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Abstract 

A new iterative orthogonal least squares forward regression (iOFR) algorithm is proposed to identify 

nonlinear systems which may not be persistently excited. By slightly revising the classic forward 

orthogonal regression (OFR) algorithm, the new iterative algorithm provides search solutions on a 

global solution space. Examples show that the new iterative algorithm is computationally efficient 

and capable of producing a good model even when the input is not completely persistently excited.   

Key words: Model structure detection, nonlinear system identification, non-persistence, orthogonal 

forward regression, iterative learning algorithm, OFR algorithm, iOFR algorithm 

1. Introduction 

 

Persistent excitation of the input is a desirable property for system identification. An input signal 

should be rich enough to fully excite the dynamics of a system so that the system can be uniquely 

determined in the system identification process. Persistent excitation has been widely studied for 

linear system identification ;NĂƌĞŶĚƌĂ ĂŶĚ AŶŶĂƐǁĂŵǇ͕ ϭϵϴϰ͕ LũƵŶŐ͕ ϭϵϴϳ͕ SƂĚĞƌƐƚƌƂŵ͕ ϭϵϴϵͿ where 

it is well known that the input should excite over all the frequency range. Non-persistence of 

excitation may cause a singularity in the regression matrix and result in poor estimation of the 

parameters. For the identification of nonlinear systems a rich frequency content is not sufficient. To 

fully excite a nonlinear system, the input must be adequately rich both in frequency as well as in 

amplitude so that the full amplitude range of the nonlinearities is also excited (Nowak, 2002). 
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The problems caused by non-persistent excitation can be solved by experiment design. Optimal 

input design for nonlinear system identification has been studied (Hjalmarsson and Martensson, 

2007, Larsson et al., 2010, Hirsch, 2010). However, the data used in many real system identification 

studies are from real processes where there may be restrictions on the inputs allowed so there is no 

guarantee of persistently excitation. Input signals also cannot be designed in the identification of an 

autonomous system. Therefore a study of the identification of systems which are not completely 

persistently excited is important in many practical applications. Algorithms which are robust to non-

persistent inputs are needed in practical applications. 

Among the existing nonlinear system identification methods, the NARMAX (Nonlinear 

AutoRegressive Moving Average with eXogenous input) model and the associated Orthogonal 

Forward Regression (OFR) algorithm have been widely applied in the modelling of many engineering, 

chemical, biological, medical, geographical, and economic systems (Billings, 2013). Variations of 

these algorithms have been developed for lumped and distributed parameter systems, time-

invariant and rapidly time-varying systems, and in the time, frequency and spatio-temporal domains.  

The OFR algorithm can efficiently determine a parsimonious model structure without any a priori 

knowledge of the nonlinear system. The OFR algorithm, which regresses the variation of the 

dependent variable along the path where the sum of the ERR (Error Reduction Ratio) values 

increases at the fastest speed is computationally efficient. The obtained simple model structure has 

many significant advantages in application. A model with a simple structure can successfully avoid 

over-fitting in system identification and can produce a better estimation of the parameters, whereas 

a model with redundant terms often leads to poor long term predictions and poor qualitative 

validation. It has been shown that under some circumstances, the non-persistence of the excitation 

may affect term selection and a new algorithm based on simulation errors (or model predicted 

outputs) has been proposed (Piroddi and Spinelli, 2003). Alternative solutions  include the 

algorithms aided by genetic algorithms (Mao and Billings, 1997), and mutual information (Wei and 

Billings, 2008, Billings, 2013).  However, all these solutions are computationally intensive and hence 

are difficult to apply in real applications where typically a large range of lags, model terms, or 

multivariable systems has to be studied. 

A iOFR (iterative Orthogonal Forward Regression) algorithm has recently been proposed to solve the 

suboptimal solution problem without incurring the excessive processing required when using either 

simulation errors or a full optimal search  (Guo et al., 2014). In the iOFR algorithm, the classic OFR 

algorithm is iteratively applied where the next search is based on the suboptimal term set obtained 

at the previous step. By slightly revising the classic OFR algorithm, the iOFR algorithm searches an 
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optimal model on a global solution space. A more general iOFR algorithm is proposed in this paper 

and it will be shown that the new iOFR algorithm is robust to some non-persistent inputs. It is worth 

emphasising that it is impractical to provide an ideal algorithm which works for any non-persistent 

excitation. The example in subsection 4.1 shows that when the strength of the input is low and the 

noise level is high, no algorithm based on the RSS (residual sum of squares) is likely to be able to give 

a correct model. 

