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Abstract 

In early 2014, the UK Department for Transport (DfT) commissioned the first 

national value of travel time (VTT) study since the mid-1990s. This paper presents 

the methodological work undertaken for this study, with important innovations 

along a number of dimensions, both in terms of survey design and modelling 

methodology. Our findings show a rich pattern of heterogeneity across the 

travelling public, in terms of an impact on the VTT by both person and trip 

characteristics, as well as a major role for a number of characteristics that relate to 

the specific choices faced in a hypothetical stated choice setting, including 

reference dependence and non-linearities in sensitivities. We also discuss how these 

behavioural values were translated into values for use in appraisal, and the 

challenges faced when doing this on the basis of results obtained with advanced 

models. 
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1. Introduction 

Many countries conduct national value of travel time (VTT) studies to produce 

official values for use in appraisal (see the review by Daly et al., 2014). There have 

been three previous waves of such studies in Britain. First, a series of research 

projects during the 1960s and 1970s, the results of which were adopted and 

synthesised by the Department for Transport (DfT). Second, the MVA/ITS 

Leeds/TSU Oxford study of the 1980s leading to revised values of travel time in 

1987. Third, the AHCG study of using 1994 data (AHCG, 1996) which was further 

analysed by ITS Leeds (Mackie et al., 2003).  

Whilst routinely updated for changes in income and travel patterns, the evidence 

base for the values used in UK appraisal is now more than twenty years old. Along 

with changes in incomes, prices, demography and the mix of travel by purpose and 

trip length, the world has changed in other ways – the internet revolution, the quality 

and comfort of vehicles, working practices and, perhaps most fundamentally, the 

way in which people perceive time spent travelling. These substantive 

developments challenge the credibility of simply updating values based on old 

behavioural data.  

Furthermore, whilst the existing set of behavioural values were obtained with 

methods that represented the state of the art in 1994/2003, the fields of stated choice 

data collection and discrete choice modelling have also seen substantial 

developments in the subsequent years, making the toolkit from the previous study 

very outdated. These developments include the growing popularity of more 



statistically efficient stated choice design techniques (see e.g. Rose & Bliemer, 

2014, for an overview) and the availability of ever more flexible discrete choice 

structures (see e.g. Train, 2009, for an overview). Along with these developments 

in choice modelling more broadly, there have been substantial improvements to the 

statistical techniques used in national value of time studies, most notably starting 

with the work of Fosgerau et al. (2007a). 

Against this background, a new study was conducted in 2014/20151 to meet DfT’s 
requirement ‘to provide recommended, up-to-date national average VTT measures 

using modern, innovative methods’. The work conducted in the course of this study 

did not simply apply the best currently available methods, but made further 

methodological improvements. This paper presents an overview of the data 

collection work conducted and then focusses primarily on the modelling work 

undertaken, presenting our approaches to capturing reference dependence, non-

linearities in preferences, and deterministic and random heterogeneity across 

travellers. Finally, we discuss the way in which these behavioural values were 

translated into values for use in appraisal, and highlight the challenges that can be 

faced in that context when working with advanced model structures.  

The remainder of this paper is organised as follows. Section 2 gives an overview of 

the survey work conducted, Section 3 presents the modelling work, Section 4 

outlines the results and Section 5 discusses the application of the modelling results 

to derive values for scheme appraisal. Finally, Section 6 presents our conclusions. 

 

2. Survey work 

Stated Preference (SP) data was collected for the three key purposes required for 

the appraisal framework (commute, travellers in the course of business and other 

non-work) and for four modes (car, rail, bus, other public transport (PT)2). The aim 

of the survey work was to provide valuations not just for travel time, but also travel 

time reliability and the quality of the travel experience (e.g. crowding). While work 

for example in Australia routinely values all these components in a single SP game, 

this study was required to adhere to the UK and European tradition of using a 

number of separate games, each looking at a subset of the journey components. 

Unlike previous studies, we ensured a greater representation for the more complex 

games, and also used joint estimation across the games.  

For each purpose-mode combination, multiple SP experiments were developed, 

involving different unlabelled trade-offs between two alternatives described by: 

time/money (SP1), time/money/reliability (SP2), and time/money/quality (SP3). It 

should be noted that the ways in which some journey attributes, particularly 

reliability, are valued in the models relate to the specific appraisal framework used 

in the UK. Respondents received all three games, with 5 choices per game3. Whilst 

the two-game format used in previous European studies (presenting SP1 plus either 

                                            
1 The project was managed by ARUP, with ITS Leeds (in conjunction with John Bates) being 

responsible for the survey design, modelling work, and translation of modelled values into appraisal 

values. Data collection was carried out by Accent. Further information on the study as a whole can 

be found in the final report (Arup/ITS/Accent, 2015). 
2 Other public transport encompassed tram, light rail and underground. 
3 In order to mitigate order effects, SP1 (the easiest game) was presented initially, whilst the order 

of SP2 and SP3 was randomised. 



SP2 or SP3) would arguably moderate cognitive burden (although those studies 

have consistently presented 8 choices per game), the decision to present three games 

was influenced by three main considerations. 

Firstly, there was a desire for comparability, with values for all components being 

obtained from data collected from all respondents, avoiding a situation where 

differences in valuations across components might be due to differences in the 

groups of respondents supplying those valuations. Second, in order to estimate 

meaningful and robust values, it was judged that it would be advantageous to 

maximise the volume of data from games with more than two design variables (i.e. 

SP2 and SP3), in contrast with a two-game format that would deliver a dataset 

comprising around 50% SP1 observations, and 25% each of SP2 and SP3 

observations. Third, we had an a priori expectation (subsequently confirmed in the 

results) that respondent behaviour in SP1, which is the most simplistic (and hence 

possibly least realistic), would be most affected by design effects, potentially 

reducing quality.  

Where possible, with a view to enhancing realism, we ‘pivoted’ attribute levels 
around travellers’ current trips, though we made some exceptions to this approach, 

such as for headway and crowding. The design used balance between gains and 

losses across the sample, as well as in terms of size of changes. The design treated 

time in the different levels of congestion separately, but again with symmetric 

pivots, ensuring that the gain-loss relationship in terms of changes in congestion 

was also symmetric. 

2.1. SP1 

SP1 used a generic format across all modes, presenting respondents with a choice 

between two options described only on the basis of travel time and travel cost, 

where one option was cheaper, but the other option was faster.  

While this represents the established approach in a number of European countries 

(e.g. Mackie et al., 2003, Fosgerau et al., 2007a, Ramjerdi et al., 2010, Significance 
et al., 2013 and Börjesson and Eliasson, 2014), it is very different from the more 
complex approaches used in other countries (e.g. Austroad, 2006; ATC, 2006). 

Other than simplicity, a potential shortcoming is that the context in which time is 

spent is not explicitly described, and that some respondents might consider the 

proposition of a faster but cheaper car journey to be unrealistic, especially in a short 

term context in the explicit absence of tolls. Whilst we sought to contextualise the 

SP through the preamble instructions, it is impossible to know a priori how 

respondents interpret travel time in an SP1-style experiment, i.e. whether they 

regard it as free flow time, congested time, etc. This was a motivation for our 

extensive work on combining data across games and studying the differences in 

valuations. An important reason for maintaining the SP1 experiment was however 

to retain comparability with previous British studies. 

