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Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to

studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction

and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present

a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling

regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal

footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength

reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our

findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between

semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect.

DOI: 10.1103/PhysRevB.94.201402

Spintronics aims to explore charge, spin, and orbital

degrees of freedom of electrons to realize novel approaches

to advanced storage and logic computing [1]. Graphene—a

one-atom-thick layer of carbon atoms with unique electronic

properties [2]—holds promising applications in spintronics

[3]. The weak spin-orbit coupling [4,5] and high mobilities

of sp2-hybridized carbon result in large spin-diffusion lengths

(e.g., 1–20-μm in exfoliated samples [6,7]), making graphenic

systems attractive as spin channels of high performance [6–8].

Recent progress in engineering of enhanced spin-orbit

coupling (SOC) in graphene through addition of impurities

[9,10] and via coupling to suitable substrates [11–14] opens up

intriguing possibilities. The presence of spin-orbit interactions

is predicted to profoundly alter the standard pictures of spin

relaxation [15,16] and weak localization [17]. Furthermore,

a sizable SOC enables spin-dependent transport phenomena

absent in pristine samples [18–22], most noticeably the spin

Hall effect (SHE), whereby charge currents driven by electric

fields are converted to transverse spin currents [23–25]. This

phenomenon was first observed by optical means in semi-

conductors in 2004 [26,27], and its reciprocal—the inverse

SHE—just shortly after demonstrated by direct electrical

measurements in metals [28,29]. According to theory, a modest

SOC in the range of 10 meV in graphene enables robust

and gate-tunable SHE [18]. Recent reports on SHE exploring

Hanle precession in adatom-decorated graphene [9,10] and

graphene-WS2 heterostructures [12,13], and spin pumping in

graphene/YIG devices [14], confirm theoretical predictions,

and pave the way for all electric spintronics in graphene.

Generally, two types of SHE can occur in a spin-orbit-

coupled graphene system. When charge carriers experience a

global SOC—endowed by proximity effect—a SHE is induced

by the Berry curvature of Bloch bands (the so-called “intrinsic

mechanism”), with scattering-dependent corrections due to

disorder [30]. Conversely, if the SOC enhancement is confined
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to random “hot spots”—e.g., as mediated by impurities—two

basic mechanisms can compete to establish a SHE, viz., the

left/right asymmetric (skew) scattering for spin-up and spin-

down electrons [18,19], and the quantum side-jump (QSJ)

effect. The latter can be viewed as a coordinate shift of wave

packets upon scattering in the presence of SOC. The side jump

is transverse to the external electric field and has opposite signs

for spin-up/down electrons, which results in a net contribution

to the spin Hall conductivity [30–34].

Owing to the sharpness of resonant scattering character-

istic of massless fermions in two dimensions [35–38], the

extrinsic SHE induced by skew scattering from SOC-active

impurities in graphene is predicted to be extremely robust,

capable of yielding giant spin Hall angles of the order of

0.1 [18,19,39]. For a very low concentration of impurities,

quantum contributions to the spin Hall (SH) conductivity

are negligible, and the semiclassical skew scattering fully

determines the steady state of SHE [18]. However, much less is

known about the role of quantum processes in the dilute regime

of much interest in extrinsic graphene (≈ 0.01–0.1% atomic

ratio [9,10,40]), especially in the strong scattering limit, where

quantum contributions to the SH response functions are hard

to assess [41].

In this Rapid Communication, we present a microscopic

theory of the extrinsic SHE in graphene based on a nonpertur-

bative quantum diagrammatic calculation able to capture the

strong scattering regime self-consistently. We find that skew

scattering, QSJ, and multiple impurity scattering processes

need to be considered on equal footing for an accurate

description of the extrinsic SHE. Quite remarkably, a crossover

towards an “anomalous phase”—where quantum processes

overcome skew scattering—is shown to occur in experi-

mentally accessible parameter regions. Our self-consistent

approach goes beyond previous theories [18,25,30,31,34],

providing a unified description of skew scattering and side-

jump mechanisms.

