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Abstract Atmospheric methane (CH4) accounts for ~20% of the total direct anthropogenic radiative
forcing by long-lived greenhouse gases. Surface observations show a pause (1999–2006) followed by a
resumption in CH4 growth, which remain largely unexplained. Using a land surface model, we estimate
wetland CH4 emissions from 1993 to 2014 and study the regional contributions to changes in atmospheric
CH4. Atmospheric model simulations using these emissions, together with other sources, compare well
with surface and satellite CH4 data. Modeled global wetland emissions vary by ±3%/yr (σ =4.8 Tg), mainly due
to precipitation-induced changes in wetland area, but the integrated effect makes only a small contribution
to the pause in CH4 growth from 1999 to 2006. Increasing temperature, which increases wetland area,
drives a long-term trend in wetland CH4 emissions of +0.2%/yr (1999 to 2014). The increased growth
post-2006 was partly caused by increased wetland emissions (+3%), mainly from Tropical Asia, Southern
Africa, and Australia.

1. Introduction

Two outstanding features of the recent global atmospheric CH4 record are as follows: (i) prior to 2007 atmo-
spheric CH4 seemed to be approaching a stationary state with sources and sinks in balance and (ii) since
2007 growth has resumed [Rigby et al., 2008]. The reasons for these two features are not fully understood,
but several indicators suggest that changes in wetlands contributed to both. First, wetland emissions are
the largest single source of CH4 to the atmosphere (~175 Tg/yr, 30% of total) and are known to be sensitive
to climate variation. Thus, interannual variations will have an effect at the global scale [Bousquet et al., 2006;
Ciais et al., 2014] and may produce a positive climate feedback in the future [Gedney et al., 2004;Melton et al.,
2013]. Second, the isotopic signature of atmospheric CH4 has become more depleted in 13CH4 since 2007,
which may be explained by a shift toward a larger fraction of biogenic sources, i.e., wetlands [Nisbet et al.,
2014], or agricultural sources [Schaefer et al., 2016]. However, both of these studies focused on the global
isotopic signature of CH4 and so were unable to spatially resolve the regions of main CH4 emission changes.

Previous investigations into wetland CH4 emissions using land surface models (LSMs) have shown large dif-
ferences between estimates, both in magnitude and the spatial and temporal distribution [Wania et al., 2010;
Riley et al., 2011; Kirschke et al., 2013; Melton et al., 2013]. Most of these studies were not evaluated against
observations of atmospheric CH4 concentrations, in particular recent column observations [Wunch et al.,
2011; Parker et al., 2015]. Studies using atmospheric models forced by a combination of modeled wetland
emissions and nonwetland source estimates were not fully consistent with both in situ and space-based
CH4 measurements [e.g., Patra et al., 2011; Fraser et al., 2013; Hayman et al., 2014]. Meng et al. [2015] showed
good agreement between surface measurements and model simulations when using a wetland CH4 model,
but they did not include emissions after 2005. This was, in part, due to a reliance on the Global Inundation
Extent from Multi-Satellites product for estimated wetland area extent and time variation, which only covers
the period from 1993 to 2007 [Prigent et al., 2012]. It is therefore preferable to have an emission model that is
able to predict wetland extent accurately and independently of observational data.

Building on the work of Hayman et al. [2014], we have further developed the Joint UK Land Environment
Simulator (JULES) and used it to simulate CH4 emissions from 1993 to 2014. Important updates to the wetland
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model include improved representation of topography, which provides a more realistic spatial extent and
temporal evolution of flooded areas [Marthews et al., 2015], and inclusion of dynamic soil carbon pools
[Clark et al., 2011]. We first compare our modeled wetland CH4 emissions with a top-down estimate available
for 2003–2011 [Bloom et al., 2012]. We then combine the derived wetland CH4 emissions with nonwetland
emission estimates for use in an atmospheric chemical transport model (CTM), TOMCAT, and compare the
simulated concentrations to long-term ground-based observations. We have taken advantage, for the first
time, of the ~5 year atmospheric column CH4 measurements from the Greenhouse gases Observing
SATellite (GOSAT) remote sensing mission [Parker et al., 2011, 2015] to further evaluate the model. We
demonstrate good agreement with both satellite-derived and surface CH4 data, which allows us to investi-
gate the role of wetland emissions in atmospheric CH4 variability.