The remainder of the paper is organised as follows. Section 2 briefly reviews the NARMAX model and 

the classic orthogonal forward regression algorithm. The new iOFR algorithm is introduced in Section 

ϯ͘ TŚƌĞĞ ĞǆĂŵƉůĞƐ ǁŚŝĐŚ ŚĂǀĞ ďĞĞŶ ƵƐĞĚ ŝŶ PŝƌŽĚĚŝ Θ SƉŝŶĞůůŝ͛Ɛ ƉĂƉĞƌ ǁŝůů ďĞ ƵƐĞĚ ƚŽ ŝůůƵƐƚƌĂƚĞ ƚŚĞ 

efficiency of the new algorithm in Section 4. Conclusions are finally drawn in Section 5. 

2. Orthogonal forward regression algorithm 

 

A NARMAX model is essentially an expansion of the output with past inputs, outputs and noise terms. 

A wide class of nonlinear systems can be represented by a NARMAX model (Billings, 2013, 

Leontaritis and Billings, 1985) which can be defined as 

  
         

       
 

1 , 2 , , , , 1 ,

, , 1 , 2 , ,

y

u e

y k y k y k n u k d u k d
y k F e k

u k d n e k e k e k n

      
  
      

  (1) 

where y(k), u(k) and e(k) are the system output, input, and noise sequences respectively; ny, nu, and ne 

are the maximum lags for the system output, input, and noise; ( )F  is some nonlinear function; d is a 

time delay which is often set as d=1.  

The nonlinear function ( )F  is often written as the superposition of a set of basis functions as 

 ( ) ( ) ( )
j j

j

y k k e kq j= +å   (2) 

where ( )
j

kj ͛Ɛ ĂƌĞ ĨƵŶĐƚŝŽŶƐ ŽĨ ƉĂƐƚ ŝŶƉƵƚƐ͕ ŽƵƚƉƵƚƐ ĂŶĚ ŶŽŝƐĞ͖ 
j

q ͛Ɛ ĂƌĞ ƚŚĞ ĂƐƐŽĐŝĂƚĞĚ ĐŽĞĨĨŝcients.  

Collecting N sets of observations yields the matrix form of equation (2) 

 Y ĭ   (3) 
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where  1 2   ĭ  is known as the regression matrix and (1) ( )
T

j j j N      .   

System identification involves the determination of model structure { }
j

j   and the estimation of the 

associated parameters. However these two processes are firmly coupled with each other. Ranking of 

the significance of a term depends on the weight (coefficient) of the term in a model while the 

estimation of the parameters depends on what terms are included in the model. The OFR algorithm 

decouples the interactions between these two processes and provides an efficient method for the 

identification of nonlinear systems. In the OFR algorithm, the terms 
j

f  are orthogonalised stepwise 

into the orthogonal terms 
j

w  and the associated coefficients can then be estimated as 

 
,

,

j

j

j j

w y
g

w w
=   (4) 

The significance of the term can then be evaluated using the ERR (Error Reduction Ratio) criterion 

defined as 

 ( )
2

, ,

, , ,

j j j j j

j

j j

g w g w w y
ERR w

y y w w y y
= =   (5) 

The terms can then be selected into the model according to the ERR criterion. The regression will 

stop when all the significant terms have been detected.  

A commonly used stop condition can be set as 

 ( )1
j

j

ERR w r- £å   (6) 

The sum of ERR (denoted as SERR) indicate that a proportion of ( )j
j

ERR wå  information in the 

output has been explained by the terms { }
j

f  which consists the model. 

The standard orthogonal forward regression algorithm consists of the following steps: 

(1) Sufficiently excite the system and measure the inputs and outputs of the system. 

(2) Specify an initial full model set of  candidate terms and the value of  . 
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(3) Compute the values of the ERR for each of the   candidate terms and select the term which 

gives the largest value of ERR into the model as the first term. 

(4) At the k th ( 2k  ) stages: compute the values of the error reduction ratio for each of the 

  ( 1)k   remaining candidate terms by assuming that each is the k th term in the selected model 

and perform the corresponding orthogonalisation; the term that gives the largest value of the error 

reduction ratio is then selected into the model as the k th term. If condition (6) is satisfied, finish the 

process and go to (5). Otherwise set  1k k   and repeat step (4).  

(5) The final model contains 
s
 terms and the parameter estimates can be calculated using a least 

squares formulae. 

