re-plotted in a new format), are compared with predictions 

based on RLUSTRE, computed for the conditions of Anstis's experiment and scaled to the range 0-10. A: Binocular lustre. Each 

data point represents subjects' mean lustre rating for a dichoptic pair of achromatic spots with different luminances. We 

converted the spot luminances to Michelson contrast (cL,cR) in percent, and plotted the results in binocular contrast space. 

Predictions based on RLUSTRE are shown without luminance noise (dashed curve), and with luminance noise (solid grey 

curve). B: As A, but for 'monocular lustre', where the same spot was shown to each eye, but spot contrast switched between 

c1 and c2 over time at 16 Hz. For consistency, the same model was applied to both A and B, and it assumed temporal 

smoothing of the R+ and R- signals before RLUSTRE was computed. Temporal smoothing was a key factor at 16Hz (B), but has 

no effect at 0 Hz (A). See Discussion Lustre judgements for details. 
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5.7 Lustre judgements 

 

Despite much observation and discussion, the 

relations between lustre, gloss, rivalry and 

transparency are poorly understood, and there have 

been few quantitative studies to define the 

necessary conditions for lustre. Anstis (2000) asked 

subjects to rate their impressions of lustre for 

dichoptic pairs of achromatic spots, with different 

luminances that were higher and/or lower than the 

background luminance. Several background levels 

were used. We converted his spot luminances to 

Michelson contrast (cL,cR), and plotted the mean 

lustre ratings in binocular contrast space (Fig. 12A). 

Lustre was highest when the spots had opposite 

contrast polarity, as our model predicts, but was 

also fairly high at adjacent points lying in the first 

and third quadrants, where contrasts were different, 

but of the same sign. RLUSTRE (by design) predicted 

lustre (dashed curve) only when the spots had 

opposite contrast polarities - at just one point in the 

2nd quadrant for this experiment. But when noise 

was added to all luminance levels (both target and 

background; gamma distribution, s.d. = 0.7*mean) 

this perturbed the contrast values, and so some 

same-polarity pairs became opposite-polarity, at 

least some of the time. Averaged over many 

samples, the grey curve shows that the resulting 

mean value of RLUSTRE fitted the data very 

satisfactorily. We conclude that lustre is mainly 

induced by opposite signs of contrast, and that 

luminance noise can explain why lustre diffuses 

into the same-polarity quadrants (Fig. 12A).  As 

Helmholtz remarked: "If one eye sees black, and 

the other eye sees white [in corresponding 

locations] the impression will be that of a surface 

shedding a pale lustre" (von Helmholtz, 1925, 

p.514). 

 

Anstis (2000) also examined 'monocular lustre', 

where the same spot was shown to both eyes, but 

spot contrast switched between c1 and c2 over time 

at 16 Hz. The lustre ratings (Fig. 12B) showed a 

very similar pattern to binocular lustre. Monocular 

lustre can thus occur when different contrasts are 

alternated over time. In our model two separate 

signals, R+ and R-, carry information about 

opposite signs of contrast, and if these signals are 

temporally smoothed then the alternating R+ and R- 

signals will come to overlap in time, and so 

generate a lustre response. To test this idea against 

Anstis's data, we implemented a dynamic version of 

the model that assumed temporal smoothing of the 

R+ and R- signals (low-pass filtering; integration 

time about 50 ms) before RLUSTRE was computed. 

This smoothing produced a time-varying lustre 

response, and lustre rating was taken to be 

proportional to the time-averaged value of RLUSTRE. 

With the input luminances perturbed by noise as 

before, there was a good fit between model and data 

(Fig. 12B).  This provides some direct support for 

our model of lustre (Fig. 3), and shows how 

binocular and monocular lustre can arise from the 

same set of mechanisms. 