2. Methods
2.1. Wetland Flux Models

Wetlands are areas where the soil is saturated, either permanently or seasonally [Melton et al., 2013]. Within
anaerobic wetland regions methanogenesis occurs [e.g., Christensen et al., 2003]. This CH4 production process
is primarily dependent on available substrate and soil temperature. Additional processes, which influence
emissions, have been included in other LSMs [e.g., Wania et al., 2010; Riley et al., 2011]. We evaluated the
importance of these within JULES by comparing simulations against surface flux observations and found that
their inclusion currently provides either limited or no improvement on model performance (see supporting
information) [Gauci et al., 2004; Turnock et al., 2015]. These comparisons highlight uncertainties in wetland
emissions at a site-specific scale (R= 0.32). Therefore, due to process uncertainties, our analysis considers only
temperature, wetland area, and organic substrate as controls of wetland CH4 emissions.

We use JULES v3.4.1 [Clark et al., 2011] to derive spatially and temporally resolved global wetland CH4

emissions from 1993 to 2014 (hereafter labelled JU). The model was forced by 3-hourly WATCH-forcing-
data-ERA-interim (WFDEI) at a horizontal resolution of 0.5° × 0.5° [Weedon et al., 2014]. The rainfall component
of WFDEI was bias corrected using Global Precipitation Climatology Centre (GPCC) and Climatic Research Unit
measurements. Wetland fraction derivations were based on an improved topographic index within the
JULES-TOPography-based hydrological MODEL, which produces significant improvements compared with
previous versions [Marthews et al., 2015]. The topographic index and water table depth, which is controlled
by precipitation, evaporation, and runoff, are the key controls of wetland area. For the wetland CH4 flux esti-
mation, equation (1) in Gedney et al. [2004] was updated to use the four carbon pools generated as part of
both the RothC model [Jenkinson et al., 1990; Coleman and Jenkinson, 1999] and the Top-down
Representation of Interactive Foliage and Flora Including Dynamics [Cox, 2001] model within JULES. The
updated flux model is as follows:

f sub ¼ CdpmRdpm þ CrpmRrpm þ CbioRbio þ ChumRhum (1)

FCH4 ¼ kCH4 fwetf subQ10 T soilð Þ T soil�T0ð Þ=10 (2)

The total temperature independent methanogenesis (fsub, in kgm�2 s�1) is based on the four carbon pools of
decomposable plant material (Cdpm, kgm

�2), resistant plant material (Crpm), biomass (Cbio), and long-lived
humus (Chum), which are multiplied by their respective methanogenesis rates (Rdpm/rpm/bio/hum, s

�1). These
rates used to calculate a CH4 flux (FCH4, kgm

�2 s�1) are assumed to be the same as the respiration rates used
in Clark et al. [2011] (see supporting information). The soil temperature (Tsoil, K) is averaged over the top
10 cm, and the reference temperature (T0) is 273.15 K. At temperatures below 273.15 K the ground is consid-
ered frozen with zero surface flux. An effective Q10 value, based on the reaction rate change for a 10 K change
in temperature, was initially set at 3, based on McNorton et al. [2016a], and varies with temperature between
2.5 and 3 as given by equation (2) in Gedney et al. [2004]. The wetland fraction (fwet) is the fraction of the
model grid cell area that is water saturated. A unitless constant kCH4ð Þwas calibrated to provide mean global
emissions of 175 Tg/yr between 2000 and 2009, based on Ciais et al. [2014].

