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Abstract 

A new Ultra Least Squares (ULS) criterion is introduced for system identification. Unlike the standard 

least squares criterion which is based on the Euclidean norm of the residuals, the new ULS criterion 

is derived from the Sobolev space norm. The new criterion measures not only the discrepancy 

between the observed signals and the model prediction but also the discrepancy between the 

associated weak derivatives of the observed and the model signals. The new ULS criterion possesses 

a clear physical interpretation and is easy to implement. Based on this, a new Ultra Orthogonal 

Forward Regression (UOFR) algorithm is introduced for nonlinear system identification, which 

includes converting a least squares regression problem into the associated ultra least squares 

problem and solving the ultra least squares problem using the orthogonal forward regression 

method. Numerical simulations show that the new UOFR algorithm can significantly improve the 

performance of the classic OFR algorithm.  

Key words: orthogonal forward regression, system identification, ultra least squares, ultra 

orthogonal forward regression, ultra orthogonal least squares. 

1. Introduction 

 

System identification plays a more and more important role in revealing the unknown mechanisms 

and rules underlying complex phenomena (Schmidt & Lipson, 2009). System identification includes 

the detection of the model structure and estimation of the associated parameters. A system 

identification problem can often be thought of as an optimization problem where the optimal model 

is searched from a large predefined candidate model dictionary given a criterion. The criterion is 
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used to evaluate the performance of each model by measuring the discrepancy between the 

observed data and the model predictions. The candidate model dictionary is often chosen to be 

large enough to include the unknown correct model. Hence an exhaustive search algorithm is often 

infeasible in these kinds of applications because of the large solution space. Even an evolutionary 

algorithm which can greatly reduce the search process can still be very computationally intensive. 

Hence an algorithm which can efficiently find the optimal solution is desired. However, a fast 

algorithm often dictates an optimal substructure; otherwise the search may converge to a 

suboptimal solution. Many efforts have been made to improve the search process under a certain 

specific loss function or performance index, for example, the simulated annealing algorithm, particle 

swarm optimisation, and so on. In this paper, a different and new methodology will be introduced. 

Instead of improving the search method, a new and effective criterion will be introduced to describe 

the objective of the regression more accurately. Under the new criterion, the solution space has a 

better structure and a fast algorithm is more likely to find the optimal solution. 

System identification aims to identify a model from observed data based on a criterion. A good 

criterion results in not only better parameter estimation but also a good search path along which the 

search process converges quickly to the optimal solution. Over the years, different criteria have been 

used in system identification such as the 2L  norm in least squares regression, the 1L  norm in least 

absolute value regression (Bloomfield & Steiger, 1980; Narula & Wellington, 1982), and zero-norm 

minimisation (Kaizhu, King, & Lyu, 2008), etc. Among these criteria, the least squares criterion is the 

most used because of its excellent properties, for example, least squares estimation can be 

configured to give estimates which are unbiased and efficient when the noise satisfies some basic 

assumptions. Least squares problems have analytic solutions and can easily be solved using the QR 

decomposition technique, and least squares regression produces unique and numerically robust 

solutions. Consequently a large number of system identification algorithms based on the least 

squares criterion have been developed (Billings, 2013; Li, Peng, & Bai, 2006; Ljung, 1987; Söderström, 

1989).  

However, the standard least squares method only reveals part of the information in the observed 

data. The least squares criterion, which considers the datum points individually, discards the 

connections among the datum points, especially for the identification of dynamic systems where the 

data set are time series which are samples of  continuous functions of time. These individual datum 

points are time dependent and connected with each other through the derivatives of the time 

continuous functions, for example, an ordinary differential equation. Many important characteristics 

of a system can be determined by these interconnections. An absence of this information may lead 
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to over-fitted models in least squares regression, which can be seen in the motivational example 

described in Figure 1 and discussed in the next section. 

The standard least squares regression investigates the problem of model fitting on the space 

[ ]( )2 0,L T , where [ ]0,T  represents the time span of a signal. The associated Residual Sum of Squares 

(RSS), which is the square of the 2L  norm of the residual, is used to measure the fitness of the model. 

When the model structure is known, the standard least squares algorithm produces the best 

parameters with which the model will be optimal in the sense of RRS. Considering different model 

structures, there are plenty of very different models which give the same fitness for a set of 

observed data in the sense of the RSS criterion. In this paper, an alternative criterion, called ultra 

least squares (ULS) criterion will be introduced to characterise the model fitness more accurately. 

Unlike the least squares criterion consider the model fitting on the space 2L , the ULS criterion 

considers the model fitting in a smaller space, more specifically, the Sobolev space ( )[0, ]mH T (Maz'ia, 

1985). The norm defined on this space will be modified and used as the ULS criterion for system 

identification, where not only residuals but also the associated weak derivatives will be used to 

measure the model fitness.  