3. The new iterative orthogonal forward regression algorithm 

 

In the classic OFR algorithm, the terms are selected into the model one at a time. At the k-th step, 

the remaining terms are orthogonalised with the k-1 terms which have been selected at the previous 

steps and the term which produces the maximum ERR will be selected. The classic OFR selects terms 

at each step to optimize the ERR criterion. However, the selected terms in each step can occasionally 

produce a suboptimal model. This problem is most noticeable when the systems are not persistently 

excited. An iterative orthogonal Forward regression algorithm has been introduced to improve the 

suboptimal problem where a small modification to the term selection procedure has been made to 

significantly improve the classic OFR algorithm without any significant increase in computational cost 

(Guo et al., 2014). A more general iOFR algorithm will be introduced next to solve the problem 

caused by non-persistent inputs.  

The new iOFR algorithm comprises two steps, the first step is to obtain a suboptimal model set and 

the second step uses a subset of the terms which were obtained in the first step as the starting point 

of a global search. The new iterative OFR algorithm can be summarised in the following steps.  

i) Preset a tolerance   and apply the standard OFR algorithm on the whole term dictionary ĭ  to 

produce a suboptimal term set  1 2 s
s s s s

  ĭ ; 

ii) Select a small number   as an amendment to the tolerance in the first step; 
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iii) Select a subset pre sĭ ĭ  of the terms j , where 1 2, , , 
s

j s s s ,  in sĭ  as preselected terms and 

search the other terms on the term set \ preĭ ĭ  to construct a suboptimal solution satisfying 

1 iERR     ; 

iv) Repeat iii) for different subset  preĭ ͛Ɛ of sĭ  and obtain some suboptimal models; 

v) Compare the obtained suboptimal models and choose the best one as the final model opĭ  .  

Remarks: 

The subset preĭ  is often selected as a combination of p  terms in sĭ . There are a total number of 

( )s

p

k
 combinations. All the combinations are evaluated in step iv) and ( )s

p

k
 candidate models are 

obtained. Letting 1p = , the new iOFR reduces to the iterative algorithm given in the paper (Guo et 

al., 2014). 

4. Test examples 

 

Three examples will be used to show that a classic OFR algorithm may include redundant 

autoregressive terms, even when the data set was produced from a purely moving average model 

(Piroddi and Spinelli, 2003). These examples will be used in this paper to test the efficiency of the 

new iOFR algorithms and to show the iOFR algorithm can correctly identify an optimal model even 

when the systems are not persistently excited. All the examples are from and use the same settings 

in the paper (Piroddi and Spinelli, 2003).  

4.1 Example 1 

The first example is given as follows 

 

       

 

3

1

1 0.5 2 0.25 ( 1) ( 2) 0.3 2

1
( ) ( )

1 0.8

w k u k u k u k u k u k

y k w k e k
z


         



  

  (7) 

where u represents the input signal and y represents the observation of the output w. Both the input 

u(k) and the noise e(k) are Gaussian distributed white noise. It can be shown that the classic OFR 

algorithm can correctly select all the terms and produce an accurate model when the system is 

persistently excited. However, Piroddi and Spinelli argued that the classic OFR algorithm may 

incorrectly select autoregressive terms when the input signal is less rich in frequency components. 

Piroddi and Spinelli recommended an input which is generated by an AR process with two real poles 



7 

 

between 0.75 and 0.9. Repeating PŝƌŽĚĚŝ ĂŶĚ SƉŝŶĞůůŝ͛Ɛ ƐŝŵƵůĂƚŝŽŶ using an input signal which was 

generated by the following AR process. 

 
1 2

0.25
( ) ( )

1 1.6 0.64
u k v k

z z- -
=

- +
  (8) 

where v(k) is Gaussian noise v(k) ~ N(0,1). The AR process has a repeat pole at 0.8 and the coefficient 

0.25 is chosen to guarantee the input signal is at a reasonable level. Here the noise signal e(k) is a 

Gaussian distributed noise with a variance 0.02, that is, e(k) ~ N(0,0.02). The results produced by the 

standard OFR algorithm are given in Table 1. 