 

5.8 Limitations & future challenges 

 

Like many previous models, the present one treats 

the ocular contrasts cL, cR as the system's input 

values. Luminance contrast, for this model, is a 

pointwise primitive quantity. We have not tried to 

give any account of how the retina derives these 

contrast values from photoreceptor responses, and 

we have not explicitly represented the variation of 

stimuli and responses across visual space. The 

present model therefore cannot deal with phase 

disparities other than 0 and 180
O
. A more complete 

model would include the spatial (x,y) dimensions, 

and could then address other types of experiment 

such as the judgment of binocular spatial phase 

(Ding & Sperling, 2006) or the binocular fusion of 

edges (Georgeson & Wallis, 2014). Meese & Baker 

(2011) on the other hand, did include early, 

monocular spatial filtering in their model for 

binocular summation and spatial summation of 

contrast. They concluded that local, phase-specific, 

binocular summation of contrast responses precedes 

a second-stage of broader spatial summation that 

generalizes across both spatial phase and spatial 

position, and is followed by a third stage output 

nonlinearity. Their first and third stages correspond 

closely to the two-stage binocular channel of Meese 

et al (2006) that is also embedded in the present 

model.  

 

Why should we need to include parallel monocular 

channels, when no previous study of contrast 

discrimination has needed them?  This is a key 

question, and we think the answer is that we used a 

more comprehensive range of test directions in 

binocular contrast space, around each pedestal point 

(Fig. 2B). It was the conditions involving contrast 

decrements (9 and 11) - not tested in any previous 

studies - that revealed the need for monocular 

channels. We also showed that evidence from 

contrast matching experiments (Fig. 10) is not 

consistent with our binocular channel's response 

surface alone (Fig. 5B), but directly favours the 

RMAX surface that emerges from max-like selection 

across the monocular and binocular channel 

responses.   

 

We recognize that other front-ends to the model 

might be possible. A set of input equations that 

combined left and right eye inputs in a different 

way, but gave rise to the same R+ and R- maps, and 

hence the same RMAX and RMIX maps, would be 

functionally equivalent to our model (Fig. 5). For 

example, the DSKL model 3c (Ding et al, 2013), an 

elaborated version of the Ding & Sperling (2006) 

model, gives a good account of dichoptic spatial 

phase and contrast perception. It produces the 

appearance of winner-take-all (WTA) behaviour 

between the eyes (similar to the rounded-square 

binocular-response contours of Fig. 6A or Fig.10), 
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but unlike our model it does not take the max over 

monocular and binocular channels to achieve this 

WTA effect. Instead the DSKL model re-shapes the 

left and right eye input amplitudes before binocular 

summation, using a combination of interocular 

suppression and interocular facilitation or gain 

enhancement.  This approach readily handles 

dichoptic spatial phase perception, but at the cost of 

two extra free parameters, along with the 

conceptual complexity of several interacting gain-

control mechanisms.  

 

It would be parsimonious if the complexities of 

binocular interaction could all be handled in this 

way, by elaborating the mechanism of binocular 

summation. But antiphase gratings reveal a limit to 

this approach. A core assumption (Ding & Sperling, 

2006; Ding & Levi, 2016) has been that only the 

summed output is available (Fig. 1a). On this view, 

binocular interactions of various kinds modify the 

monocular signal amplitudes, and these modified 

sine-wave signals are then summed arithmetically. 

But if gratings of equal contrast are presented to the 

two eyes then whatever forces shape the left- and 

right-eye amplitudes they must by symmetry 

remain equal. And those equal-and-opposite 

sinewaves must then completely cancel each other 

in the sum.  Hence antiphase gratings should be 

invisible, but they are not. Detection thresholds 

(Fig. 11) and contrast-matching data imply that we 

see one or other of the monocular contrasts (Baker 

et al., 2012). An additional mechanism seems 

inevitable. 

 

We have shown here that having separate 

mechanisms for opposite polarities prevents such 

cancellation and, via the contrast and lustre cues, 

enables a good account of antiphase contrast 

discrimination. This was true whether the 

monocular channels were explicitly included (Fig. 

4) or not (Fig. S7).  Nevertheless, the monocular 

channels in our model were essential: they created 

the winner-take-all effect that was vital for 

understanding both contrast discrimination and 

matching for dichoptic in-phase gratings. And in a 

variant of our model where antiphase cancellation 

was included (Eqn. 7a, above), the monocular 

channels became essential for antiphase conditions 

as well. 