First, we use top-down CH4 emission data derived using the method of Bloom et al. [2012] (hereafter
labelled BL) to evaluate JU. BL is based on column CH4 (XCH4) retrievals from the Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography, gravity anomaly-derived equivalent water height
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from the Gravity Recovery and Climate Experiment, proxy soil temperature from the National Centers for
Environmental Prediction/National Center for Atmospheric Research skin temperature analyses, and an
assumed surface carbon input. This data set provides interannually varying emissions between 2003 and
2011; a climatology is used for 1993–2002 and 2012–2014. BL emissions, combined with nonwetland
emissions, have previously been shown to compare well with observed surface concentrations when used
as a boundary condition in an atmospheric CTM [Bloom et al., 2012]. We therefore use them as a bench-
mark for JU for the period 2003–2011. JU is suitable for the study of long-term trends because it is not
limited by availability of satellite data. As with JU, we scaled BL to provide mean global emissions of
175 Tg/yr between 2000 and 2009.

2.2. Atmospheric CH4 Model

We used the TOMCAT global atmospheric 3-D off-line CTM [Chipperfield, 2006] to predict atmospheric CH4

concentrations given surface emissions. We performed three simulations, two of which used interannually
varying wetlands (TOMCAT-JU and TOMCAT-BL) and the third used a climatology of JULES emissions
between 1993 and 2014 (TOMCAT-CL). Simulations were forced by the 6-hourly European Centre for
Medium-Range Weather Forecasts ERA-Interim reanalyses [Dee et al., 2011] for the period 1993 to 2014 with
a horizontal resolution of 2.8° × 2.8° and 60 levels from the surface to ~60 km. The model was spun-up from
1977 to 1992 using interannually varying emissions when available; these include JULES wetland fluxes then
the mean global CH4 was rescaled to match observed concentrations in 1993.

Anthropogenic emissions were taken from the EDGAR v4.2 FT 2010 database, which gradually increase
between 1993 and 2010, with 2011–2014 emissions set to repeat 2010 [Olivier et al., 2012]. Previous studies
have suggested a range of overestimates in the growth rate in EDGAR anthropogenic emissions [Bousquet
et al., 2011;Monteil et al., 2011; Patra et al., 2016]. Themagnitude of the overestimated growth is highly uncer-
tain; as an estimate, we reduced the growth rate between 2000 and 2010 by a factor of 2. Biomass burning
emissions were taken from the GFED v4 database [van der Werf et al., 2010] between 1997 and 2014, with
1993–1996 emissions based on a climatology. Annually repeating hydrate, mud volcano, and termite and
ocean [Matthews and Fung, 1987] emissions were taken from the TransCom CH4 study [Patra et al., 2011].
JULES only simulates natural wetlands and does not account for agricultural practices (e.g., fertilization) alter-
ing the biogeochemical processes. To account for rice paddies in areas of natural wetlands, a mask (based on
the MICRA2000 rice fraction map) [Portmann et al., 2010] was placed over the JU and BL wetlands and annual
repeating emissions [Yan et al., 2009] were used instead. Any climate-driven influences on rice emissions are
not accounted for. All nonwetland emissions are scaled to 2000–2009 values provided by Ciais et al. [2014]
(see supporting information).

Removal of atmospheric CH4 follows Patra et al. [2011], where loss occurs through chemical reactions with
OH, Cl, O(1D), and a soil sink. We use the same model OH fields as McNorton et al. [2016b]. These are a
development of fields used by Patra et al. [2011], which were derived from a combination of semiempirically
calculated tropospheric distributions and 2-D model stratospheric values [Spivakovsky et al., 2000; Huijnen
et al., 2010]. We use CH3CCl3 anomalies to vary the model OH field interannually between 1997 and 2007
[Montzka et al., 2011; McNorton et al., 2016b]. For the other years the original Patra et al. [2011] field is used.
The Cl, O(1D), and soil sink fields do not vary interannually.

2.3. Satellite CH4 Data

We use the University of Leicester Proxy dry air column-averaged mole fractions of CH4 (XCH4) v6.0 data
[Parker et al., 2011, 2015] derived from observations made by the TANSO-FTS instrument on board the
GOSAT satellite [Kuze et al., 2009]. Retrievals of XCH4 are sensitive to the surface and lower troposphere,
hence providing information relating to emissions of CH4. GOSAT has provided global XCH4 data since
2009 with a single-sounding precision between 0.4 and 0.8%, making it an ideal tool for the assessment of
modeled atmospheric CH4.