2.2. SP2 

SP2 also presented respondents with a binary choice, still focussing on travel cost 

and travel time, but presenting five different typical trip outcomes for travel time 

for each alternative. This is the typical approach used for reliability (i.e. 

unpredictable variations in travel time) in British studies (e.g. Hollander, 2006; 
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Batley and Ibáñez, 2013); we acknowledge that this is somewhat different from 

approaches used elsewhere (see e.g. Carrion and Levinson, 2012, for a review). 

Informed by findings from the qualitative research, the preamble advised 

respondents that unreliability was associated with unpredictable (e.g. breakdowns 

and accidents in relation to road, or incidents on the line in relation to rail, etc.) 

rather than predictable variations (e.g. trips taking longer in rush hours, or fast/slow 

trains, etc.) in trip time. The preamble also advised that the five trips presented 

departed at the same time and on the same day of the week, thereby eliminating 

rescheduling of the trip as mitigation of unreliability.   

2.3. SP3 

SP3 used somewhat different presentations across modes, as follows. 

 For car, the two options were described in terms of travel cost and the 

amount of time spent in three types of conditions (free flow, light 

congestion, heavy congestion). 

 For rail, we presented a choice described by travel time, travel cost and the 

level of crowding applying to the trip. This experiment was only given to a 

share of respondents, with the remainder being given an operator choice 

game not covered by this paper. 

 For bus, two different experiments were also used. For the first group, we 

presented a crowding game analogous to the rail game, albeit with different 

crowding definitions, while the second group received a choice between two 

bus routes described in terms of free flow time, slowed down time, dwell 

time, headway and fare. 

 For other PT, we presented a crowding game analogous to the bus game. 

This experiment was only given to a share of respondents, with the 

remainder being given a mode choice game not described in this paper. 

2.4. Experimental design 

The field of experimental design has seen substantial developments over recent 

years (see, e.g., Rose and Bliemer, 2014), with efficient designs using prior 

information on parameter values leading to more meaningful trade-offs that 

increase the information content in the data. For our study, we used priors based on 

an extensive review of values obtained in past studies, especially the detailed meta-

analysis work on British values of travel time of Abrantes and Wardman (2011). 

The designs produced for this study follow the state of the art in the field, making 

use of D-efficient designs, where we relied on designs for MNL models. While this 

may lead to lower efficiency than an approach optimising the designs for data with 

random heterogeneity, we felt this was an acceptable simplification in the absence 

of reliable priors for heterogeneity. We however allowed for uncertainty in our 

priors by using Bayesian D-efficient designs. We worked with wide regions, using 

normally distributed priors, with standard deviations that were 50% of the mean 

values. We also avoided the inclusion of strictly dominant alternatives by using a 

regret measure, see Bliemer et al. (2014). 

Different designs were produced across purposes and for different journey lengths 

(i.e. different reference values). While it is clear that different designs are needed 

for different games (e.g. separate design for time-cost and for time-cost-reliability 
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trade-offs), it is important to recognise that an efficient design is optimised for the 

specific values of attributes and priors used in the design. This had two separate 

dimensions in the present context, with different designs by trip purpose and for a 

set of different representative trips. Each respondent was then given a design based 

on the trip closest to their reference trip, with percentage variations (or pivots) 

applied to the specific reference trip for that person; the pivots were obtained from 

the design. The number of reference trips used varied by purpose, with the lowest 

number for bus (2) and the highest number for rail (20). In total 315 designs were 

produced for this study. 

2.5. Sampling, recruitment and data cleaning 

The study as a whole involved a number of surveys, although this paper focuses 

upon the general public SP survey, which was by far the most substantial survey 

conducted. This survey was recruited principally through the interception of 

travellers (80%), complemented by some telephone recruitment (20%), where this 

mixed approach was designed to capture a range of journey distances. The intercept 

survey was administered by Computer Aided Personal Interview (CAPI) using 

Android tablets. Interviewers approached a random sample of travelling adults 

(typically 1 in 3) and asked scoping questions to check whether the respondent was 

in scope and matched required quotas. For the general public telephone sample, 

random digit dialling (RDD) was used to give a geographically representative 

sample of the population of England as shown in the 2011 Census by region. 

Irrespective of the recruitment method, respondents were able to complete the 

survey on-line or by means of an operator-led telephone call. Intercept-based 

recruitment achieved an overall response rate of 37%, whilst telephone recruitment 

achieved a response rate of 61% from those recruited through RDD. 

In total, responses from a sample of 8,623 different individuals were collected, split 

across the three purposes and four modes, with car and rail having the largest 

samples. The data from the field surveys was subjected to detailed examination in 

order to establish its quality and reliability for modelling. Our overall approach to 

data cleaning was that records were removed only when absolutely necessary and 

with a view to avoiding bias. In general, the most common cleaning factors were 

missing distance information and missing cost information, as well as exclusions 

driven by unrealistic cost information, which would have made the SP choice 

scenarios for those respondent unrealistic. A final sample of 7,692 respondents was 

retained for analysis. 

A number of basic diagnostic tests were performed relating to a number of 

behavioural traits that can adversely affect model estimation (Hess et al., 2010). 

Our observations for these measures are as follows: 

 Rate of left or right non-traders: the proportion of people who always chose 

the option presented on the same side across all SP choice tasks was found 

to be negligible. 

 Rate of time non-traders: in most sub-samples, only 1-2% of the respondents 

consistently chose the fastest travel option. This gives reassurance that the 

ranges presented in the survey were wide enough, and suggests  that we can 

be somewhat less concerned about the ability to estimate the tail of the VTT 

distribution in Mixed Logit models (Börjesson et al., 2012). 
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 Rate of cost non-traders: in most sub-samples, only 5% of people 

consistently chose the cheapest option across all tasks, which is lower than 

in many other studies and supports the ranges presented in the trade-offs (cf. 

Hess et al., 2010).  

 

3. Modelling approach 

The modelling approach used in our study has a number of distinct methodological 

components that we will now look at in turn. Each time, where required, we look 

separately at the treatment required in the different types of SP games. The 

individual methodological components address different behavioural phenomena 

that are potentially at play at the same time, requiring a complex modelling 

framework. We first look at the error structure in the model before discussing the 

treatment of size and sign effects and the use of a joint estimation approach across 

games. We finally turn to the incorporation of deterministic and random 

heterogeneity and discuss how this needs to be implemented in the case of joint 

estimation across games with different survey contexts, error structures and size 

and sign effects.  

3.1. Multiplicative vs additive error structures 

The utility in a choice model is decomposed into a deterministic and a random 

component, the error term. Typically, following Daly and Zachary (1975) who 

pioneered this formulation for estimating valuations, models make use of standard 

additive error structures, where U = V + ε, with V and ε giving the deterministic 
and random components of utility, respectively. This means that the error term is 

‘white noise’ and the amount of error is independent of the deterministic utility and 

hence of the characteristics of the choice that is modelled. While this is widely used 

in practice, it is an assumption that may not be valid in many circumstances. 

In the present study, we move away from this assumption by relying on models 

using a multiplicative formulation (Harris and Tanner, 1974; Fosgerau and 

Bierlaire, 2009). In a general multiplicative formulation, we replace the typical 

additive specification of the utility of an alternative by U=V.ε, where V and ε are 
still defined as the deterministic and random components of utility, respectively. 