 

Future work, however, should examine another 

interesting possibility - that binocular difference 

channels (Cohn & Lasley, 1976; Cohn, Leong, & 

Lasley, 1981; Jennings & Kingdom, 2016; May, 

Zhaoping, & Hibbard, 2012) play a role in these 

discrimination tasks. In one sense, our model 

already contains a 'difference channel', because 

RLUSTRE is a response to the presence of opposite 

contrasts in the two eyes, but it does not respond 

more generally to a simple contrast difference 

where the polarity is the same in both eyes. Another 

possibility is that the monocular channels in our 

model might be replaced by opponent channels that 

compute ocular contrast difference (L-R, and R-L).  

This has yet to be explored. 

 

The experiments here are spatially one-

dimensional; they do not consider 2-D interaction 

effects such as cross-orientation suppression. 

Previous experiments have shown that cross-

orientation suppression takes place both within and 

between the eyes, placing those monocular and 

dichoptic suppressive influences at stage 1 of the 

two-stage model (Baker, Meese & Summers, 2007; 

Meese & Baker, 2009). This is readily 

accommodated by stage 1 of the binocular pathway 

here, though whether the purely monocular 

channels exhibit cross-orientation suppression also 

remains to be explored.   

 

The present model has no spatial dimension, and 

we expect that extending it from a model of 

contrast coding to a model of binocular spatial 

vision will lead to new and interesting theoretical 

developments (cf. Ding & Levi, 2016). 

 

6 Conclusions 
 

The 6-channel 2-cue model described here (Fig. 3) 

accounts very well for eleven forms of binocular 

contrast discrimination function. The model 

subsumes our earlier one (Meese et al, 2006) that 

had binocular summation and interocular 

suppression but no monocular channels in parallel 

with the binocular ones. With only two extra free 

parameters (n,a) it explains several key effects 

where the earlier model failed. It is parsimonious 

because contrast gain parameters (m,s,z,p,q) are the 

same for all channels. Lustre emerged as an 

important additional cue in some, but not all, 

antiphase discrimination tasks.  

 

In brief, the theoretical questions we posed about 

contrast coding in binocular vision, and the model-

based answers we propose, are these: 

 

1. Do we have separate, parallel, monocular & 

binocular pathways?  Yes, up to a point 

2. Do we have separate pathways for opposite 

contrast polarities?  Yes 

3. Do the monocular pathways have suppressive 

interactions between eyes?  No 

4. Do the binocular pathways have suppressive 

interactions between eyes?  Yes 

5. Is binocular summation polarity-specific?  Yes 

6. Does binocular summation entail cancellation 

between opposite polarities? Can't tell 

7. Is interocular suppression polarity-specific? 

Can't tell 

8. Do we have independent perceptual access to 

these early pathways?  No, only to the max 

9. How many perceptual outputs or cues are used 

in these tasks? Two: contrast and lustre  

10. Do we have independent perceptual access to 

these two cues? Yes 
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Appendix 1 
 
Model equations 

 

These equations define the model fitted to the data 

in Figures 4-9. Possible variations on  this model 

are considered in the Discussion section Model 

variants. 

 

Input: Polarity-specificity 

We first separate each eye's contrast value into two 

sign-specific parts, both of which are non-negative: 

 

; 

; 

 

and similarly for the right eye. 

 

Stage 1     

• The first stage of the polarity-specific binocular 

channels is driven by the contrast in one eye, but 

has divisive contrast gain control from the same 

polarity in both eyes: 

 

𝑟9
C =

𝑐9
C J

𝑠 + 𝑐9
C + 𝑐=

C , 	𝑟9
E =

𝑐9
E J

𝑠 + 𝑐9
E + 𝑐=

E 								 1  

 

𝑟=
C =

𝑐=
C J

𝑠 + 𝑐9
C + 𝑐=

C , 		𝑟=
E =

𝑐=
E J

𝑠 + 𝑐9
E + 𝑐=

E 								 2 . 

 

Note that each of these responses can be de-

composed into two parts, an ocular weighting term 

driven by relative contrast in the two eyes, coupled 

with a compression of the input contrast, where all 

contrast terms refer only to the preferred polarity.  