Using the derivatives of the data in system identification has been studied, especially in the 

identification of continuous time models (Brewer, Barenco, Callard, Hubank, & Stark, 2008; Preisig & 

Rippin, 1993; Schmidt & Lipson, 2009). However, as far as the authors are aware this study is the 

first time the weak derivatives have been combined with the least squares criterion to build a 

completely new metric for the prediction errors and which uses the new metric to improve the 

model structure detection in non-linear system identification.  

In this paper, the ULS criterion will be combined with the well known Orthogonal Forward 

Regression (OFR) algorithm (Billings, 2013) to construct a new Ultra Orthogonal Forward Regression 

(UOFR) algorithm for nonlinear system identification. The proposed UOFR algorithm is shown to be 

very powerful for model structure detection in many modelling tasks and is more likely to produce 

an optimal model. 

The remainder of the paper is organised as follows: Section 2 briefly reviews some main results on 

the Lebesgue space 2L  and the Sobolev space mH . The ULS criterion will be presented by modifying 

the mH  norm in Section 3. The associated solution to the ultra least squares problem is then defined, 

and the new UOFR algorithm is described in Section 4. Three benchmark examples are discussed in 

section 5 to illustrate the efficiency of the new UOFR algorithm. Conclusions are finally drawn in 

Section 6.  
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2. Problems of least squares regression and model fitting in Sobolev 

space 

In this section, a motivational example is first given to show the problems that can arise when using 

a standard least square criterion. The reasons which cause these problems will then be discussed in 

detail and an alternative criterion will be proposed. 

Consider the time series fitting problem shown in Figure 1. In this example, three models were 

identified from an observed signal y which is represented by a thick solid line in Figure 1(a).  The 

reproduced signals by the three models are represented by the curves 1y , 2y , and 3y  in the Figure 

1(a) respectively. Figure 1(b) shows the different measurements of the model fitness of the three 

models: the 2L  norm and the mH ( )1,2,3m =  norms of the residuals.  

From Figure 1(b), it can be observed that the three models give the same fitness in the sense of the 

least squares criterion, which is presented by the line with the circle marks along the abscissa in 1(b), 

although the reproduced signal 1y  looks significantly different from 2y  and 3y  in 1(a).  

 

(a)                                                                              (b) 

Figure 1 A motivational example for model fitting of a noisy signal 

(a) Observed data and reproduced signals for three different models (b) measurement of the fitness of the 

models using different criteria 

Figure 1 (b) shows also the measurements of the errors in the sense of mH norms when 1,2,3m = . It 

can be observed that the performances of the three models under the mH  norms are significantly 

different. Model 3 fitted the signal y  better than models 1 and 2 did. The system identification 

problems consists of finding the function on ( )[0, ]mH T  which best fits the observed data { }ny , n=1, 
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2, …, N, where both the data points and the interconnections among the datum points (described by 

the weak derivatives) are considered.  

This example shows that the least squares criterion which defined on the 2L  space neglects some 

very important information in the observations. This information is crucial for identifying a correct 

model. Alternatively, the model fitness can more accurately be characterised on a smaller space, the 

Sobolev space mH  , which consists of all the functions which are 2L  integrable and the where up to 

m th weak derivatives exist and are also 2L  integrable. The new introduced ULS criterion is a 

realisation of the mH  norm based on the observations. 

The generic least squares regression problem includes determining the structure of a linear-in-the-

parameters model and estimating the associated coefficients 
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2

1 2

LS i i
i

J y x
κ

θ
=

= −∑  . (2) 

The aim is to produce a parsimonious model, where y  represents the dependant variable and the 

ix ’s are the explanatory variables. In the system identification of dynamic systems, the y  and ix ’s 

are time dependent signals with finite energy, that is, these signals are 2L  integrable functions in the 

Lebesgue space [ ]( )2 0,L T , where [ ]0,T  is the time span of the signals. Least squares regression 

involves finding a model to minimise the square of the 2L  norm (2).  

Although the least squares loss function is defined based on the 2L  norm, the signals in a dynamic 

system are more regular than a general 2L  function because of the fact that most physical systems 

behave essentially as a low-pass filter. These signals are actually functions defined on the subspace 

of [ ]( )2 0,L T , specifically, the Sobolev space ( ) ( ),2[0, ] [0, ]m mH T W T= (Maz'ia, 1985)  

 ( ) ( ) [ ]( ) [ ]( ){ }2 2[0, ] 0, 0, , 1,2, , ,m lH T x t L T D x L T l m= ∈ ∈ = ⋯   (3) 

which is the space of functions defined on [0, ]T , the weak derivatives up to m th order are also 2L  

integrable and t  represents continuous time. The weak derivatives ( )lD x t  satisfy 

 ( ) ( ) ( )
[0, ] [0, ]

( ) ( ) 1
ll l

T T
x t D t dt t D x t dtϕ ϕ= −∫ ∫   (4) 
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for any  test function ( ) [ ]( )0 0,t C Tϕ ∞∈ , which is smooth and possesses compact support on [0, ]T . 