Model system. The low-energy physics of spin-orbit-

coupled graphene is described by a Dirac Hamiltonian in

two spatial dimensions with a random impurity potential.

2469-9950/2016/94(20)/201402(5) 201402-1 ©2016 American Physical Society
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For simplicity, the typical size of SOC-active impurities

is assumed much larger than the lattice spacing, hence

suppressing intervalley scattering [18,19]. We work with the

SO(5) representation of the spin algebra [42,43] in terms of

4 × 4 = 1 + 5 + 10 matrices, i.e., one identity, γ 0, five γ a

matrices, taken as γ 1 = σ1 ⊗ s0, γ 2 = σ2 ⊗ s0, γ 3 = σ3 ⊗ s3,

γ 4 = σ3 ⊗ s2, and γ 5 = σ3 ⊗ s1, and ten adjoint matrices

γ ab = i/2 [γ a,γ b]. Here σ and s are Pauli matrices defined in

the sublattice and spin space, respectively. The Hamiltonian

density reads

H = ψ†(x){−i v γ a∂a − γ0 ǫ + V (x)}ψ(x), (1)

where v is the Fermi velocity of charge carriers, ǫ is the Fermi

energy, and V (x) denotes the disorder potential. Hereafter,

we set � ≡ 1 ≡ e, unless stated otherwise. The impurities are

modeled as short-range potentials, V (x) =
∑N

i=1 M R2δ(x −

xi), where M is a 4 × 4 matrix encoding the spin and sublattice

structure of the impurity, and R is a length scale mimicking

a potential range [38]. We posit our analysis on impurities

leading to a SOC of the “intrinsic type” [4,5] and allow for an

extra (scalar) electrostatic term in the impurity matrix:

M = α0 γ0 + α3 γ3, (2)

with α0 (α3) denoting the magnitude of the scalar (SOC)

component of the disordered potential. Note that γ3 conserves

the out-of-plane spin component, in addition to being an

invariant of the C6v point group, and thus is the simplest

form of SOC in graphene; physical realizations include

physisorbed atoms in the hollow position, and top-position

adatoms randomly distributed over sublattices [19,44].

Methodology. Being interested in the effect of asymmetric

and strong scattering, the standard Gaussian white noise

approximation is not applicable. Instead, we employ the

T -matrix approach valid for a low density of impurities

with otherwise arbitrarily strong scattering potential. The

T matrix is the result of an infinite order resummation of

potential scattering diagrams containing only one impurity

density insertion n = N/	 (here 	 is the sample area)

in the noncrossing approximation [41]. The self-energy

reads 
(ǫ) = n 〈T (ǫ)〉dis, where 〈. . .〉dis denotes configu-

rational average. We find, after ressumation, 〈T (ǫ)〉dis =
1
2
(T+ + T−)γ0 + 1

2
(T+ − T−)γ3 ≡ T , with

T± =
R2 (α0 ± α3)

1 − R2 (α0 ± α3) g0(ǫ)
≡ ǫ± ∓ i η±. (3)

In the above, g0(ǫ) = −ǫ/2πv2ln(
/|ǫ|) ∓ i |ǫ|/4v2 is the

momentum integrated bare propagator in retarded (advanced)

sectors, and 
 is a high-energy cutoff [38]. To simplify

notation, hereafter ǫ > 0 is assumed. It is convenient to

decompose the self-energy in real and imaginary parts as

Re 
 = n(δǫ γ0 + m γ3) and −Im 
 = n(η γ0 + η̄ γ3), where

δǫ = (ǫ+ + ǫ−)/2, m = (ǫ+ − ǫ−)/2, η = (η+ + η−)/2, and

η̄ = (η+ − η−)/2. Here, n δǫ is a chemical potential shift that

can be reabsorbed in ǫ, while nm is a (small) disorder-induced

SOC gap. This result shows that 
̂ endows quasiparticles

with two different lifetimes; we have defined n η and n η̄ as

the respective energy and spin gap broadenings. The disorder

(a)