To compare TOMCAT to GOSAT, we take the nearest model profile, both spatially and temporally, to the
GOSAT retrieval. We also apply the sounding-specific GOSAT averaging kernel to themodel profile to account
for the differing sensitivities throughout the atmosphere, allowing the most robust comparison between
measurement and model. Both GOSAT and model output are then binned into TransCom regions and tem-
porally into monthly periods between 2009 and 2014.
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2.4. Ground-Based CH4 Observations

Weuse atmospheric CH4measurements from the Total Carbon ColumnObserving Network (TCCON) (see sup-
porting information) [Wunch et al., 2011] and the National Oceanic and Atmospheric Administration/Earth
System Research Laboratory (NOAA/ESRL) sampling sites [Dlugokencky et al., 2015]. These allow us to assess
the model’s ability to reproduce the observed long-term trends in CH4 growth. To derive global surface CH4

concentrations, we have used observations from 19 NOAA sites [see McNorton et al., 2016b, Table 1] interpo-
lated across 180 latitude bins, which were then weighted by surface area. The process was repeated for
model output sampled at the site locations.

3. Results and Discussion

Figure 1 compares the JU and BL emissions globally and for defined TransCom regions [see Gurney et al.,
2002]. Annual emissions from JU compare well with BL in most regions although JU emissions tend to be
noticeably higher in tropical regions and lower in boreal regions, caused in part by JU (Q10(T0) = 3) having
a higher temperature sensitivity than BL (Q10(T0) = 1.65). Methanogenesis temperature sensitivity varies
depending on conditions; as a result there is uncertainty when assuming a global value [Segers, 1998]. For
the time period when both predictions are available (2003–2011), global annual emissions range from
169.4 Tg/yr (2004) to 183.1 Tg/yr (2010) in JU and from 172.1 Tg/yr (2004) to 178.6 Tg/yr (2007) in BL. The
mean interannual variability is larger in JU (4.1 Tg/yr) than in BL (2.0 Tg/yr). Both data sets show an overall
positive trend in global emissions over their respective time periods, statistically significant at the 95% level
(p< 0.05), of 0.37 Tg/yr for JU (1993–2014) and 0.55 Tg/yr for BL (2003–2011). Nearly all of the growth trends
in JU originate from Europe (0.07 Tg/yr), Tropical Asia (0.13 Tg/yr), Southern Africa (0.05 Tg/yr), and Australia
(0.10 Tg/yr), whereas trends in BL are largest from Eurasian Boreal (0.11 Tg/yr), Northern Africa (0.10 Tg/yr),
and Southern Africa (0.13 Tg/yr). The spatial difference in trends occurs not only as a result of model differ-
ences but also as a result of the time periods covered by each model. When emissions are divided into the
time periods before, during, and after the observed CH4 pause, there appears to be no noticeable decrease
in JU emissions during the pause (Figure 1b). However, modeled emissions are typically slightly above aver-
age early in the pause period (1999–2001, 179.9 Tg/yr) and smaller in the later pause period (2002–2006,
171.5 Tg/yr), indicating that changes in wetland emissions were not responsible for the initial stall in CH4

growth but may have contributed later on.

Figure 2a shows that the variability in JU CH4 emissions is larger in tropical than in boreal regions, with anom-
alously high tropical emissions between 2007 and 2012, offset by lower emissions between 2002 and 2006.
Figure 2b shows positive long-term trends in JU wetland CH4 emissions over Southeast Asia, northern
Australia, Zambia, southern Democratic Republic of Congo, and the seasonally flooded savannas in tropical
South America. Distinct regions with negative trends are less apparent, with the exception of the Iberá wet-
lands (Paraná river, NE, Argentina).