The metric in [ ]( )2 0,L T  space is defined by the Lebesgure integral. Hence the distance 
2

ˆx x− , which 

measures the differences on the interval [ ]0,T  between functions ( )x t  and ( )x̂ t   as a whole, cannot 

characterise how the differences are distributed at each time instance. As a result, the 2L  norm only 

emphasises the similarity of two functions as a whole but disregards the closeness or detail in shape. 

System identification can be interpreted as discovering unknown rules from a set of observations. 

Every piece of information can be crucial for a method to discover the correct rules, especially when 

the system is not persistently excited, where many important system characteristics are not fully 

excited and are inconspicuously contained in a small number of data. The absence of this 

information can lead to a wrong model structure. However, this unapparent information can easily 

be overshadowed by a large amount of trivial data in a global criterion such as the 2L  norm. 

Therefore, an unclear objective function may confuse system identification algorithms and increase 

the algorithms sensitivity to noise. Nuances in the data may therefore cause the algorithms to 

produce incorrect models. Hence a stricter criterion which can accurately characterise the objectives 

of system identification and reveal all the useful information in data should be investigated.  

A stricter metric for the Sobolev space ( )[0, ]mH T  is the norm defined as 
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where lD  represents the l th differentiation operator.  

Based on the above norm, a new criterion can then be defined as 
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Due to the fact that the differentiations are linear operators, the above criterion can be written as 

 

2 2

1 1 12 2

m
l l

H i i i i
i l i
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κ κ
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= = =

= − + −∑ ∑ ∑  . (7) 

The HJ  criterion consists of two parts: the first part is the standard least squares criterion which 

emphases the agreements over the data set; while the second part represents the agreement of the 

weak derivatives which essentially emphases the agreement in shape. Any change in the distribution 

of the differences will be reflected in the second part of the criterion. Hence, the new HJ  criterion, 
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which can reveal more information by introducing the second term, is an alternative criterion to the 

pure least squares criterion. In the next section, an ULS criterion will be derived by adapting the HJ  

criterion to the nonlinear system identification problem. 

Next, two theorems about the relationships between the 2L  and mH  spaces and the associated 

norms will be given to show that the Sobolev space mH  is an appropriate space, and the associated 

norm is an appropriate criterion for a least squares problem.  

Theorem 1. For any approximation [ ]( )2ˆ 0,y L T∈   to a function y  in [ ]( )2 0,L T  satisfying 
2

ˆy y ε− ≤ ,  

there exists an [ ]( )0,my H T∈ɶ  satisfying 
2

y y γε− ≤ɶ for any 1γ > . 

This theorem can easily be proved from the result that mH  is dense in 2L  so that there exists a 

function yɶ  in mH  subject to ( )2
ˆ 1y y γ ε− < −ɶ . Based on Minkowski’s inequality 

2
y y− ɶ =

2
ˆ ˆy y y y− + − ɶ  

2 2
ˆ ˆy y y y≤ − + − ɶ .   

Theorem 1 shows that there exists an approximation in mH  which is not significantly different from 

an approximation ŷ  in 2L  but is more regular. Therefore, the Sobolev space [ ]( )0,mH T  is smaller 

than the  [ ]( )2 0,L T  space but large enough for a least squares approximation.  

Theorem 2. For any small positive real number ε , mH
y y ε− <ɶ  means 

2
y y ε− <ɶ . 

Proof: 

The result is straightforward because  

 
22 2

2 2 22
1

.m

m
l l

H
l

y y y y D y D y y y x
=

− = − + − ≥ − =∑ɶ ɶ ɶ ɶ   (8) 

Hence, for any small positive number 0ε > ,  
2 mH

y y y y ε− ≤ − <ɶ ɶ . This proves the theorem. □   

Theorem 2 indicates that the HJ  criterion is a stricter than the least squares criterion. If a model fits 

the data well in the sense of HJ , the model is also good in the sense of least squares. The reverse is 

not true. 

3. Ultra least squares problems and the ultra least squares criterion 
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Definition 1. Under the new mH  norm, the least squares problem (1) is equivalent to a new least 

squares problem 
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The new least squares problem (9) will be defined as the ultra least squares problem corresponding 

to the original least squares problem. The solution of the ultra least squares problem will be referred 

to as the ultra least squares solution of the original least squares problem. 

The ultra least squares solution can be obtained by solving the ultra least squares problem. However, 

some more work is still needed before this can be used for data-driven system identification 

problems. Firstly, the weak derivatives are usually not known in many system identification 

problems. Secondly, the contribution of each component 

2

1 2

l l
i i

i

D y D x
κ

θ
=

−∑  to the HJ  criterion may 

not be balanced. The differentiation terms 

2

1 2

l l
i i

i

D y D x
κ

θ
=

−∑  may magnify the effects of noise and 

incorrectly dominate the HJ  criterion. Consequently, HJ  criterion will not be robust to noise. Thirdly, 

the mH  norm looks quite mathematical when it would be preferable that the identification process 

is physically easy to understand and computationally cheap. 