Thus we can re-write 𝑟9
Cas: 

 

𝑟9
C = 𝑤9

C(𝑐9
C	)JEU													(3) 

 

where 

𝑤9
C =

𝑐9
C

𝑠 + 𝑐9
C + 𝑐=

C 										(4) 

 

and similarly for the other 3 expressions of Eqns 1, 

2. 

 

• The first stage of polarity-specific monocular 

channels for Left and Right eyes is the same as 

equations 1, 2 above, except that interocular 

suppression is deleted: 

 

, ,      (5) 

,        (6). 

 

Stage 2 

 

• The second stage of the binocular channel sums 

like-polarity responses from the two eyes (e.g. 

𝑟9
C, 𝑟=

C ), and the sum is subjected to a response 

nonlinearity (Legge & Foley, 1980), which acts like 

a smooth threshold at low response levels and a 

power law transformation with exponent (p-q) at 

high response levels: 

 

𝑅D
C =

(𝑟9
C + 𝑟=

C)P

𝑧 + (𝑟9
C + 𝑟=

C)R
, 		𝑅D

E

=
(𝑟9

E + 𝑟=
E)P

𝑧 + (𝑟9
E + 𝑟=

E)R
		.						(7) 

 

From Eqns. 3 and 7, we note that power-law 

transformations at stages 1 and 2 are in series.  In 

simple monocular or binocular viewing this is 

equivalent to a single power-law whose exponent is 

the product of the two exponents (m-1)(p-q).   

 

• The second stage of the monocular channels is 

like Eqn. 7, but opposite-eye terms are again 

deleted: 

 

𝑅9
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(𝑢9
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	,							(8) 
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Signal selection 

 

MAX operators play an important role in 

hierarchical models of visual object recognition 

(Riesenhuber & Poggio, 1999), and their 

implementation in cortical circuits of V1 and V4 is 

an active area of theoretical and physiological 

research (Gawne & Martin, 2002; Lampl, Ferster, 

Poggio, & Riesenhuber, 2004; Yu, Giese, & 

Poggio, 2002). As introduced above, we resolved 

the three responses (subscripted L,R,B) into one, via 

a MAX-like operator, and did this separately for 

each polarity to create just two polarity-specific 

responses. We implemented the MAX operation via 

a Minkowski sum (power sum) with a high 

exponent n.  Thus the two responses are: 

 

 ,     

.    (10)

 

 

 

 
 
Figure A1.  Minkowski sum emulates the mean output of 

a noisy MAX operator. We consider combining two 

variables (envisaged as neural responses) y1, y2 (blue, 

green). At each point x, we combine y1, y2 in two ways to 

produce an output y: (i) as a Minkowski sum with no 

noise, 𝑦 = (𝑦U
[ + 𝑦\

[)U/[  (coloured curves, where 

exponent n=4,6,30), and (ii) as the output of a MAX 

operator, 𝑦 = 𝑚𝑎𝑥(𝑦U + 𝜖U, 𝑦\ + 𝜖\) , averaged over 

many independent samples 𝜖U, 𝜖\	of zero-mean Gaussian 

noise N(0,si). Black dashed curves show that, provided 

n>2, this mean output of the MAX operator closely 

matches the Minkowski sum when the noise standard 

deviation si is proportional to the mean input yi and 

inversely related to the Minkowski exponent n:  𝜎a =
(4/3)𝑦a/𝑛, (𝑖 = 1,2). Error bars at y1=y2=1 show ±1 s.d. 

of the noise for n=30. Lower exponents in the Minkowski 

sum correspond to higher noise levels in the MAX 

operator, and in both cases the combined output value is 

higher than the simple noise-free maximum, 

𝑚𝑎𝑥(𝑦U, 𝑦\) . Deviation of y from the simple max is 

greatest when 𝑦U = 𝑦\ , and at this point 𝑦 = 2U/[𝑦U . 

Equivalently, we may say that for two equal signals the 

summation gain factor is 2
1/n

. Conclusion: when a model 

uses the Minkowski sum as a formalism for combining 

signals, it could be interpreted equally well as the 

nonlinear sum (power sum) of the signals, or as the mean 

output of a MAX operator with noisy inputs. 
 
We found that the Minkowski sum (with n as a free 

parameter in the model fitting) gave much better 

fits than a simple max operation. We show in Fig. 