Variability in wetland fraction, soil temperature, and carbon substrate is the cause of trends in our modeled JU
wetland CH4 emissions. We investigated anomalies in these parameters both zonally (Figures 3a, 3c, and 3d)
and globally (Figure 3e). Considerable wetland area anomalies occur at both boreal and tropical latitude
bands, with an anomalously low tropical wetland area during both the 1997/1998 El Niño event and the later
period of the pause in growth (2002–2006) and anomalously high post-2006. Figures 3b and 3f show inter-
annual variability in wetland area that occurs as a result of changes in the reanalysis rainfall over wetland
regions [Harris et al., 2014; Weedon et al., 2014].

Soil temperature anomalies in wetland regions predicted by JULES are heavily weighted toward the tropics
(Figure 3c), whereas carbon substrate flux anomalies are weighted toward the northern boreal regions
(Figure 3d). Our results show positive Northern Hemisphere tropical wetland temperature anomalies during
the 1997/1998 El Niño event and in 2010. Negative tropical wetland temperature anomalies are found early in
the simulation from 1993 to 2001 (excluding 1997/1998).

To further investigate these trends, we calculated grid cell coefficient anomalies, which are based on the flux
as a function of each variable, to satisfy the following rewrite of equation (2):

FCH4 ¼ kCH4 : f tem : fwet : f sub (3)
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Figure 1. (a) Annual CH4 wetland emissions (Tg/yr) from JU (green, 1993–2014) and BL (red, 2003–2011) data sets. Panels show 11 TransCom regions and the
global total. Annotated values are linear regression emission trends for JU (1993–2014) and BL (2003–2011). (b) Mean annual regional and global JU emissions
averaged between 1993–1998, 1999–2006, and 2007–2014.
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Figure 2. (a) Latitude-time plot of monthly JU wetland CH4 emission anomalies (Gg/yr) between 1993 and 2014 binned
into 1° latitude bands. Monthly anomalies are the deviation from the mean emission of the latitude band between 1993
and 2014. Note: y axis plotted as sine of latitude to equally weight surface area. (b) Spatial pattern of trends in 1° × 1°
wetland CH4 emissions (Gg/yr) from JU between 1993 and 2014.
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Figure 3. (a) Latitude-time plot of wetland area anomalies produced by JULES (m2) between 1993 and 2014 binned into 1° bands and smoothed over a 12month
period. Monthly anomalies are calculated as the deviation from the mean area of the latitude band. Note: y axis plotted as sine of latitude to equally weight
surface area. (b) As Figure 3a but for rainfall anomalies (gm�2s�1) weighted by the JULES climatological wetland area, taken from WFDEI using GPCC and CRU
corrected rainfall [Harris et al., 2014; Weedon et al., 2014]. (c) Similar to Figure 3a but for upper layer soil temperature (°C) weighted by wetland area, from JULES.
(d) Similar to Figure 3a but for the temperature-independent substrate carbon (gCm�2s-1) weighted by wetland area from JULES. (e) Global monthly wetland
fraction (fw, blue), temperature (ftem, red), and substrate flux (fsub, green) coefficient anomalies (%) weighted by wetland area between 1993 and 2014 and smoothed
over a 12month period. Note that the wetland area weighting varies with time; therefore, some temperature and substrate flux anomalies occur as a result of the
variability in wetland area. (f) Global monthly rainfall anomaly (%) over the JULES climatological wetland area, taken from WFDEI using GPCC and CRU-corrected
rainfall [Harris et al., 2014; Weedon et al., 2014], smoothed over a 12month period.
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The temperature and substrate coefficients were then weighted by grid cell wetland fraction and grid cell
area to provide a global coefficient, from which monthly anomalies were calculated.