= +

(b)

ṽx

vxδvx δvx

jz

y

FIG. 1. Kubo-Streda diagrams. (a) Response bubble for the SH

conductivity with dressed charge vertex ṽx = vx + δvx . (b) Bethe-

Salpeter equation for the vertex correction δvx .

averaged propagator reads

G
R/A

k (ǫ) =
(ǫ ± i n η)γ0 + n (m ∓ i η̄)γ3 + v γ jkj

(ǫ ± i n η)2 − n2(m ∓ i η̄)2 − v2 k2
. (4)

It is interesting to note that the above propagator has a

structure similar to that found in minimal models of the

anomalous Hall effect (AHE) based on the massive Dirac

equation in d = 2 + 1 [45,46] (note, however, the physically

distinct origins of the respective γ3 “mass” terms). Next, we

evaluate the SH conductivity using the Kubo-Streda formula,

represented diagrammatically in Fig. 1. In our model, the spin

and charge vertex are given, respectively, by j z
y = v/2 γ13 and

vx = v γ1.

Bubble approximation; unitary vs Gaussian limits. It is

instructive to first consider the limiting cases of infinitely

strong (unitary) and weak (Gaussian) scatterers. Neglecting

the vertex corrections for the moment, we obtain to leading

order in the impurity density, and including a valley degeneracy

factor of 2:

σ 0
SH = 2

∫

d2k

(2π )2
Tr

[

j z
y G

R
k (ǫ) vx G

A
k (ǫ)

]

≃
η̄

η
. (5)

The bubble SH conductivity is a ratio of two broadening

scales and hence is independent on the impurity density;

the underlying SH mechanism is the QSJ [32]. In the

unitary limit, |Re g0 R2(α0 ± α3)| ≫ 1, η± ≈ π2v2/ǫln(
/ǫ),

and hence the SH conductivity is identically zero. On the

other hand, in the Gaussian limit, |Re g0 R2(α0 ± α3)| ≪ 1,

η± ≃ R4(α0 ± α3)2ǫ/(4v2), and one obtains a nonzero result,

σ 0
SH = 2 α0 α3/(α2

0 + α2
3). The Gaussian approximation then

gives an energy independent contribution, while dependence

on the Fermi energy only appears at order n and it is

therefore subleading in the dilute regime. However, a careful

analysis shows that this result is an artifact of the Gaussian

approximation. In order to obtain the correct dependence on

the Fermi energy, a calculation based on the full T -matrix

approach is required.

Full calculation. The T matrix enters the problem in the

propagators (via self-energy) and in the response bubble

itself (four-point function). The former has already been

evaluated below Eq. (3); we now tackle the four-point function.

Figure 2 shows the dressed ladder diagram and its skeleton

expansion. In order to describe the strong scattering regime,

one needs to change the Feynman’s rules for disorder potential

201402-2
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FIG. 2. T Matrix ladder. Skeleton expansion of the ladder

diagram in terms of an infinite series of two particle, noncrossing

diagrams. On the left side, a full (open) square interaction vertex

denotes a T (T ∗) matrix insertion, while on the right the T matrix is

expanded in its bare components (M insertions). The red × represents

an impurity density insertion.

insertions from the standard bare interaction (dot) to the

T -matrix-dressed one (squares). This procedure generates all

diagrams with one impurity density insertion (one ×), thus

providing an accurate nonperturbative result. The treatment of

four-point electron-hole propagators at the T -matrix level has

been employed in Ref. [47] in the context of resonant scattering

in anisotropic superconductors. Although previously neglected

in studies of anomalous and SH effects, the additional (four-

point) diagrams are essential to describe the strong scattering

regime relevant for SHE in spin-orbit-coupled graphene. In

the skeleton expansion of Fig. 2, one recognizes the first term

as the bare ladder diagram, providing the first correction to

the empty bubble, Eq. (5). The next two diagrams in the

figure (“Y diagrams”) contain three M impurity insertions,

and hence encode skew scattering (SS) at the lowest order

[30,32,45,48]. The remaining diagrams build up the complete

four-point skeleton series describing QSJ and SS processes at

all orders in the impurity potential.