In order to evaluate the contribution of the unknown weak derivatives in the HJ  criterion, the 

distributions corresponding to the signals y  and ix  will be introduced. For the signal ( )y t , the 

associated distribution yT  can be defined as a functional ( )0: [0, ]yT C T R∞ →   

 ( ) ( )
[0, ]

,y T
T y t t dtϕ ϕ= ∫   (10) 

for all ( )0 [0, ]C Tϕ ∞∈ . The distribution yT  now has weak derivatives which are defined as 

 ( ) ( ) ( ) ( )
[0, ]

, 1
l ll

y T
D T y t t dtϕ ϕ= − ∫ .  (11) 

Similarly, the distributions corresponding to ix  can be defined as 

 ( ) ( )
[0, ]

,
ix iT

T x t t dtϕ ϕ= ∫ ,  ( )0 [0, ]C Tϕ ∞∈   (12) 
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The regression is now solved in the sense of distribution. The system identification problem involves 

fitting the distribution yT  by the combination of a set of distributions 
ixT ’s. The ultra least squares 

problem (9) then becomes  

 

1

1

, ,

, ,

i

l
y x

i
i

m l
y x

y x

D T D T

D T D T

κϕ ϕ
θ

ϕ ϕ
=

   
   
   

=   
   
   
   

∑
⋮ ⋮

, [ ]( )0 0,C Tϕ ∞∈    (13) 

Data can be collected by evaluating the values of these distributions for different test functions ( )tϕ   

in ( )0 [0, ]C T∞ . The regression matrix can then be constructed and the parameters can be estimated 

based on the regression matrix.  

However, there are not a finite number of functions which form a basis of ( )0 [0, ]C T∞ . Hence, it is 

infeasible to evaluate the values of the distributions over the whole ( )0 [0, ]C T∞  space. A trade-off is 

needed between incorporating all the information of the distributions in the ULS problem and 

computational efficiency.  

The weak derivatives of a function based on a locally defined test function ( )tϕ  reveal the local 

information of the function. Shifting the test function along the time axis yields different test 

functions and the associated weak derivatives contain local information of the signal at the new 

positions. Instead of all the test functions in ( )0 [0, ]C T∞ , a locally defined test function ( )tϕ   and time 

shifts ( )tϕ τ−  are used in the following discussion.  

Given a test function ( )tϕ  with a finite support on [ ]00,T , 0T T< , the ultra least squares problem 

can then be approximately described as 
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 ( ) ( ) ( ) ( ) ( )
[ ]0,

, 1
l ll

y T
D T t y t t dtϕ τ ϕ τ− = − −∫   (15) 

The distribution ( ),m
yD T tϕ τ−  can then be thought as a function of τ . Denote the function as  
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 ( ) ( ) ( ) ( ) ( ) ( )
0

, 1
Tl ll l

yy D T t y t t dtτ ϕ τ ϕ τ− = − −∫≜ .   (16) 

Here ( )ly τ  is the convolution of the signal ( )y t  with the l th derivative of a function which is 

defined as ( ) ( )g t tϕ −≜ . The weight function ( ) ( )lg t  can then be thought as the impulse response of 

a linear filter and ( )ly τ  is the output of the filter to the input ( )y t .  

According to Leibniz integral rule, differentiation under the integral sign satisfies 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

l l l
t t t

l l l

d d
y g t d y g t d y g t d

dt t dt
τ τ τ τ τ τ τ τ τ∂− = − = −

∂∫ ∫ ∫   (17) 

That is, the order of the differentiation and the integral can be interchanged.  

Now the newly introduced functions ( )ly τ  have a new physical interpretation. The function ( )ly τ  

represents a signal which is obtained from the original signal ( )y t  through two steps: the signal 

( )y t  is initially smoothed by a filter with an impulse response ( )g t , the smoothed signal then passes 

through an lth order pure differentiation system. This is equal to smoothing the signal first and then 

calculating the derivatives of the smoothed signals.  

Similarly, the functions ( )l
ix τ  can be defined as 

 ( ) ( ) ( ) ( ) ( ) ( )
0

, 1
i

Tl ll l
i x ix D T t x t t dtτ ϕ τ ϕ τ− = − −∫≜   (18) 

The ULS problem (14) then becomes 
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where ly  and l
ix  are the signals defined by (16) and (18). The ULS problem involves detecting the 

model structure and estimating the associated parameters based on both the observed signals and 

the derivatives of the smoothed signals. The system identification problem is therefore a signal 

processing problem, which is physically easy to understand and computationally cheap.  