That is, the random (error) component of utility is taken to multiply the 

deterministic component, rather than be added to it. However, to operationalise the 

multiplicative model, we follow Fosgerau and Bierlaire (2009) in reformulating the 

model through a logarithmic transformation, i.e. log(U)=log(V)+log(ε), which is 
possible because the log transform is strictly monotonic. To implement this 

formulation we need to ensure that both V and ε are positive. Issues concerning V 
are discussed in the context of specific models; we guarantee that ε is positive by 
assuming that it follows a log-extreme-value distribution, again following Fosgerau 

and Bierlaire (2009). The practical advantage given by the multiplicative approach 

is that it becomes much easier to make an assumption of approximately constant 

variance for 𝜀. In general, it is found that utility variance increases as utility 

increases and this is handled automatically in the multiplicative form of the model. 

The multiplicative formulation represents the state of the art in VTT estimation for 

experiments of the SP1 type. A corresponding approach for SP2 and SP3 is also 

possible, as used in the recent Danish national VTT study (Fosgerau et al., 2007a), 

but further developed here for reference dependence. Extensive empirical testing 
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showed the multiplicative specification to be superior to the additive specification 

for our work, across all games.  

For SP1, the analysis is quite simple because there are just two attributes: time and 

cost. For this reason, it is possible to formulate the econometric model in a 

multiplicative log willingness-to-pay form, which has proved successful in several 

previous studies (Fosgerau et al., 2007b; Ojeda-Cabral et al., 2016). This involves 

working with the logs of time and cost differences, rather than working with the 

logs of two utility functions each given by the sum of a contribution made by time 

and cost for that alternative. 

Specifically, we now use (avoiding for now additional subscripts for respondents 

and choice tasks): 𝑉𝑠 = 𝜇𝑆𝑃1. log (− 𝑐𝑜𝑠𝑡1−𝑐𝑜𝑠𝑡2𝑡𝑖𝑚𝑒1−𝑡𝑖𝑚𝑒2)      (1) 𝑉𝑒 = 𝜇𝑆𝑃1. log 𝜔        (2) 

where the alternatives are re-ordered so that 𝑉𝑠 gives the utility of the cheaper but 

slower option and 𝑉𝑒 gives the utility of the faster but more expensive option, 𝜔 is 

the estimated VTT (for reductions in time, i.e. a positive value of time) and 𝜇𝑆𝑃1 is 

an estimated scale parameter. If the VTT is greater than the implied boundary VTT 

(given by the cost difference divided by the time difference) presented to the 

respondent, then the faster option will be chosen, otherwise the cheaper option is 

chosen. 

With this specification, the error in the models is proportional to the boundary value 

of time, i.e. the trade-offs faced by respondents. This is consistent with the notion 

that the main source of error in simple time-money trade-offs would be unexplained 

heterogeneity in VTT measures, which would thus lead to larger error in scenarios 

where the value of time required to choose the expensive option is larger. This 

specification was shown to not only outperform the simple additive structure, but 

also a structure where the error is proportional to overall utility (cf. later discussions 

for SP2 and SP3). 

We now have that the probability of the observed sequence of T (t = 1,…T) choices 

for person n for SP1 is given by the product of logit probabilities: 𝑃𝑆𝑃1,𝑛 = ∏ ( 𝑒𝑉𝑠𝑛𝑡𝑒𝑉𝑠𝑛𝑡+𝑒𝑉𝑒𝑛𝑡)𝛿𝑠𝑛𝑡,𝑆𝑃1𝑇𝑡=1 ( 𝑒𝑉𝑒𝑛𝑡𝑒𝑉𝑠𝑛𝑡+𝑒𝑉𝑒𝑛𝑡)𝛿𝑒𝑛𝑡,𝑆𝑃1
   (3) 

where 𝛿𝑠𝑛𝑡,𝑆𝑃1 is 1 if and only if the slower/cheaper option is chosen by respondent 

n in task t, with a corresponding definition 𝛿𝑒𝑛𝑡,𝑆𝑃1 applying to the faster/expensive 

option.  

It is important to note that, with a Multinomial Logit (MNL) specification of the 

model, the use of 𝜔 alone as an estimate of the VTT is likely to underestimate the 

true mean VTT. Indeed, in the model above, the error term is likely to capture not 

just noise but also heterogeneity in the VTT (given that this model works in relative 

valuations)4.  

                                            
4 Using the extreme example that all the error term relates to heterogeneity in the value of time, we 

would have that 𝑉𝑇𝑇 = 𝜔𝑒𝜀1−𝜀2𝜇𝑆𝑃1 , where 𝜀1 and 𝜀2 are the log-extreme value errors. As such, for an 

MNL model, 𝜔 relates more to a median than a mean VTT. 
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Given the reliance on Mixed Logit models later in the analysis, where we explicitly 

incorporate random heterogeneity in VTT, this issue largely disappears, as the 

additional random components distributed across respondents then capture random 

variation in VTT. 

For SP2 and SP3, log willingness-to-pay is not a feasible approach as there are 

multiple attributes and the signs of differences from the reference value are not 

consistent. In this case, we make the error proportional to the overall utility, which 

essentially means the model implies greater error on longer trips. 

In an additive model, we would have that: 𝑉𝑗 = 𝜏𝑐𝑜𝑠𝑡𝑐𝑜𝑠𝑡𝑗 + ∑ 𝜏𝑘𝑥𝑗𝑘𝑘 ,       (4) 

where 𝑥𝑗𝑘 refers to K different non-cost attributes for alternative j, and where the 𝜏 

parameters are estimated marginal utilities. The 𝜏 parameters would be negative for 

undesirable attributes, and positive for desirable attributes. This can be rewritten for 

a mathematically equivalent specification (Train and Weeks, 2006) in valuation 

space as: 𝑉𝑗 = −𝜇𝑆𝑃𝑥(𝑐𝑜𝑠𝑡𝑗 + ∑ 𝜔𝑘𝑥𝑗𝑘𝑘 ),      (5) 

where 𝜇𝑆𝑃𝑥 is a positive scale parameter for SPx (x=2,3), and where 𝜔𝑘 is now a 

directly estimated monetary valuation for changes in 𝑥𝑗𝑘5. The negative sign on the 

entire utility means that the 𝜔𝑘 are positive for undesirable attributes, i.e. they relate 

to a willingness-to-pay for avoiding positive changes in an attribute. This is 

appropriate for ‘bads’ such as time but not for ‘goods’. It then makes sense to 

replace ∑ 𝜔𝑘𝑥𝑗𝑘𝑘  by ∑ 𝜔𝑘𝑇𝑥𝑗𝑘𝑇𝑘𝑇 − ∑ 𝜔𝑘𝑁𝑇𝑥𝑗𝑘𝑁𝑇𝑘𝑁𝑇 , where 𝑥𝑗𝑘𝑇 are bads and 𝑥𝑗𝑘𝑁𝑇 are goods. For our analysis, we include attributes such as travel time 

variability, headway and delays in 𝑥𝑗𝑘𝑇. In the multiplicative model, we would use: 

𝑉𝑗 = −𝜇𝑆𝑃𝑥 ∙ log(𝑐𝑜𝑠𝑡𝑗 + ∑ 𝜔𝑘𝑇𝑥𝑗𝑘𝑇 − ∑ 𝜔𝑘𝑁𝑇𝑥𝑗𝑘𝑁𝑇𝑘𝑁𝑇𝑘𝑇 )  (6) 

where 𝜔𝑘𝑇 remains the directly estimated monetary value (i.e. willingness-to-pay) 

for reductions in bads, and 𝜔𝑘𝑁𝑇 is the directly estimated monetary value for 

increases in goods 𝑥𝑘𝑁𝑇 (i.e. a priori, both parameters would be expected to be 

positive).  