A1 that there is an interesting and perhaps 

unsuspected relation between the Minkowski sum 

and the max operator. The Minkowski sum (with no 

noise) is almost exactly equal to the mean output of 

a true max operator where each of the input signals 

is noisy (Fig. A1).  Higher noise tends to raise the 

mean output in a way that is equivalent to a lower 

Minkowski exponent n.  Thus the response R+ or 

R- in eqn. 10 may be interpreted as the average of 

the max of 3 noisy input signals. This average is 

slightly higher than the max of the 3 inputs without 

noise and this feature seems to be important in 

capturing the observed human performance. Fig. S1 

(Supplementary Material) gives some further 

insight into this. 

 

Perceptual cues: 1. Contrast 

 

To derive a code for contrast from the six stage 2 

outputs, we take the max (see rationale above) and 

this can be implemented as a second Minkowski 

sum with exponent n, taken over R
+
 and R

-
 (see Fig. 

3): 

         (11),  

 

where n is expected to be large (eg. n>20). This 

single number, RMAX, is the model's internal 

representation or code for luminance contrast. 

 

Perceptual cues: 2. Lustre 

 

Following our rationale and formulation of lustre 

(above) we used a general Minkowski sum for 

pooling the two polarity-specific responses: 

 

       (12),  

 

where a is a free parameter, expected to be 

relatively small (eg. a<5) to give more substantive 

pooling than the MAX operator. We then defined 

the response to lustre as: 

 

𝑅9:;<=> = 𝑅?@A − 𝑅?BA									(13). 
 

Eqns. 12,13 satisfy our requirement for selectivity 

of RLUSTRE. For a non-lustrous input (ie. opposite 

polarities not present), either R
+ 

= 0 or R
-
 = 0, and 
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from Eqns. 11,12 this implies 𝑅?@A = 𝑅?BA, hence 

𝑅9:;<=> = 0, as required. 

 

Decision processes: sensory cues, noise & observer 

strategies 

 

Discrimination performance (d') for a given (test, 

pedestal) pairing can be defined separately for the 

two cues: 

 

𝑑′fgh<=B;< = 𝑎𝑏𝑠[	𝑅?BA(𝑡𝑒𝑠𝑡 + 𝑝𝑒𝑑) −
𝑅?BA(𝑝𝑒𝑑)]/𝜎								(14), 
 

𝑑′9:;<=> = 𝑎𝑏𝑠[	𝑅9:;<=>(𝑡𝑒𝑠𝑡 + 𝑝𝑒𝑑) −
𝑅9:;<=>(𝑝𝑒𝑑)]/𝜎				(15). 
 

This is a late-noise model, in which both cues are 

perturbed by additive Gaussian noise. Observed 

performance (d'OBS) depends on how efficiently the 

observer can make use of the two cues. We 

assumed that the two cues were independently 

noisy but with the same noise variance (s
2
), and 

that the observer could make good use of both cues: 

 

𝑑′gD; = 𝑑′fgh<=B;<
\
+ 𝑑′9:;<=>

\
						(16). 

 

This quadratic sum represents optimal use of the 

cues (Green & Swets, 1966). It is an important, 

parameter-free, benchmark but was not a crucial 

assumption for our dataset. In practice, we found 

almost the same model performance with sub-

optimal cue combination, represented by a 

Minkowski sum of d' values with higher exponents, 

from 2 (optimal) to 200 (representing the max of 

the two d' values). The exponent value is most 

crucial when the two d' values are very similar and 

that occurred only in condition 4. 

 

Fitting the model 

 

The equations fully define the model, and allow us 

to compute model performance (d'OBS) for any 

specified test condition with pedestal contrast C and 

contrast change DC. For each C, d' was computed 

for a wide range of values of DC at 1.3 dB intervals, 

and the threshold value of DC, where d'=1, was 

found by interpolation. Root-mean-square (RMS) 

error between model and observed thresholds was 

computed in dB, and model parameters were 

adjusted by the Simplex algorithm (fminsearch in 

Matlab) to find the lowest RMS error. Multiple 

fitting runs (usually 20) were done with starting 

values randomly jittered around a plausible set of 

initial values, to ensure that the best-fit did not 

represent a local minimum in the error surface.  