 

Table 1 Results produced by the standard OFR algorithm for example 1 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-1) 88.704 0.517832 0.01638 

2 y(k-2) 3.539335 -0.02977 0.007505 

3 u3(k-1) 0.876307 -0.30076 0.002555 

4 u3(k-2) 4.292185 0.146574 0.00526 

5 u(k-1) 0.633041 1.17602 0.02149 

6 u2(k-1) 1.456973 0.12567 0.003581 

7 u(k-2) 0.059644 -0.38214 0.03271 

SERR -- 99.56 -- -- 

 

Observe that two incorrect autoregressive terms were selected overwhelming the correct terms. A 

correct term u(k-1)u(k-2) was also missed in the identification. The new iterative orthogonal Forward 

regression algorithm which was introduced in the previous section was employed to overcome the 

problem by searching the optimal solutions on different paths. Combinations of any two terms in the 

model in Table 1 were selected as the pre-determined two terms and the remaining terms were 

selected in a model using a classic OFR algorithm. In this example, a total number of ( )7
2

21=  

models were obtained. TŚĞ ƐƵŵƐ ŽĨ ƚŚĞ ERR͛Ɛ ŝŶ ƚŚĞ Ϯϭ ŵŽĚĞůƐ ĂƌĞ ƐŚŽǁŶ ŝŶ FŝŐ ϭ, where the red 

line indicates the sum of ERR values produced by the real model. It can be observed that two of the 

21 models give the maximum SERR value which is equal to the SERR produced by a correct model. 

The results show that both models with the maximum SERR value consist of all the correct terms in 
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(7). This means the optimal model has been found on two different search paths. The optimal model 

is given in Table 2. 

 

Fig 1 SƵŵ ŽĨ ERR͛Ɛ ŽĨ ƚĞƌŵƐ ŝŶ Ϯϭ ŝĚĞŶƚŝĨŝĞĚ ŵŽĚĞů for example 1 

Table 2 Model identified using the iOFR algorithm for example 1 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 u3(k-1) 63.77856 -0.30218 0.001013 

2 u(k-1) 27.00761 1.04567 0.02279 

3 u (k-1)u(k-2) 8.084573 0.23962 0.002311 

4 u(k-2) 0.370287 0.485927 0.02202 

SERR -- 99.15 -- -- 

 

A reduction of the amplitude of the input causes a decrease of the signal-to-noise-ratio and 

consequently under these conditions the identification process may give an incorrect result. 

Consider an input given as 

 
1 2

0.2
( ) ( )

1 1.6 0.64
u k v k

z z- -
=

- +
  (9) 

where v(k) is again a sequence of Gaussian noise v(k) ~ N(0,1). 

The results of an iOFR process are given in Fig 2. It can be observed that some of the models give a 

larger SERR value than the correct model did. This means under this signal-to-noise-ratio level, any 

5 10 15 20
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system identification algorithm based on a RSS (residual sum of squares) criterion cannot produce a 

correct model. 

 

FŝŐ Ϯ SƵŵ ŽĨ ERR͛Ɛ ŽĨ ƚĞƌŵƐ ŝŶ Ϯϭ ŝĚĞŶƚŝĨŝĞĚ ŵŽĚĞů for example 1 with a small input 

4.2 Example 2 

Consider the following system. 

 

     

 

2 2

1

0.5 1 0.8 ( 2) ( 1) 0.05 2 0.5

1
( ) ( )

1 0.5

w k w k u k u k w k

y k w k e k
z


         



  

  (10) 

The system was excited by an input defined as 

 
1 2

0.16
( ) ( )

1 1.6 0.64
u k v k

z z- -
=

- +
  (11) 

where v(k) is Gaussian noise v(k) ~ N(0,1). The AR process has a repeat pole 0.8 and the coefficient 

0.16 is chosen so that the input signal has a similar amplitude as v(k). Here the noise signal e(k) is a 

Gaussian distributed noise with a variance 0.05, that is, e(k) ~ N(0,0.05). The results produced by the 

standard OFR algorithm are given in Table 3. 

Table 3 Results produced by the standard OFR algorithm for example 2 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-1) 94.81906 0.680989 0.02521 

2 y(k-2) 1.385184 -0.01539 0.02387 
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3 u2(k-1) 0.387782 1.48504 0.05909 

4 u(k-1)u(k-2) 1.483983 -0.81138 0.0719 

5 u(k-1) 0.163537 0.5339 0.01987 

6 y2(k-2) 0.546382 -0.03335 0.002269 

7 constant 0.230013 0.320967 0.02352 

SERR -- 99.02 -- -- 

 

Observe that an incorrect autoregressive term y(k-2) was selected. Use two of the 7 terms in Table 3 

as the previous term set and apply the new iOFR algorithm. Considering all the ( )7
2

 combinations 

ǇŝĞůĚƐ Ă ƚŽƚĂů ŶƵŵďĞƌ ŽĨ Ϯϭ ŵŽĚĞůƐ͘ TŚĞ SERR͛Ɛ ŽĨ these models are shown in Fig 3 where the red line 

indicates the value of SERR of the correct model. 