Again using a log-extreme value distribution for 𝜀, the probability for the observed 

sequence of choices for respondent n in SPx is now given by: 𝑃𝑆𝑃𝑥,𝑛 = ∏ ∏ ( 𝑒𝑉𝑗𝑛𝑡𝑒𝑉1𝑛𝑡+𝑒𝑉2𝑛𝑡)𝛿𝑗𝑛𝑡,𝑆𝑃𝑥2𝑗=1𝑇𝑡=1      (7) 

where 𝛿𝑗𝑛𝑡,𝑆𝑃𝑥=1 if and only if alternative j is chosen by respondent n in task t in 

SPx.  

For SP2, an additional complication arises as the respondents are presented, for 

each alternative, with five different possible outcomes in terms of travel time. For 

car, we simply work with the mean travel time and the standard deviation across 

                                            
5 Of course 𝜇𝑆𝑃2 = −𝜏𝑐𝑜𝑠𝑡  and 𝜔𝑘 = 𝜏𝑘 𝜏𝑐𝑜𝑠𝑡⁄ . 
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outcomes. However, for public transport, we work with the “usual travel time” 
(which is effectively the mean of the five outcomes) as well as valuations for early 

and for late arrivals (unscheduled, as opposed to schedule delay). This approach 

was driven by the conventions of official transport demand forecasting and 

appraisal guidance in the UK (e.g. DfT, 2013; ATOC, 2012), and was not intended 

to exploit recent academic developments in estimating the value of reliability (e.g. 

Tseng and Verhoef, 2008; Fosgerau and Karlström, 2009; Engelson and Fosgerau, 

2016). 

We would thus get that the value for outcome 1 (out of 5) for alternative j, say 𝜐𝑗,1 

is given by: 𝜐𝑗,1 = 𝑐𝑜𝑠𝑡𝑗 + 𝜔𝑡𝑖𝑚𝑒𝑡𝑖𝑚𝑒𝑗 + 𝜔𝑒𝑎𝑟𝑙𝑦𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠𝑠𝑗,1 + 𝜔𝑙𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠𝑗,1  − 𝜔𝑙𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑙𝑎𝑡𝑒𝑗,1 

           

          (8) 

where 𝑡𝑖𝑚𝑒𝑗 is the usual travel time, 𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠𝑠𝑗,1 and 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠𝑗,1 relate to the 

amount of early or late delay in outcome 1 for alternative j, and 𝑙𝑎𝑡𝑒𝑗,1 is equal to 1 

if the first outcome has late arrival, and 0 otherwise. The estimates for 𝜔𝑡𝑖𝑚𝑒, 𝜔𝑒𝑎𝑟𝑙𝑦 

and 𝜔𝑙𝑎𝑡𝑒 are three distinct value of time measures. It should be noted that 𝜔𝑒𝑎𝑟𝑙𝑦 

and 𝜔𝑙𝑎𝑡𝑒 relate to unexpected early or late arrival, i.e. not schedule delay (a planned 

arrival which is earlier or later than the preferred arrival time for that traveller). As 

such, we would expect a positive value for 𝜔𝑙𝑎𝑡𝑒 (just as for 𝜔𝑡𝑖𝑚𝑒), as reductions 

would imply shorter travel time, while 𝜔𝑙𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the willingness-to-pay for 

late arrival, which we expect to be negative. For 𝜔𝑒𝑎𝑟𝑙𝑦, we also expect a negative 

estimate as reductions in earliness would mean longer travel time, i.e. respondents 

should desire an increase in earliness. There should be no strong a priori expectation 

that the estimates of 𝜔𝑒𝑎𝑟𝑙𝑦 and 𝜔𝑡𝑖𝑚𝑒 are simple opposites, given non-linearities 

in sensitivities, but also given potentially different behavioural response to 

scheduled travel time and an unscheduled early arrival. 

On the assumption of equal weight being given to the five outcomes, we can then 

use: 𝑉𝑗 = −𝜇𝑆𝑃2 ∙ log (∑ 𝜐𝑗,𝑠5𝑠 )       (9) 

where s is an index over the five possible outcomes. Building on the work of Liu 

and Polak (2007), we allow for differential weights for the five outcomes using the 

constant absolute risk aversion (CARA) specification, with: 𝑉𝑗 = −𝜇𝑆𝑃2 ∙ log (∑ 1−𝑒−𝛼𝜐𝑗,1𝛼 15𝑠 )      (10) 

where, with 𝛼 approaching zero, we get a risk neutral model, positive 𝛼 implies risk 

averseness, with the opposite applying for negative 𝛼. 

A similar specification for car was not possible in the context of an appraisal 

framework requiring a standard deviation of travel time (which obviously does not 

apply at the individual outcome level). 
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3.2. Treatment of size and sign effects 

Many SP-based VTT studies have found that the values obtained depend on the sign 

(i.e. asymmetries) and size (i.e. non-linearities) of time and cost changes relative to 

a ‘reference’ value (e.g. Börjesson and Eliasson, 2014; De Borger and Fosgerau, 

2008 (dBF)). These findings can be related to Prospect Theory, e.g. that gains are 

attributed a lower absolute value than equivalent losses (Kahneman and Tversky, 

1979).  

We have adopted the principles of the approach to modelling reference dependence 

set out by dBF, and have further developed it for our study. In a model, we wish to 

introduce the concept of gains and losses, as well as the basic difference between 

the alternatives. The question arises as to whether we want to measure differences 

from the base value or differences between the alternatives.  

Considering the degrees of freedom, for a given choice task, there are just three 

measurements of attribute values: the current (reference) value and the values 

presented for the two alternatives. Any attempt to introduce more than three 

variables by calculating differences etc. is liable to fail by introducing 

overspecification.  

In previous studies such as the 1994 British data and the more recent Scandinavian 

studies, these effects (differences between alternatives and differences against the 

reference trip) would have been perfectly confounded as the reference values for 

both time and cost appeared in every choice task. Previous studies have interpreted 

the estimates of the size effects as relating to the differences between the 

alternatives, but the alternative interpretation would have been equally plausible. 

Given the vast evidence on the importance of reference dependence, our work 

focusses on that, rather than on differences between the alternatives, an approach 

also supported by empirical tests on the data. 

The concept is to introduce non-linear functions that express the possibility that size 

and sign effects exist. This is done by defining a function that gives the value of a 

change ∆𝑥 relative to the reference value 𝑥0 of a given attribute, where, following 

dBF: 𝑣(∆𝑥) = 𝑆(∆𝑥). exp(𝜂 𝑆(∆𝑥)). |Δ𝑥|𝛼     (11) 

with ∆𝑥 = 𝑥 − 𝑥0, 𝛼 = 1 − 𝛽 − 𝛾𝑆(∆𝑥) 𝑆(∆𝑥) is the sign function, defined for ∆𝑥 ≠ 0 by 𝑆(∆𝑥) = ∆𝑥 ⁄ (|∆𝑥|), i.e. it 

takes the values ±1 with the same sign as ∆𝑥; for convenience we also 

specify that 𝑆(0) = 0. 𝜂 gives the difference of gain value and loss value from an ‘underlying’ value. 
It is explicitly assumed by dBF that gains and losses exactly bracket this 

underlying value. The parameter 𝜂 measures the sign effect. It is expected 

that 𝜂 > 0, so that the value of losses (increases in ∆𝑥) is greater than the 

value of gains.  𝛽 allows the impact of gains and losses to be non-linear. If 𝛽 > 0, the marginal 

value of changes decreases as the change increases, i.e. the value is 
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‘damped’. This is the main measure of the size effect. Generally, we 

anticipate that 𝛽 should be larger for cost than for time, so that VTT 

increases as the changes increase, while small time savings have lower 

monetary value.  𝛾 allows the non-linearity of value to be different for gains and losses. 