Another problem which may be caused by the HJ  criterion in the application of system 

identification is that the difference arising from the derivatives can be much larger than the errors 
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arising from the data themselves, that is, 

2 2

1 1 12 2

m
l l

i i i i
l i i

D y D x y x
κ κ

θ θ
= = =

− −∑ ∑ ∑≫ , especially, when the 

residuals change quickly. The errors arising from the derivatives can dominate the value of the HJ  

defined in (7). For example, in the curve fitting problem shown in Figure 1, the mH (m=1, 2, 3) norms 

are much greater than the 2L  norm. The measurements of the derivatives have been introduced to 

help the new ULS criterion to be more sensitive to the differences in the shape of the residuals. 

However a good criterion should be robust and not sensitive to the noise. Therefore, some further 

modifications need to be made to the test function and its derivatives. The test function and the 

associated derivatives will therefore be normalised before they are applied to the signal to give 

 ( ) ( )
2
, 1,2, , .l ll l mϕ ϕ ϕ= = ⋯   (20) 

which  satisfies 

 ( )
[0, ]

1l

T
t dtϕ =∫ .  (21) 

These normalised test functions will be used to modulate the signals instead of ( )lϕ  in equation (16) 

and (18). This ensures that each datum from the modulated function ( )ly τ  have the same weight in 

the criterion as the data in the original signal ( )y t .  

Given a test function ( )tϕ , the ULS problem corresponding to the LS problem (1) can then be 

summarised as follows 
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where  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

t ll

t ll
i i

y y t t dt

x x t dt

τ ϕ τ

τ τ ϕ τ

= −

= −

∫

∫
 . (23) 

The ULS criterion is then be given by 
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Since the objective of the test function ( )tϕ  is to smooth the observed signals, the test function is 

chosen to have a bell shaped Gaussian like function shape. Actually, the test functions do not need 

to be infinitely differentiable. A test function that has up to m th order continuous derivatives is 

enough for the ULS criterion. In this paper, the (m+1)th order B-spline functions which have finite 

support and continuous mth order derivatives will be used as the modulating functions. The 

definitions of the B-spline basis function and the associate derivatives are given in the Appendix A. 

Given discrete observations of the signals, ( ){ }y n , ( ){ }ix n , 1,2, ,n N= ⋯ , the discrete version of the 

modulating process (23) can be written as 

 

( ) ( ) ( )

( ) ( ) ( )

0

0

k n
l l

n k

k n
l l
i i

n k

y k y n n k

x k x n n k

ϕ

ϕ

+

=
+

=

= −

= −

∑

∑
  (25) 

where 0n  is the support of the discrete test function and 01,2, , .k N n= −⋯  

The matrix form of the ULS problem can then be written as 

 ULS ULS=Y Φ θ   (26) 

where  

 ( ) ( ) ( ) ( ) ( ) ( )1 1
0 01 1 1

Tm m
ULS y y N y y N n y y N n = − − Y ⋯ ⋯ ⋯ ⋯   (27) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 1 1 0 1 1 0

1 1

0 0

1 1 1

1 1 1

Tm ml l l l

ULS

m ml l l l

x x N x k x k N n x k x k N n

x x N x k x k N n x k x k N nκ κ κ κ κ κ

 − −
 

=  
 

− −  

Φ

⋯ ⋯ ⋯ ⋯

⋱

⋯ ⋯ ⋯ ⋯

  (28) 

 [ ]1 2

T

κθ θ θ=θ ⋯ .  (29) 

4. The ultra orthogonal forward regression algorithm 

 

Nonlinear system identification involves both the estimation of the parameters and more 

importantly the problem of how to detect the structure of the unknown model. Model structure 

detection for linear systems is relatively easy and usually involves determining the order and time 

delay in a linear model.  However, model detection can be very complicated when the system is 
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nonlinear because of the many potential model terms and complex dynamics. Several model 

detection methods have been developed, for example, the MP (Matching Pursuit) algorithms (Mallat 

& Zhang, 1993), OFR (Orthogonal Forward Regression) algorithm(Billings, 2013), and SR (Symbolic 

Regression) algorithms (Koza, 1992). One of the most popular nonlinear system identification 

methods is based on the NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous input) 

model and the associated Orthogonal Forward Regression (OFR) algorithm (Billings, 2013) (also 

referred to as the OLS (Orthogonal Least Squares) or the FOLSR (Forward Orthogonal Least Squares 

Regression)).  

Consider a nonlinear dynamic system which is represented by an NARX (Nonlinear Auto-Regressive 

with eXogenous input) model as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 , 2 , , , 1 , 2 , ,y uy k F y k y k y k n u k u k u k n e k= − − − − − − +⋯ ⋯   (30) 

where y , u , and e  are the output, input, and the noise sequences, respectively.   

Function ( )F ⋅  is a nonlinear function of the system input and output, which is often approximated 

by the linear combination of a set of basis terms iφ  when the structure is unknown. 