 

FŝŐ ϯ SƵŵ ŽĨ ERR͛Ɛ ŽĨ ƚĞƌŵƐ ŝŶ Ϯϭ ŝĚĞŶƚŝĨŝĞĚ ŵŽĚĞů for example 2 

Fig 3 shows that 3 in 21 models gave the maximum SERR value which is equal to the SERR of the 

correct value. Actually all the three models are composed of the correct terms with same estimation 

of the associated parameters. The obtained model is shown in Table 4. 

Table 4 Model identified using the iOFR algorithm for example 2 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-1) 94.81906 0.501414 0.01606 

2 y2(k-2) 0.816735 -0.04615 0.001378 

3 u2(k-1) 0.899626 0.985615 0.01796 

4 u(k-2) 1.9376 0.769819 0.01552 

5 10 15 20
0.98
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5 constant 0.681966 0.494875 0.01951 

SERR -- 99.15 -- -- 

4.3 Example 3 

 

Consider system (12) 

        2 2
0.5 1 0.8 ( 2) ( 1) 0.05 2 0.5y k y k u k u k y k e k            (12) 

with the input 

 
1 2

0.16
( ) ( )

1 1.6 0.64
u k v k

z z- -
=

- +
  (13) 

where v(k) is Gaussian noise v(k) ~ N(0,1). The noise signal e(k) is a Gaussian distributed noise with a 

variance 0.05, that is, e(k) ~ N(0,0.05). The results produced by the standard OFR algorithm are given 

in Table 5. 

Table 5 Results produced by the standard OFR algorithm for example 3 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-1) 94.49715 0.637916 0.02206 

2 y(k-2) 1.210085 -0.01117 0.02 

3 u2(k-1) 0.470243 1.27154 0.05051 

4 u(k-1)u(k-2) 1.349956 -0.50189 0.06101 

5 u(k-1) 0.168171 0.606372 0.01796 

6 y2(k-2) 0.828298 -0.03958 0.001708 

7 constant 0.372843 0.361259 0.01968 

SERR -- 98.90 -- -- 

 

Using combinations of two of the terms in Table 5 as the pre-determined terms and applying the 

iOFR algorithm yields Ϯϭ ĐĂŶĚŝĚĂƚĞ ŵŽĚĞůƐ ĂŶĚ ƚŚĞ SERR͛Ɛ ŽĨ ƚŚĞƐĞ ŵŽĚĞůƐ are shown in Fig4. 
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Fig 4 SƵŵ ŽĨ ERR͛Ɛ ŽĨ ƚĞƌŵƐ ŝŶ Ϯϭ ŝĚĞŶƚŝĨŝĞĚ ŵŽĚĞů for example 3 

Fig 4 shows that 3 in 21 models gave the maximum SERR which is equal to the SERR given by the real 

model (the red line in Fig 4). All the three models are of a correct model structure which is shown in 

Table 6. 

Table 6 Model identified using the iOFR algorithm for example 3 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-1) 94.49715 0.491456 0.01157 

2 y2(k-2) 0.503876 -0.04904 0.000997 

3 u2(k-1) 1.153346 1.00707 0.01419 

4 u(k-2) 2.178158 0.799251 0.0129 

5 constant 0.87461 0.507799 0.01531 

SERR -- 99.21 -- -- 

 

Notice that the coefficients given in Table 6 are more accurate than the estimates given in Table 4. 

This happens because the noise affects systems (10) and (12) in a different way though both systems 

are of the same structure except for the noise models. In system (10) the output was corrupted by 

observation noise which does not involve the dynamics of the system. In contrast, system (12) was 

corrupted by process noise which affects the whole process of the system. 

5. Conclusions 
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A new iterative forward orthogonal regression algorithm has been used to solve the suboptimal 

problem caused by non-persistent excitation. By slightly revising the classic OFR algorithm, the new 

iOFR algorithm is much more robust to non-persistent inputs. Examples showed that the new iOFR 

algorithm is capable of correctly identifying the models and gives the optimal result when the noise-

to-signal-ratio is at a reasonable level. 

The new iOFR algorithm, which works under a purely OFR-ERR spirit, inherits the advantages in 

computational efficiency and universal applicability. The new iOFR algorithm provides a robust and 

efficient choice for the application of nonlinear system identification in real systems where the 

inputs cannot be optimally designed. 
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