Essentially, this gives an interaction between the sign and size effects. A 

negative value for 𝛾 would for example mean that any damping (i.e. 

decreasing marginal effects for larger changes) would be smaller for 

increases (losses) than for decreases (gains) from the reference value, or that 

any increasing sensitivity for larger changes (i.e. with 𝛼 > 1), would be 

stronger for increases than for decreases from the reference value. 

The value functions are defined to have arguments and values denominated in cost 

units. Thus the cost value of a cost change ∆𝑐 is given by 𝑣(∆𝑐), while the cost 

value of a time change 𝑡 is given by 𝑣(𝜃∆𝑡), where 𝜃 is the ‘underlying’ value of 
time. Differently from the dBF work, and from how it was used in the Danish work, 

we are also able to estimate separate 𝜂, 𝛽 and 𝛾 parameters for both time and cost 

in SP1 as our design does not impose the presence of the reference value for one of 

the two alternatives in the choice task6.  

We next turn to how the actual VTT can be calculated within the above framework. 

A simple way to see the derivation of VTT (and other WTP measures) is to think 

of the values of ∆𝑐 and ∆𝑡 that would maintain indifference with the base situation 

in which ∆𝑡 = ∆𝑐 = 0 and the total value is of course zero. Thus when we have a 

specific value ∆𝑡′, and we have estimated the parameters of the value functions 𝑣, 

we can find the value ∆𝑐′ such that 𝑣(∆𝑐′) + 𝑣(𝜃∆𝑡′) = 0. The average 

willingness-to-pay per unit of time is then ∆𝑐′/∆𝑡′.  
It is reasonable to extend the method of dBF in taking the average of the gain value 

and the loss value to express an ‘underlying’ VTT. In fact, it is difficult to formulate 
an alternative: in the SP context we obtain gain values and loss values and these 

need to be averaged in some way, in part also as we do not know whether these 

effects may be amplified in an SP setting (compared to real life). That is, to obtain 

a reference-free value we need to calculate the average of the loss value of a given ∆𝑥 and the gain value of the same ∆𝑥 to obtain a reference-free value of ∆𝑥. As in 

dBF, we calculate the geometric mean7 of 𝑣(∆𝑥) and −𝑣(−∆𝑥): 

√𝑣(∆𝑥). −𝑣(−∆𝑥) = √exp(𝜂 ). |∆𝑥|1−𝛽−𝛾 . exp(−𝜂). |∆𝑥|1−𝛽+𝛾 

        = √|∆𝑥|2−2𝛽 = |∆𝑥|1−𝛽     (12) 

                                            
6 The DATIV data used by Fosgerau et al. (2007a), like previous British and several other European 

studies, was based on a design in which the current time and cost always appeared in one or other 

of the alternatives presented. This design has the effect that it is not possible to make separate 

identifications of 𝛽 for both time and cost. However, with the new British data the design is more 

varied and it is possible to make these identifications. This was also the case in work conducted by 

Hjorth & Fosgerau (2012) on the Norwegian data.  
7 dBF assumed (unnecessarily) that 𝛾 was zero to calculate the geometric mean.  
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Thus, finding the geometric mean of the gain and loss values leads to an estimate 

of a ‘reference free’ value in which 𝜂 and 𝛾 do not appear. However, there is no 

analogous argument to eliminate 𝛽 and the value remains a function of ∆𝑥. 

Solving the equation 𝑣(∆𝑐′) + 𝑣(𝜃∆𝑡′) = 0, for the gain-loss average value 

functions 𝑣(∆𝑥) = 𝑆(∆𝑥)|∆𝑥|1−𝛽 we obtain, for oppositely signed ∆𝑐 and ∆𝑡, |∆𝑐|1−𝛽𝑐 = (𝜃|∆𝑡|)1−𝛽𝑡       (13) 

|∆𝑐| = (𝜃|∆𝑡|)1−𝛽𝑡1−𝛽𝑐 = (𝜃|∆𝑡|)𝜅      (14) 

where 𝜅 = 1−𝛽𝑡1−𝛽𝑐, so we can calculate the VTT (per unit of time) as: 𝑉𝑇𝑇 = |∆𝑐| |∆𝑡|⁄ = 𝜃𝜅|∆𝑡|𝜅−1      (15) 

Here it is obvious that if 𝛽𝑐 = 𝛽𝑡, VTT is independent of ∆𝑡, as the time and cost 

damping cancel out, i.e. we get that 𝜅 = 1. However, in general the 𝛽 values will 

not be equal and VTT is not equal to 𝜃. It is for this reason that we change the 

notation from 𝜔 in the non-reference-dependent models, which is always the VTT, 

to 𝜃 in these models, noting that the estimate of 𝜃 then needs to be used in (15) 

alongside that for 𝜅 to calculate the VTT. 

In the formulation using value functions it is not appropriate to obtain 𝑉𝑇𝑇 for finite 

time differences from strictly marginal valuations, as would be found by 

differentiation. The concept is to determine the value of a finite amount of time ∆𝑡, 

where the marginal value of both time and cost varies continuously. The use of 

differentials would, for instance, give the value of changing ∆𝑡 from 10 to 11 

minutes, whereas what is required is the value of the change from 0 to 10 minutes. 

Moreover, the differential of the time value depends only on ∆𝑡, whereas the 

differential of the cost value depends on both ∆𝑡 and ∆𝑐, so that the ratio of 

differentials varies in two dimensions. 

Using the ∆ notation and subtracting (𝜇𝑆𝑃1 log 𝜔), (1) and (2) can be reformulated 

without changing their meaning as 𝑉1 = 𝜇𝑆𝑃1. log (− ∆𝑐1−∆𝑐2𝜔∆𝑡1−𝜔∆𝑡2)       (16) 𝑉2 = 0          (17) 

This purely technical reformulation allows us to extend the model to include 

reference dependence. 

For SP1 the design ensures that the value differences have opposite signs 

themselves. Comparing alternatives 𝑠 and 𝑒, respondents value the cost difference 

they are offered by (𝑣(∆𝑐1) − 𝑣(∆𝑐2)) and the time difference by (𝑣(𝜃∆𝑡1) −𝑣(𝜃∆𝑡2)). It is then ‘rational’ to choose the slow alternative if |𝑣(∆𝑐1) − 𝑣(∆𝑐2)| >|𝑣(𝜃∆𝑡1) − 𝑣(𝜃∆𝑡2)|. This implies a model form: 𝑉𝑠 = 𝜇𝑆𝑃1. log (− 𝑣(∆𝑐1)−𝑣(∆𝑐2)𝑣(𝜃∆𝑡1)−𝑣(𝜃∆𝑡2))      (18) 𝑉𝑒 = 0          (19) 



 

13 
 

This is the model that is estimated, with separate dBF parameters for time and for 

cost, using the reported time and cost for the respondent’s recent trip as the 
reference points. It is of course possible that respondents use a different reference 

point (see e.g. the work of Hess et al., 2012), but the survey did introduce the choice 

tasks by asking respondents to think of their recent journey, and the use of these 

reference points is in line with most other empirical applications in the field. The 

effects we retrieved were meaningful and seem to support our approach. 