There were in principle 8 free parameters 

[n,m,s,p,q,z,s,a]. Six of these had the same 

meaning as in our earlier binocular-channel model 

(Meese et al, 2006), while two new ones (n, a) 

defined the form of pooling in the max and mix 

operators (Eqns. 11, 12). A ninth free parameter (z2) 

was a pragmatic addition. Conditions 9-13 were 

drawn from our study in which stimulus duration 

was 100ms rather than 200ms (see Table 1) and, 

perhaps for this reason, contrast thresholds in the 

low pedestal-contrast region (below 1%) were 

about 3dB higher than observed for conditions 1-8. 

We found that just one change - allowing a higher 

value (z2) in place of z for conditions 9-13 - was a 

simple and sufficient compensation for the 

procedural differences between the three studies 

that formed our dataset. Great explanatory power, 

including the power to reject unsatisfactory 

explanations, was gained by requiring the model to 

fit data from so many different conditions (total 

N=111 data points) simultaneously. 
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Supplementary Material 
 

 
Figure S1.  Diagnostic diagrams for the fitted model reveal which signals are important in which conditions.  Each panel 

shows the six stage-2 responses (thin curves, red, green, blue; see legend), as a function of DC for a given task (conditions 1-

11) at the highest pedestal contrast (32%). Some responses may be low or zero, hence off the scale. The 6 channel responses 

are accessible to perception only via the MIX and MAX operators (Fig. 3) that lead to outputs RMAX and RLUSTRE. Thick grey 

curve shows the output RMAX, while the thick purple curve that would show RLUSTRE is well below the plotted range here (but 

shown in Figure S2). The dashed horizontal grey lines show the RMAX output level for the pedestal-only interval (DC=0).  Red 

spot marks the discrimination threshold point, in cases where RMAX is a strong determinant of performance.  In these cases, 

RMAX deviates from its own pedestal level by an amount approximately equal to the noise level, representing a threshold level 

of discrimination performance, d'=1. In conditions 6 and 8, the red spot is absent because RLUSTRE was the important cue (see 

Fig. S2). Note how in some tasks (7 and 11) sensitivity is quite poor (threshold DC is high) because potentially useful signals 

(B+, blue; L+, red) are largely vetoed by the first MAX operator. 

 

 
Figure S2.  Diagnostic diagrams exactly like Fig S1, but plotting a low response range to illustrate RLUSTRE. Dashed purple 

lines are the lustre response to pedestal-only. Six conditions (1,2,7,9-11) involved no negative polarity input, and so the 

negative-channel responses, along with RLUSTRE, are zero. But in the five conditions (3,4,5,6,8) that involve antiphase 

contrasts, there were significant changes (increments or decrements) in the lustre response with increasing DC, and in two or 

three of these (conditions 6,8 and sometimes 4), lustre was the important cue for discrimination, according to the model. 
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Figure S3.  Model psychometric functions from the combined use of contrast and lustre responses shown in Figs. S1, S2. 

Pedestal contrast 32%. Grey spot marks the conventional discrimination threshold for DC (75% correct). 

 
Figure S4.  Why not use a perfect max operator ? This figure is similar to Fig. 6 in main text, but with one change to the 

model: parameter n = 300 instead of n = 31. This created an almost perfect max operator instead of the 'soft' or noisy max 

operator (Fig. A1).   This gave the RMAX response surface sharper corners. This generally had a minor influence, except for 

condition 11 at the two highest contrasts (panel A), where the surface was now so flat in the direction of change (white 

vector) that predicted performance saturated and could never reach threshold. In short, the 'soft max' operator (n=31) fits 

better, and could be interpreted as the operation of a 'hard' max along with noisy inputs. 
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Figure S5.  Difference maps show the distinct regions of 