 ( ) ( ) ( ) ( ) ( )( ) ( )
1

1 , , , 1 , ,i i y u
i

y k y k y k n u k u k n e k
κ

θ φ
=

= − − − − +∑ ⋯ ⋯   (31) 

Where the iφ ’s are some basis functions of the system input and output; iθ  are the associated 

parameters. 

The system identification problem involves selecting the most significant terms from a pre-defined 

candidate dictionary to build a model which is sufficient to describe the observed system behaviours. 

System identification then involves model structure detection and parameter estimation. In a system 

identification problem, these two processes are closely connected with each other. The parameter 

estimation depends on a certain model structure. Conversely, when the performance of a model 

structure is assessed, the associated parameters need to be estimated before this can be achieved. 

Hence, system identification can involve tedious trial and error processes, where parameters are re-

estimated for each assumed model structure, unless a more principled approach is employed to 

efficiently select model terms. 

The orthogonal forward regression decouples the model structure detection and the parameter 

estimation by orthogonalising the model terms and selecting terms stepwise based on the ERR (Error 

Reduction Ratio) significance criterion to build a parsimonious model in an efficient model selection 
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and estimation algorithm. The forward regression method also avoids the singularity of the 

regression matrix caused by redundant terms in a model. 

The orthogonalisation can be done using a Gram-Schmidt algorithm as follows 

 

1 1

1

1

,

,

k
i k

k k
i i i

w

w
w

w w

φ
φ

φ
−

=

=

= −∑
  (32) 

The contribution of a term kφ  can then be assessed by evaluating the ERR significance criterion 

which is defined based on the associated orthogonalised term kw  

                                ( )
2 2, ,

, , ,
k k k k

k

k k

w y g w w
ERR

w w y y y y
φ = = ,  

,

,
k

k
k k

w y
g

w w
= .                                                (33) 

The OFR algorithm selects terms in a forward manner to build a better model by adding an extra 

term into the model one at a time. At each step all the remaining candidate terms in the dictionary 

are orthogonalised with the terms which are already in the model and the term which gives the 

greatest ERR value is selected as the next term in the model. 

Along the orthogonalisation path, the first k  term model should be optimal in all the k  term models. 

However, this condition can occasionally be broken, especially when a system is not persistently 

excited, as shown for example in the papers (Ayala Solares & Wei, 2015; Mao & Billings, 1997; 

Piroddi & Spinelli, 2003). While non-persistently exciting inputs should always be avoided as a 

matter of good scientific practice, there are occasions where this is not possible. An iOFR (iterative 

Orthogonal Forward Regression) algorithm has therefore been proposed to reduce these problems 

while maintaining the simplicity of the identification procedure. Since rearranging of the order of 

terms does not affect the sum of the ERR’s, the pre-determination of correct terms with a relatively 

small ERR value can make the remaining terms more likely to win in the following term selections. In 

this paper a different philosophy is used, where the UOFR algorithm is employed to solve the original 

least squares regression problem by solving a corresponding new ULS problem. Using this approach, 

the ULS criterion provides a more accurate description of the optimal solution. The new ULS 

solutions will then have better properties than a LS solution. Some of the locally optimal solutions 

under the LS criterion will not be a suboptimal solution under the new criterion. Hence, the UOFR is 

more likely to find the global optimal solution without significantly increasing the computation. 

The UOFR algorithm can now be summarised as follows: 

1) Specify an initial full model dictionary of M candidate terms and a cut-off value ρ ; 
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2) Specify a test function ( )tϕ  and calculate the associated derivatives ( ) ( )1 tϕ ,  ( ) ( )2 tϕ , … , 

( ) ( )m tϕ ;   

3) Normalise the derivatives ( ) ( )l tϕ  according to equation (20) to produce the normalised 

modulating functions lϕ ’s;  

4) Calculate ly ’s and  lφ ’s by modulating the dependent variables and the regressors using the 

normalised functions lϕ   and construct the associated ULS problem  (22);  

5) Evaluate the values of the ERR for each of the terms in the dictionary and select the term 

which gives the largest value of ERR into the model as the first term and remove the term 

from the dictionary; 

6) At the k th step, orthogonalise each of the remaining terms in the dictionary with the 1k −  

selected terms in the model and calculate the ERR of this term. Compare the ERR 

significance of all the remaining terms and select the term which gives the largest ERR of the 

remaining terms into the model as the k th term.  

7) Evaluate the value of the sum of the ERR’s. Terminate the forward regression if the 

termination criterion ( )
1

1
k

j
j

ERR φ ρ
=

− <∑  is satisfied. Otherwise set k=k+1 and repeat step (6) 

until the condition is satisfied. 

8) Estimate the parameters of the model using a least squares method.  