To introduce reference dependence in the specifications for SP2 and SP3, we can 

replace any of the terms in the utility functions by the corresponding 𝑣 for changes 

in the associated attribute, noting that if 𝜂, 𝛽, 𝛾 are constrained to zero, we get 𝑣(𝜃∆𝑥) = 𝜃∆𝑥.  For the example of a case with cost, time and delay (𝑑), we could 

write: 𝑉𝑗 = −𝜇𝑆𝑃x log(𝑐𝑗 + 𝜃𝑡𝑡𝑗 + 𝜃𝑑𝑑𝑗)      (20) 

and we could substitute value functions for these components: 𝑉𝑗 = −𝜇𝑆𝑃x log(𝑣(∆𝑐𝑗) + 𝑣(𝜃𝑡∆𝑡𝑗) +  𝑣(𝜃𝑑∆𝑑𝑗) + 𝜃𝑡𝑡0 + 𝜃𝑑𝑑0 + 𝑐0) (21) 

The inclusion of the base values in addition to the value functions inside 𝑉𝑗 is 

required, as, in contrast with the model for SP1, we are not working in relative 

valuation space. 

We can obtain the required generalisation by estimating or eliminating some or all 

of the parameters expressing reference dependence. In each case 𝜃 relates to the 

willingness-to-pay for changes in the specific attribute.  

An important discussion relates to the choice of reference values for the individual 

non-cost attributes8 in SP2 and SP3, where the situation is not as straightforward as 

for SP1.  

 For car SP2, we allowed for reference dependence only for travel time, in the 

absence of a value for travel time reliability for the reference trip. 

 For the three public transport SP2 games, we used the time for the reference trip 

as the reference value for the usual travel time for each of the five outcomes, 

with no reference points being available for early or late arrival.  

 For car SP3, we initially attempted the use of separate reference values for the 

three individual time components, but did not obtain conclusive results in 

relation to reference dependence, possibly due to respondents finding it difficult 

to report an accurate breakdown of congestion across parts of their journey. 

Better fit and more reasonable results were obtained by applying reference 

dependence to the total travel time, thus summing up the three components, 

while allowing for different 𝜃 values for the three valuations within the total 

travel time. For a given alternative j in task t, the value function for total time 

would then use: 𝜃𝑇𝑇,𝑗 = 𝜃𝐹𝐹𝑇𝐹𝐹𝑇𝑗𝑡+𝜃𝐿𝐶𝑇𝐿𝐶𝑇𝑗𝑡+𝜃𝐻𝐶𝑇𝐻𝐶𝑇𝑗𝑡𝐹𝐹𝑇𝑗𝑡+𝐿𝐶𝑇𝑗𝑡+𝐻𝐶𝑇𝑗𝑡                             (22) 

                                            
8 Cost was obviously treated the same way as in SP1. 
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 For SP3 crowding games, we used the travel time for the reference trip as the 

reference value, with the specific 𝜃 being used depending on the crowding level 

presented, i.e. 𝜃𝑇𝑇,𝑗 = ∑ 𝜃𝑇,𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝑘𝛿𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝑘,𝑗𝐾𝑘=1    (23) 

where 𝛿𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝑘,𝑗 = 1 if and only if crowding level k applies for alternative j.  

 For the bus time components SP3 game, no reference dependence was used for 

headway, while, for the three travel time components (free flow, slowed down 

and dwell time), an approach corresponding to that for car SP3 above was used. 

3.3. Joint modelling approach 

We allow for differences in valuations across games by using separate multipliers 

for each valuation in our models, relating them to the base 𝜃, say 𝜃0. This also tests 

for differences in interpretation for attributes that are common across games. Using 

the example of car, we then obtain six separate θ measures, e.g. 𝜃𝑆𝑃1,𝑉𝑇𝑇 =𝜁𝑆𝑃1,𝑉𝑇𝑇𝜃0, for the valuation of travel time in SP1, and 𝜃𝑆𝑃2,𝑉𝑇𝑇 = 𝜁𝑆𝑃2,𝑉𝑇𝑇𝜃0, for 

the valuation of average travel time in SP2, with the others being the standard 

deviation and the three separate travel conditions. A normalisation is required here, 

and we therefore set 𝜁𝑆𝑃1,𝑉𝑇𝑇 = 1, meaning that the base valuations relate most 

directly to SP1. 

We also make use of game-specific error scale parameters, as already outlined in 

the utility specifications for the separate games. With 𝑃𝑆𝑃1,𝑛, 𝑃𝑆𝑃2,𝑛 and 𝑃𝑆𝑃3,𝑛 being 

the likelihood of the observed set of choices in the three sets of stated choice 

scenarios, the joint probability of the choices observed for respondent n is given by: 𝑃𝑛 = 𝑃𝑆𝑃1,𝑛𝑃𝑆𝑃2,𝑛𝑃𝑆𝑃3,𝑛       (24) 

The main benefit of joint estimation across games is increased robustness for those 

parameters shared across games, which in our case is the set of covariates 

explaining deterministic heterogeneity in valuations as well as the random 

heterogeneity parameters. But it is also true that if parameters are not in fact the 

same across datasets, then there is no robustness to gain. In the context of a purely 

academic study, one would test statistically whether it is appropriate to pool 

datasets. However, in the present context, there was an a priori requirement to 

ensure consistency of values across games, as it would not be acceptable for 

implementation to have different income elasticities across different value of time 

components, for example. We do, as mentioned above, allow for difference in the 

base valuations across games, and enforce equality only in the covariates and in the 

degree of variation (in terms of the relationship between mean and variance) of the 

individual value of time measures. In Section 3.6, we provide some limited 

empirical evidence to offer support for this specification. 

3.4. Inclusion of deterministic heterogeneity 

An extensive specification search was undertaken to test the impact on valuations 

of a substantial range of person and trip covariates, as well as to account for 

potential design effects. Alongside size and sign effects, this latter group included 

testing for impacts of the position of the time attribute relative to the cost attribute, 

and the impact of whether the cheaper option was shown on the left or right. 
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All the person and trip characteristic effects were interacted in the same way for the 

individual 𝜃 measures used in different games. This equates to an assumption that 

their impact is consistent across the different types of components valued in our 

work, and that they relate primarily to an underlying willingness-to-pay, 

independently of the good being valued. This is of course a simplification, but one 

that was necessary in the context of this project.  

For the majority of the components above, multipliers on the VTT were estimated, 

with one category for the attribute being used as the base, for which the multiplier 

was then set to a value of 1. Using gender as the simplest example, we would then 

for example multiply 𝜃 by (𝜁𝑓𝑒𝑚𝑎𝑙𝑒𝑓𝑒𝑚𝑎𝑙𝑒𝑛 + 𝑚𝑎𝑙𝑒𝑛), where 𝜁𝑓𝑒𝑚𝑎𝑙𝑒 is an 

estimated multiplier on the VTT for female respondents (i.e. 𝑓𝑒𝑚𝑎𝑙𝑒𝑛 = 1 if 

respondent n is female), using male as the base. 