The charge vertex is schematically shown in Fig. 1, together

with the conductivity diagram. We first evaluate the single-

impurity vertex correction v̄x . Using the T -matrix ladder

diagram shown in Fig. 2, we find

v̄x = n

∫

d2k

(2π )2
T GR

k vx G
A
k T ∗ = v (a γ1 + b γ13),

a ≃ ǫ
η+ η− + ǫ+ ǫ−

4v2(η+ + η−)
− n fa(η+,η−,ǫ+,ǫ−), (6)

b ≃ ǫ
η+ ǫ− − η− ǫ+

4v2(η+ + η−)
+ n fb(η+,η−,ǫ+,ǫ−),

where fa and fb are complicated functions of η±,ǫ±; explicit

expressions are given in the Supplemental Material (SM)

[49]. Note that contrary to the Gaussian case, also b contains

an n independent contribution. This term is responsible for

the semiclassical SS, yielding the standard skew relaxation-

time contribution, σSS ∝ τ⊥ ∝ 1/n [18,48]. The only matrix

elements contributing to the vertex renormalization are those

proportional to γ1 and γ13. We thus decompose the vertex

part in Fig. 1(b) as δvx = δv1
x γ1 + δv2

x γ13. Solving the

respective Bethe-Salpeter equation, and taking the trace of

δvx together with γ1 or γ13, we obtain ṽx = (v + δv10 +

n δv11) γ1 + (δv20 + n δv22) γ13. For details on the functions

δvij refer to the SM [49]. Substituting the bare vertex in

Eq. (5) with the renormalized one, the SH conductivity, in the

FIG. 3. SH conductivity. The semiclassical SS and anomalous

contributions to σSH are shown for different values of the Fermi energy

in solid and dotted lines, respectively. σSS (σQ) increases (decreases)

with ǫ, and both conductivities decrease at increasing scalar potential

magnitude, in agreement with the unitary limit result. Note that σQ

has been scaled by a factor of 10. We have used α3 = 0.01 eV,

R = 4 nm, and n = 4 × 1012 cm−2, typical parameters for ph-

ysisorbed metal nanoparticles [10,18]. The inset shows the regions

(ǫ,n) dominated by the semiclassical and anomalous contributions

(α0 = 0.05 eV, other parameters as in main figure).

noncrossing approximation, and to leading order in n reads

σSH =
ǫ δv20

2 n v η
+

{

ǫ δv22 + 2 (v + δv10) η̄

2 v η

− δv20

(

1

πv
+

η̄ m

2 v η2

)}

≡ S(ǫ)/n + Qnc(ǫ), (7)

the main result of the Rapid Communication. The

semiclassical O(n−1) contribution is due to SS, whereas the

term in brackets, Qnc(ǫ), here referred to as the anomalous

SH conductivity, has contributions stemming from several

mechanisms as described below. In Fig. 3, we plot the SS

contribution as a function of the electrostatic potential for

typical dilute impurity density and SOC magnitude. There

is a parametrically wide region where the SH conductivity

attains large Fermi-energy sensitive values. Generally, the

SH angle γ = σSH/σxx induced by skew scattering has the

following scaling γ ∝ n/n∗, where n∗ is the areal density

of (SOC inactive) contaminants and we assumed n ≪ n∗ (in

the opposite limit, γ is independent of n). This shows that the

SH angle increases linearly with the SOC impurity density in

disordered samples where other mechanisms limit the charge

mobility. The SS contribution is larger away from neutrality,

and tends to zero as the impurity scalar energy scale α0 is

increased, in agreement with the unitary limit result of Eq. (5).