Remarks: 

a) The new UOFR algorithm, which employs the classic OFR algorithm to solve the proposed 

ULS problem, inherits the computational efficiency of the OFR algorithm in term selection.  

b) The purely forward selection process in the UOFR algorithm can be greedy and produce 

suboptimal solutions when the test functions are not appropriately selected and the ULS 

problem does not have an optimal substructure (Cormen, Leiserson, Rivest, & Stein, 2009).  

c) Different termination criteria can be used in step 7) to stop the regression process, for 

example, the APRESS (adaptive prediction sum of squares ) criterion (Billings & Wei, 2008). 

5. Test examples 

 

The classic OFR algorithm can occasionally converge to suboptimal solutions, especially when the 

system is not persistently excited or the signals are incorrectly (usually over) sampled.  Some 

systems have been proposed as benchmark examples for the study of variations of OFR algorithms 
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and for comparisons of OFR with other algorithms (Baldacchino, Anderson, & Kadirkamanathan; Guo, 

Guo, Billings, & Wei, 2015; Mao & Billings, 1997; Piroddi & Spinelli, 2003). In this section, these 

examples will be used to test the new UOFR algorithm. In all the benchmark examples, the UOFR 

algorithm successfully detects the correct model structure. Based on the new ULS loss function, the 

ERR significance criterion works better in the forward term selection. All the correct terms are 

stepwise selected. The redundant terms which confused the OFR algorithm are less significant under 

the new criterion and are excluded from the correct model. 

While these examples have been selected to allow comparisons with often solutions it should be 

emphasised that these are worst case examples. Normally any data which is not persistently exciting 

should not be used irrespective of which identification procedure is to be employed. Ideally non-

persistently exciting data should not be used rather new experiments should be conducted to obtain 

good quality data sets. All algorithms for linear and nonlinear system identification may not give 

correct results when using non-persistently exciting data. 

5.1 Example 1 

 

This example is taken from (Mao & Billings, 1997). It has been shown that the classic OFR algorithm 

can produce a suboptimal model containing redundant terms. Consider the nonlinear system 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 2

2

0.2 1 0.7 1 1 0.6 2 0.5 2

0.7 2 2

y k y k y k u k u k y k

y k u k e k

= − + − − + − − −

− − − +
  (34) 

The system is excited with a uniformly distributed white noise ( ) ( )1,1u k U −∼   and the output ( )y k  

is disturbed by a normally distributed white noise ( ) ( )20,0.1e k N∼ . A total number of 1000 input 

and output datum points were used for the system identification. 

Up to third order polynomials of the delayed inputs and outputs { ( )1y k − , ( )2y k − , ( )3y k − ,

( )4y k − , ( )1u k − , ( )2u k − , ( )3u k − } were used as the initial potential model terms. A total number 

of 120 terms were therefore included in the initial term dictionary. Applying the OFR algorithm 

yields a six-term model which is shown in Table 1. The terms in bold font are the correct model 

terms. Notice that a redundant term ( ) ( )24 2y k u k− −  which is not in system (34) was selected by 

the classic OFR algorithm. Under the LS criterion, the correct terms are less significant than the 
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redundant term ( ) ( )24 2y k u k− − , which is unreasonable. For the reason why the redundant term 

was selected at the first step, refer to the discussion in our earlier paper (Guo et al., 2015).  

 Table 1 Results produced by the classic OFR algorithm for example 1 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-4)u2(k-2) 30.265029 -0.0582872 0.02912 

2 y(k-1)u(k-1) 13.781921 0.692277 0.01575 

3 u2(k-2) 14.405237 0.613678 0.009717 

4 y(k-2) 28.312587 -0.493238 0.01249 

5 y(k-2)u2(k-2) 3.354679 -0.755392 0.03692 

6 y3(k-1) 2.439386 0.205762 0.01139 

SERR -- 92.559%  -- -- 

 

The UOFR was also used to identify the model from the same candidate term dictionary. In the UOFR 

algorithm, cubic B-spline basis function is used as the modulating function and the first and second 

order derivatives of the smoothed signals are considered in the ULS criterion. The associated ULS 

problem in (26) ~ (29) with 2m =  is then identified. Table 2 shows the output of the UOFR algorithm. 

This time the correct term ( )2y k −  was selected as the most significant term overwhelming the 

wrong term ( ) ( )24 2y k u k− − . Under the new ULS criterion, the significance of the redundant term is 

greatly reduced and does not appear in the model at the UOFR regression process. Figure 2 gives the 

comparison of the UOFR algorithm and the classic OFR algorithms. The UOFR converged faster than 

the OFR and obtained the optimal model at the fifth step. 