Globally, there is a statistically significant (95% level) positive trend in the wetland area CH4 flux coefficient
(fwet) of 0.16%/yr over the 1993–2014 period (Figure 3e). There is a negative trend in rainfall over the model
climatological wetland area, although this is not statistically significant (p value = 0.09) (Figure 3f). The trend
in temperature flux coefficient (ftem) anomaly is positive (0.13%/yr) and statistically significant. This trend
causes high-latitude thawing, which controls the long-term trend in wetland area. The carbon substrate flux
coefficient (fsub) anomaly trend is slightly negative (�0.02%/yr) but is not statistically significant. Both the
modeled CH4 emission trend (1993–2014) and the interannual flux variability are dominated by changes in
wetland area and temperature with small contributions from substrate, which is consistent with previous
findings [e.g., Ringeval et al., 2010]. The reduction in our modeled wetland emissions from 2002 to 2006 is
the result of a decrease in wetland area (fwet: �2.0%), while the increase since 2007 is mainly the result of
increases in wetland area (fwet: +1.6%) and also temperature (ftem: +0.7%).

Figure 4 compares TOMCAT predictions with atmospheric XCH4 retrievals. Comparisons of GOSAT with the

TOMCAT-JU simulation correlate slightly better (R: 0.91) than with TOMCAT-BL (R: 0.90) and TOMCAT-CL (R:
0.90) for the TransCom regions. There is a slight interhemispheric offset between both model simulations
and GOSAT; the three northern high-latitude regions have a mean concentration over the entire period
of 1803.4 ppb in TOMCAT-JU, 1808.9 ppb in TOMCAT-BL, 1800.7 in TOMCAT-CL, and 1794.2 ppb in GOSAT.
Through comparison of simulated and observed atmospheric SF6 concentrations,Wilson et al. [2014] showed
that interhemispheric transport in TOMCAT is somewhat too slow [see also Patra et al., 2011]. This causes
TOMCAT to slightly overestimate (underestimate) Northern (Southern) Hemisphere CH4 concentrations.
The correlation, mean bias, and root-mean-square error (RMSE) values taken from comparisons show that
TOMCAT-JU produces better agreement with GOSAT (R= 0.88, mean bias = 11.1 ppb, and RMSE= 7.7 ppb),
compared to TOMCAT-BL (R= 0.84, mean bias = 13.4 ppb, and RMSE = 8.9 ppb) and TOMCAT-CL (R= 0.87,
mean bias = 11.2, and RMSE= 7.7 ppb) (Figure 4b). Assuming that the model nonwetland CH4 emissions
are realistic, this suggests that JU captures both the seasonality and the interannual variability of wetland
emissions well. It is important to note that JU emissions vary interannually over the entire time period,
whereas BL only varies between 2003 and 2011. Comparisons with surface sites suggest JU produces a more
accurate seasonal cycle than BL (see supporting information). Anthropogenic emissions are kept constant,
and biomass burning emissions are slightly below average from 2010 to 2014, but the model still captures
the continued CH4 growth. These results would suggest that increases in wetland emissions in 2010 and
2011 contributed to growth post-2010, although high nonwetland emissions pre-2010 may still have contrib-
uted. Comparisons with flask measurements in Figure 4c show that the model reproduces the observed stal-
ling and resumed growth of CH4 between 1993 and 2014, although the modeled growth between 1999 and
2006 is larger than observed (TOMCAT-JU: 2.29 ppb/yr, TOMCAT-BL: 1.81 ppb/yr, TOMCAT-CL: 2.25 ppb/yr,
and observations: 0.39 ppb/yr). This is mainly the result of an overestimation of the growth in 2006, which
is due either to an underestimation of atmospheric OH [McNorton et al., 2016b] or an overestimation in
emissions. A possible explanation for the overestimation is the high global biomass burning emissions
estimated for 2006 (+34% compared to 1997–2014 mean). Comparisons with observations indicate that
TOMCAT simulations provide a reasonable representation of atmospheric CH4, although large uncertainties
remain in atmospheric loss and nonwetland emission estimates. This suggests that JU emissions provide a
reasonable representation of the spatial and interannual variability and are therefore suitable in the detection
of wetland CH4 trends. TOMCAT-JU (7.54 ppb/yr) captures most of the observed renewed growth post-2006
(8.12 ppb/yr), whereas TOMCAT-CL only captures some of the growth (6.48 ppb/yr), suggesting that increased
wetland emissions have contributed an additional growth of approximately 1 ppb/yr (~13%) since 2007. The
remaining growth is likely the result of nonwetland emissions and/or changes in atmospheric loss. The global
CH4 differences between TOMCAT_JU and TOMCAT_CL in Figure 4d show that the CH4 concentration is
4 ppb higher by the end of 2014 when interannual variability in emissions is considered.