A different specification was used for four continuous effects, namely income and 

the cost, time and distance of the reference alternative, where an elasticity 

specification was used. Taking income as the example, the multiplier on 𝜃 would 

be given by: 

(𝑖𝑛𝑐40 )𝜆𝑖𝑛𝑐 𝛿𝑖𝑛𝑐𝑜𝑚𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 + 𝜁𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑒𝑑𝛿𝑖𝑛𝑐𝑜𝑚𝑒 𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑒𝑑 +𝜁𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝛿𝑖𝑛𝑐𝑜𝑚𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 + 𝜁𝑟𝑒𝑓𝑢𝑠𝑒𝑑𝛿𝑟𝑒𝑓𝑢𝑠𝑒𝑑    (25) 

With this specification, 𝑖𝑛𝑐 is a continuous income variable (expressed in thousands 

of pounds per annum), 𝜆𝑖𝑛𝑐 is an estimated income elasticity, 𝜁𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑒𝑑, 𝜁𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

and 𝜁𝑟𝑒𝑓𝑢𝑠𝑒𝑑 are multipliers on the VTT for respondents with unreported income, 

and the four 𝛿 terms are dummy variables (one of which is set to 1) categorising the 

respondents according to whether income was reported or not. The value of 40 

chosen as a denominator simply means that the base 𝜃 relates to a respondent with 

an annual income of £40,000. Tests were conducted to determine which of the 

different income variables was most appropriate for given purposes, where, across 

modes, we ended up with a specification using household income for commuting 

and for other non-work, with personal income used for business. 

A corresponding specification was used to estimate elasticities of 𝜃 with respect to 

the cost of the reference trip (with a base of £5), the travel time of the reference trip 

(with a base of 30 minutes) and the distance of the reference trip (with a base of 20 

miles).  

Given that any impacts of the positioning of the time/cost attributes and the 

cheap/expensive alternative are purely SP effects which we do not want to influence 

the estimated VTT, a multiplicative effects coding approach was used. Further, 

these effects were entered at the level of individual choices in individual games, 

unlike the other covariates. Taking the example of whether the cheap option was 

presented on the left or the right, the additional multiplier on the value of the game 

and task specific 𝜃 in choice task t would be given by: 

𝜁𝑐ℎ𝑒𝑎𝑝 𝑙𝑒𝑓𝑡𝛿𝑐ℎ𝑒𝑎𝑝 𝑙𝑒𝑓𝑡𝑡 +  1𝜁𝑐ℎ𝑒𝑎𝑝 𝑙𝑒𝑓𝑡 (1 − 𝛿𝑐ℎ𝑒𝑎𝑝 𝑙𝑒𝑓𝑡𝑡)    (26) 
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where 𝛿𝑐ℎ𝑒𝑎𝑝 𝑙𝑒𝑓𝑡𝑡 is set to 1 if and only if the cheap option is presented on the left 

in task t. This specification ensures that the base estimates of 𝜃 relates to the average 

situation (geometric mean) in the data according to how often the cheap option is 

presented on the left or on the right. 

Other than the interaction of the covariates with 𝜃, we also allowed for the order of 

the games to be interacted with the scale parameters.  

Finally, we also tested the inclusion of constants for the alternative presented on the 

left directly in the utility functions in SP2 and SP3, along with a constant for any 

alternatives with no travel time variability in the SP2 games. These terms, by being 

entered directly into the utility functions, do not affect the VTT measures. 

The inclusion of generic covariate effects across different valuations is complicated 

by the role of the β parameters (remembering that 𝜂 and 𝛾 do not enter into the WTP 

calculations). Using the VTT in car SP1 as an example, we would have: 

𝜃𝑆𝑃1,𝑉𝑇𝑇 = 𝜃0 (𝜁𝑆𝑃1,𝑉𝑇𝑇 ∏ 𝑧𝑚𝜆𝑚𝑚 ∏ 𝜁𝑛𝑧𝑛𝑛 )1 𝜅𝑆𝑃1,𝑉𝑇𝑇⁄
    (27) 

where 𝜃0 would relate to a respondent with the base values for all covariates in a 

single game model, 𝜆𝑚 is the elasticity for a continuous covariate 𝑧𝑚, 𝜁𝑛 is the 

multiplier applied for a discrete covariate 𝑧𝑛 when its value is 1, and 𝑚 and 𝑛 run 

over the continuous and discrete covariates respectively. 

The inclusion of the exponent 1 𝜅𝑆𝑃1,𝑉𝑇𝑇⁄  ensures that the impacts 𝜆 and 𝜁 apply 

directly to the VTT for SP1, as: 𝑉𝑇𝑇𝑆𝑃1 = 𝜃𝑆𝑃1,𝑉𝑇𝑇𝜅𝑆𝑃1,𝑉𝑇𝑇|∆𝑡|𝜅𝑆𝑃1,𝑉𝑇𝑇−1     

               = 𝜃0𝜅𝑆𝑃1,𝑉𝑇𝑇𝜁𝑆𝑃1,𝑉𝑇𝑇 ∏ 𝑧𝑚𝜆𝑚𝑚 ∏ 𝜁𝑛𝑧𝑛𝑛 . |∆𝑡|𝜅𝑆𝑃1,𝑉𝑇𝑇−1,   (28) 

This formulation ensures that the estimates of the impacts of the covariates as well 

as the game-specific multipliers relate directly to all the individual valuations, as 

do the standard errors. This re-parameterisation is required given that the value of 𝜅 can differ across games and across valuations within a given game.  

As a result of the differences in size and sign effects across valuations, the game-

specific multipliers, e.g. 𝜁𝑆𝑃1,𝑉𝑇𝑇, can also not be directly understood to explain the 

differences in the valuations across games. Indeed, the differences in say the VTT 

between SP1 and SP2 would be given by: 𝑉𝑇𝑇𝑆𝑃1 𝑉𝑇𝑇𝑆𝑃2⁄ = 𝜁𝑆𝑃1,𝑉𝑇𝑇 𝜁𝑆𝑃2,𝑉𝑇𝑇⁄ 𝜃0𝜅𝑆𝑃1,𝑉𝑇𝑇−𝜅𝑆𝑃2,𝑉𝑇𝑇|∆𝑡|𝜅𝑆𝑃1,𝑉𝑇𝑇−𝜅𝑆𝑃2,𝑉𝑇𝑇  (29) 

which is thus not as simple as 
𝜁𝑆𝑃1,𝑉𝑇𝑇 𝜁𝑆𝑃2,𝑉𝑇𝑇⁄  . While 𝜃0𝜅𝑆𝑃1,𝑉𝑇𝑇−𝜅𝑆𝑃2,𝑉𝑇𝑇 is simply 

a constant which can be calculated, |∆𝑡|𝜅𝑆𝑃1,𝑉𝑇𝑇−𝜅𝑆𝑃2,𝑉𝑇𝑇 is a function of ∆𝑡, and as 
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a result, the ratios of different valuations depend on the assumptions made in 

relation to ∆𝑡. This point is addressed in Section 5 to follow. 

3.5. Incorporating random heterogeneity 

We finally allow for random heterogeneity in 𝜃0, i.e. the base value before the 

incorporation of covariates and reference dependence. This means that the 

contribution to the likelihood function by person n is now given by: 

𝑃𝑛 = ∫ 𝑃𝑆𝑃1,𝑛(𝜃0)𝑃𝑆𝑃2,𝑛(𝜃0)𝑃𝑆𝑃3,𝑛(𝜃0)𝜃0 𝑓(𝜃0)𝑑𝜃0    (30) 

where 𝑓(𝜃0) is the density function for 𝜃0. 