Table 2 Results produced by the UOFR algorithm for example 1 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-2) 49.083789 -0.50221 0.007378 

2 u2(k-2) 26.235897 0.602759 0.005481 

3 y(k-1)u(k-1) 12.23879 0.682345 0.009117 

4 y(k-4)u2(k-2) 3.083899 -0.709869 0.01838 

5 y3(k-1) 2.127315 0.194917 0.006586 

SERR -- 92.770% -- -- 
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( )e k  is a Gaussian distributed noise with a variance 0.02, that is, ( ) ( )0,0.02e k N∼ . The results 

produced by the standard OFR algorithm are given in Table 3. Observe that two incorrect 

autoregressive terms were selected overwhelming the correct terms. A correct term ( ) ( )1 2u k u k− −  

was missed in the identification.  

Table 3 Results produced by the standard OFR algorithm for example 2 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 y(k-1) 88.658562 0.411992 0.00554 

2 y(k-2) 3.145405 0.00399801 0.002016 

3 u3(k-1) 1.999676 -0.300419 0.0006478 

4 u3(k-2) 4.872847 0.125053 0.001666 

5 u(k-1) 0.179355 1.14722 0.008823 

6 u2(k-1) 0.96719 0.147869 0.0013 

7 u(k-2) 0.013696 -0.259794 0.01263 

SERR -- 99.837% -- -- 

 

The output signal and all the candidate terms are modulated using the first and second order 

derivatives of a cubic B-spline basis function and the UOFR is applied. The identified model by the 

UOFR is given in Table 4. This time all the correct terms were successfully detected. The redundant 

terms are avoided using the UOFR algorithm. 

Table 4 Model identified using the UOFR algorithm for example 2 

No. Terms ERRs Coefficients 
Standard 

Deviation 

1 u3(k-1) 81.543654 -0.299632 0.0001863 

2 u(k-1) 10.684663 1.01012 0.004504 

3 u (k-1)u(k-2) 6.937331 0.250064 0.0005112 

4 u(k-2) 0.401121 0.490076 0.004161 

SERR -- 99.567% -- -- 

 

A comparison of the UOFR and OFR algorithms is shown in Figure 3. The UOFR converges faster than 

the OFR and produces the optimal model at the fifth step. It can be observed that term ( )1y t −  was 

selected by the OFR algorithm because it gives the greatest ERR value at the first step.  However, in 

the UOFR algorithm, terms ( )1y t −  and ( )2y t −  which were dominant in the OFR are less significant 

than the correct terms under the new criterion even though they are close to the dependant 
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is fair to draw the conclusion that the performance of the new UOFR is significantly improved by 

applying the new criterion. 

6. Conclusions 

 

System identification involves the detection of the model structure and the estimation of the 

associated parameters under a specific criterion. The drawbacks of the often used least squares 

criterion have been extensively discussed. Instead of developing a more complex algorithm, a new 

stricter measurement of the residuals is proposed to improve the system identification performance. 

The fitness of a model to the weak derivatives of the observed data is combined with the classic 

least squares criterion to construct a novel ultra least squares criterion. The ULS criterion considers 

not only the data themselves but also the relations between and amongst the data points. By 

modifying the mH  norm, the new ULS criterion possesses a clear physical meaning and is easy to 

implement.  

Based on the ULS criterion, a least squares regression problem can be transformed into an 

associated ultra least squares problem. The ULS criterion characterises the objective model more 

accurately and the solution space of the ultra least squares problem possesses better properties 

than that of the original least squares problem. A novel UOFR algorithm was proposed by combining 

the ULS criterion with the OFR algorithm to efficiently detect the correct model structure. Simulation 

results shown that the UOFR algorithm significantly improves the performance of the classic OFR 

algorithm. 

In this paper, the ULS criterion has been used for the UOFR algorithm. However, the application of 

the ULS criterion is not confined to the UOFR algorithm. The ULS criterion can also be used for other 

optimization methods where the LS criterion has been used. 
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 Appendix A 

 

A set of kth order B-spline basis function can be recursively defined as follows given a set of knots 0s , 

1s , …, Ns , 1N k≥ + . 

 ( ) ( ) ( ), , 1 1, 1
1 1

i i k
i k i k i k

i k i i k i

t s s t
B t B t B t

s s s s
+

− + −
+ − + +

− −
= +

− −
  (39) 

with 

 ( ) 1
,1

1,

0,
i i

i

s t s
B t

otherwise
+≤ <= 


  (40) 

The first index indicates the position of the B-spline basis function and the second index denotes the 

order of the B-spline functions. Using N knots, (N-k) kth order B-spline basis function can be defined. 

When the knots is uniformly distributed, function ( ),i kB t  is a time shift of ( )1,kB t .   

The derivative of a k-th order B-spline can be calculated as 

 
( ) ( ) ( ) ( ), , 1 1, 1

1 1

1i k i k i k

i k i i k i

dB t B t B t
k

dt s s s s
− + −

+ − + +

 
= − − − − 

  (41) 

The higher order derivative of a B-spline basis function can be calculated according to the recursive 

formula: 
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  −  = −   − − 
 
 

  (42) 