The model predicts variability in wetland CH4 emissions, but the timescale of variability is not long enough to
account for the entire slowdown in CH4 growth (1999–2006). For 1999–2001 wetland emissions were high
(3% above 1993–2014 average) so were unlikely to have contributed to the initial slowdown in growth.
The continued stall in CH4 growth (2002–2006) may have been caused by a 3% decrease in wetland
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Figure 4. (a) Monthly mean XCH4 concentrations (ppb) from GOSAT between April 2009 and December 2014 (black) for TransCom regions. Also shown are results
from the three TOMCAT simulations with GOSAT averaging kernels applied, TOMCAT-CL (blue), TOMCAT-JU (green), and TOMCAT-BL (red). Correlation coefficients of
model and observations are displayed. (b) Correlation of GOSAT XCH4 with output from simulations TOMCAT-CL, TOMCAT-JU, and TOMCAT-BL (gridded into
1 ppb × 1 ppb bins) for months shown in Figure 4a. The color scale indicates the density of points. Also shown are the mean bias, RMSE, and correlation coefficient of
each comparison. (c) Monthly (black circles) and deseasonalized global surface CH4 (ppb) calculated from 19 NOAA sites (black) from 1993 to 2014. Also shown
are results from CTM simulations TOMCAT-CL, TOMCAT-JU, and TOMCAT-BL. Numbers indicate average annual CH4 growth (ppb/yr) for the periods 1993–1998,
1999–2006, and 2007–2014. (d) Difference in global CH4 concentration (ppb) between TOMCAT_JU and TOMCAT_CL.
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emissions, mainly from Australia (�9%), Northern Africa (�4%), and Tropical Asia (�4%). In 2007, when atmo-
spheric CH4 growth resumed, modeled emissions are again higher (177.6 Tg/yr) and remain high (2007–2014
average: 178.2 Tg/yr). The largest changes in emissions post-2006 occur in Southern Africa (+7%), Tropical
Asia (+7%), and Australia (+18%). These results indicate that changes in wetland emissions contributed to
the observed atmospheric CH4 growth post-2006, in support of Nisbet et al. [2014].

4. Summary

Recent trends in global wetland CH4 emissions from 1993 to 2014 were investigated using a substantially
improved version of the JULES LSM. The modeled emissions, used within the TOMCAT CTM, gave a good
representation (R= 0.88) of the spatial and temporal variability in atmospheric CH4 when compared with
satellite and surface data. However, it should be noted that there remain significant uncertainties in modeling
the processes in wetland CH4 emissions. The wetland emission model predicts a statistically significant posi-
tive trend (0.2%/yr) in emissions. This is mainly driven by a long-term positive temperature trend, which
increases the methanogenesis rate and, by thawing frozen high-latitude regions, the wetland area.
Interannual variability (±3%/yr, σ =4.8 Tg) superimposed on the long-term trend is dominated by changes
in precipitation over wetland regions. However, we find no evidence for a long-term trend in precipitation
over wetland regions.

We find that the slowdown in global CH4 growth rate from 1999 to 2006 was not caused by decreased
wetland emissions. Furthermore, our model suggests that increased wetland emissions of 3% (relative to
1993–2006) contributed to the renewed global CH4 growth since 2007.

The trends in atmospheric CH4 growth are not exclusively a result of changes in wetland emissions. Over the
period 1993–2014 anthropogenic emissions show large increases (~0.7%/yr) and the biomass burning
emissions vary on an interannual basis, most noticeably during El Niño events. However, our study shows that
even when accounting for those changes, the atmospheric loss and wetland emissions are keys to the
interannual variability of CH4 growth.
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