The giant SS contribution to the SH conductivity has been

demonstrated earlier by means of Boltzmann transport theory

[18]. However, to our knowledge, a self-consistent treatment

of the spin Hall conductivity, incorporating SS and anomalous

processes on equal footing, had not been reported until now.

201402-3
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Crossover to the anomalous phase. The anomalous con-

tribution to the SH conductivity is shown in Fig. 3 (dashed

lines). It reaches large values of the order of the quantum

of conductance and, contrary to what is found for the skew

scattering, it increases as the Fermi energy is lowered. Owing

to the n−1 scaling of the SS contribution, one would naively

expect anomalous effects to be negligible in the entire dilute

regime. Remarkably, however, a careful inspection of the

energy dependence of the spin Hall conductivity discloses

parameter regions where anomalous effects are dominant in

fairly dilute samples, |Qnc(ǫ)| > |S(ǫ)/n|—see inset to Fig. 3.

The rich transport mechanisms at play in the anomalous

“phase” are borne out by the distinct contributions appearing

inside brackets in Eq. (7). In particular, the vertex part

associated to the SS (δv20) also enters the expression for

the anomalous term (traditionally associated with pure QSJ

events). Interestingly, our nonperturbative calculation shows

that diffusion corrections from reducible SS diagrams (e.g.,

diagrams with several “Y s” in Fig. 2) strongly renormalize

the anomalous term. Consequently, even at the level of a

single impurity scattering event, SS and QSJ cannot be treated

as separate contributions and a correct evaluation of the

anomalous term requires to go beyond the conventional ladder

approximation (see Ref. [48] for details).

The characteristic scalings of the semiclassical SS and

anomalous contributions together with their sharp variation

with Fermi energy provides a smoking gun for an experimental

demonstration. In Fig. 4 we present a representative ǫ vs α0

“phase diagram” of the extrinsic SHE in the intermediate dilute

regime, n ≈ 1012 cm−2, of much experimental relevance. The

black line shows the “phase boundary” between a Qnc(ǫ)-

or S(ǫ)/n-dominated SHE. The narrow region at the bottom

of the phase diagram corresponds to the special case with

|α0| = |α3|, for which S(ǫ)/n = 0 irrespectively of ǫ, cf.

Fig. 3. For this particular value, Qnc(ǫ) is the only nonzero

contribution, hence the particular shape of the phase boundary.

Our results summarized in the inset to Figs. 3 and 4 show

that varying the gate voltage (Fermi energy), or alternatively

the impurity concentration, enables us to change from a

SHE dominated by the semiclassical SS mechanism to a

rich quantum transport regime, characterized by correlated

SS and QSJ events. Since our calculations are based on a

rather conservative model for the impurity resonance, and

thermal effects do not destroy the robustness of the extrinsic

SHE in graphene [18], the anomalous contributions described

FIG. 4. Phase diagram of the SH conductivity in our model. The

diagram shows the parameter regions in which either σQ or σSS is

dominant. The black line is the phase boundary and the different

colors represent the absolute value of σSH. We have used α3 =

0.01 eV, R = 4 nm, and n = 4 × 1012 cm−2.

here are likely to contribute to nonlocal signals of recent SH

experiments [9,10,12–14].

Summary. In this work we unveiled an anomalous quantum

regime of the extrinsic spin Hall effect in disordered graphene.

Our microscopic theory—based on a powerful nonpertur-

bative treatment of the Kubo-Streda formula—predicts an

experimentally accessible crossover from skew scattering-

to quantum processes-dominated spin transport, a finding of

fundamental importance to the spin Hall and related effects.

Our work opens the exciting prospect of probing quantum

spin transport phenomena through electrical measurements in

graphene and related heterostructures.
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