binocular contrast space within which the model's 

monocular and binocular channels delivered the contrast 

cue, RMAX. (A) bin-mon response differences mapped 

over a broad contrast range (0-50%), and (B) zoomed-in 

to low contrasts (0-5%). Yellow-red regions show where 

the binocular channel response was greater, and hence 

determined the value of RMAX.  Cyan-blue regions show 

where the monocular response was greater. White 

contour marks the boundary between them (i.e. bin-mon 

difference = 0).  Note how at high contrasts (A) binocular 

responses were dominant only when left and right eye 

contrasts were nearly equal. At low contrasts (B) the 

influence of binocular responses expanded to cover a 

wide range of left-right contrast pairings. When polarities 

were opposite in the two eyes, mon and bin responses 

were equal everywhere in the 2nd and 4th quadrants 

(light green). Defining the difference map: Rmon was 

defined at each (cL,cR) point as the largest of the 4 

monocular channel responses, i.e. max(RL
+
, RR

+
, RL

-
, RR

-
), 

and similarly Rbin was defined as max(RB
+
, RB

-
). The 

difference (colour-coded) is shown in units of the noise 

standard deviation, i.e. as (Rbin-Rmon)/s. For reference, 

black contours are the iso-response contours of RMAX, 

whose heights are spaced in steps of size s.  

 

 

 

 

 
 

Figure S6.  Lustre cue was necessary for a good model fit. Same as Figure 4 of the main text, except that the model was re-

fitted with the response to Lustre removed (set to zero). Model performance now depended solely on the Contrast cue (RMAX). 

Although overall R
2
 was high (R

2
=0.916, N=111; RMS error = 2.63 dB), this model showed a poor fit to the data in 

conditions 4, 9, 11, and to some extent in 5, 6, 8. An F-test comparing the fits of the two nested models (nine free parameters 

with Lustre vs eight without Lustre) was hugely significant [F(1,102) = 422.9, P<0.00001], meaning that Lustre significantly 

improved the fit. Best-fitting parameters with no Lustre were: n = 6.096; m = 1.396;  s = 1.642; p = 5.275; q = 4.340; z = 

0.021; s = 0.144; a =  (irrelevant; no effect); z2 = 0.167. 
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Figure S7.  Monocular channels were needed for a good fit to the whole dataset. Like Fig. 4 of the main text, except that the 

model was re-fitted with monocular channel responses set to zero at stage 2. Model performance depended on the Contrast 

and Lustre cues delivered by the binocular channels. Overall R
2
 was high (R

2
=0.942, N=111; RMS error = 2.19 dB), and this 

model showed a good fit to the data in all conditions except 9 and 11 where the fit was poor. No nested F-test comparison 

with the full model was possible in this case, because both models had the same number of free parameters, and differed only 

in the presence or absence of the monocular channels. Best-fitting parameters without monocular channels were: n=32.25; 

m=1.29;  s=4.25; p=4.50; q=3.58; z=0.0023; s=0.0984; a=4.09; z2=0.027. 

 

 

 

 
Figure S8.  To confirm the effects shown in Figures S6, S7 the model was re-fitted with both changes together: no Lustre 

and no monocular channels. Model performance depended solely on the Contrast cue (RMAX) delivered by binocular channels. 

Overall R
2
 was high (R

2
=0.917, N=111; RMS error = 2.61 dB), but this model again showed a poor fit to the data in 

conditions 4, 9, 11, and to some extent in 5, 6, 8, rather similar to the effect of removing Lustre alone (Fig. S6). An F-test 

comparing the fits of the two nested models (this one vs the full model of Fig. 4) was hugely significant [F(1,102) = 415.0, 

P<0.00001]. Best-fitting parameters were: n=6.301; m=3.186;  s=28.56; p=1.221; q=1.055; z=0.0696; s=0.119; 

a=(irrelevant; no effect); z2=0.253. 
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Figure S9.  Model response surfaces, like Fig. 5 of the main text - except that the model was re-fitted with binocular 

channels that responded to the difference between opposite-polarity inputs (Eqn. 7a). In panel B, note the cancellation of 

binocular-channel responses to inputs that have opposite-polarity (quadrants 2 and 4). However, because of the max operator, 

the monocular responses win the day, and this cancellation does not carry through to later response stages (D,E,G,H), and has 

almost no effect on fitted parameters (F) or predicted thresholds. We therefore cannot determine from the data whether such 

cancellation occurs or not; see Sec 5.5 of main text. 
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