For the present study, after extensive testing, we settled on the use of a log-uniform 

distribution, which has a shorter tail than the lognormal distribution. While used in 

tests by Fosgerau (2006), our work seems to present the first large scale application 

using this distribution. In the same way that a variate x has a lognormal distribution 

if y = log(x) is normally distributed, we define x as log-uniformly distributed if y = 

log(x) is uniformly distributed. 

Denote a as the lower bound and b as the spread of a uniform distribution, then the 

mean of the resulting log-uniform distribution is given by:  𝐸(𝜃0) = exp(𝑎+𝑏)−exp(𝑎)𝑏         (31) 

and the variance by: 

𝑉𝑎𝑟(𝜃0) = exp (2𝑎) [exp(2𝑏)−12𝑏 − (exp(𝑏)−1)2𝑏2 ]    (32) 

With the above specification, the heterogeneity is entered at the respondent level 

rather than the game level, meaning that the integration over the distribution of 𝜃0 

is carried out over all choices for the respondent in the joint games. We estimated 

the model using simulated log-likelihood, with 500 Halton draws used per 

respondent. To investigate the appropriateness of using the log-uniform 

distribution, we conducted tests showing improvements in fit over the lognormal 

distribution, as well as a lack of substantial improvements by adding semi-

nonparametric terms using the Fosgerau & Mabit (2013) approach (detailed results 

available on request).  

The Danish and Swedish studies discussed the issue of tails of random distributions 

in great detail. They recognised that while allowing for random heterogeneity yields 

important benefits, it can also lead to issues with the right hand tail of the value of 

time distribution, where the tail obtained by the parametric distribution may have 

little or no support in the data. In particular, they observed a non-trivial share of the 

estimated distribution being substantially higher than the highest presented trade-

offs. While this problem can be in part addressed by presenting wider trade-offs (as 

in the Swedish study), they also showed that a need may arise to truncate the 

estimated distribution. In the present study, we proceeded without truncation or 

censoring of results for a number of key reasons. 
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Firstly, censoring is an inherently unsatisfactory process. It implies the estimation 

of a model and then changing the outputs from that estimation process with a view 

to rejecting a few ‘inconvenient’ values. It is then possible that the results for other 

model parameters do not relate to the censored results; i.e. the estimated model no 

longer gives an optimal fit to the data. In other words, if say censoring was applied 

during estimation for the value of time distribution, then it is also likely that 

different values would be obtained for key covariates such as income elasticities.  

Secondly, our models were estimated jointly across all games, while the other 

studies used random heterogeneity only at the level of an individual game, in 

particular SP1, which would substantially increase the scope for non-trading on 

time and lead to long tails of the estimated distribution. The joint estimation on all 

games also prevents us from easily conducting non-parametric analysis of the data 

as performed in the Scandinavian work (Fosgerau, 2007), i.e. inferring the 

distribution of the VTT from ‘looking’ at the data. 

Thirdly, the use of the log-uniform distribution itself reduces the issues with 

extreme tails, with the upper limit not being infinity.  

Fourthly, the calculation of an appropriate censoring point would be arbitrary and, 

given the joint estimation across three games, could not use the simple boundary 

VTT from SP1, as was done in the Scandinavian work. 

Finally, the wide ranges used in our design work gave extensive coverage to the 

domain of possible VTT values to be revealed in the models. 

To further investigate the suitability of the ranges offered, we conducted the test 

proposed by Fosgerau et al. (2007a) in the Danish study. This test uses the final 

estimated model and applies it to the choice data for SP1 to compute the probability 

for the expensive alternative in each choice task. If the range of observed 

probabilities for the expensive alternative covers the [0,1] range, this gives an 

indication that the estimated VTT distribution is supported by the data. The results 

of this process are reported in Table 1. A word of caution is required here. The 

models were estimated jointly across all three games, but this simple test is only 

possible for SP1 (given the simple two-attribute trade-off and log-WTP space 

setup). There is thus a possibility that values higher than those supported in SP1 are 

supported in SP2 and SP3, as mentioned in the second point above. Nevertheless, 

the ranges in probabilities revealed by this test support our argument that the trade-

offs presented were wide enough, with the important upper tail of the distribution 

being observed beyond the 98.5% fractile in all six samples, and beyond the 99.5% 

fractile in four of the six samples. For further interpretation of this test, see Fosgerau 

et al. (2007a). 

 

Table 1: Range of estimated probabilities for expensive alternative in SP1 

 
Range of probabilities for expensive option in SP1 using 

final model 

 
Car Rail 

Commute [0.0167,0.9874] [0.0007,0.9984] 

Employees’ business [0.0047,0.9964] [0.0008,0.9979] 

Other non-work [0.0118,0.9846] [0.0237,0.9989] 
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For bus and ‘other PT’, we were additionally able to estimate random scale 
heterogeneity across respondents. A possible reason for our inability to estimate 

such scale heterogeneity also for car and rail is that, with the longer trips for these 

modes, the main source of scale heterogeneity would be distance based, and this is 

already captured by the multiplicative models. 

In particular, to introduce random scale heterogeneity into the bus and ‘other PT’ 
games, we used: 

𝜇𝑆𝑃𝑗 = 𝑒𝜇𝑙𝑜𝑔(𝜇𝑆𝑃𝑗)+𝜎𝑙𝑜𝑔(𝜇)𝜉𝑁
       (33) 

where 𝜉𝑁 is a standard normal random variate, and where the resulting scale 

parameters now follow a lognormal distribution.  

3.6. Overview and additional points 

The discussions in the preceding subsections have looked at the individual model 
components in turn. While a joint estimation was used across games, differences 
arise in the specification of the individual components for each game. An overview 
of the model specification is given in Table 2, linking back to the individual sub-
sections and equations therein. 

Table 2: Overview of model specification 

 SP1 SP2 SP3 

Underlying error structure log-wtp 

space 

eqns (1) & 

(2) 

multiplicative WTP space 

eqn (6) for SP1/SP3 and car SP2, eqn 

(10) for other SP2 

Implementation of dBF (size and 

sign effects) 

eqns (18) & 

(19) 

eqn (21), using specification (22) for car 

SP3 and (23) for PT SP3 

Specification of deterministic 

heterogeneity 

e.g. eqns (25) & (26) 

Choice probabilities before mixing eqn (3) eqn (7) 

Joint choice probability before 

mixing 

eqn (24) 

Specification of random 

heterogeneity 

𝜃0 = 𝑒𝑟𝑢 , 𝑤ℎ𝑒𝑟𝑒 𝑟𝑢 ∼ 𝑈[𝑎, 𝑎 + 𝑏] 
Choice probability with mixing eqn (30) 

Value of Travel Time (for game x) 𝜃0𝜅𝑆𝑃𝑥,𝑉𝑇𝑇𝜁𝑆𝑃𝑥,𝑉𝑇𝑇 ∏ 𝑧𝑚𝜆𝑚𝑚 ∏ 𝜁𝑛𝑧𝑛𝑛 . |∆𝑡|𝜅𝑆𝑃𝑥,𝑉𝑇𝑇−1 

Our joint estimation allows for differences in valuations across the individual games 
but assumes that the underlying heterogeneity and socio-demographic effects are 
proportional to these differences. This is of course a strong assumption, especially 
in relation to SP2, as the correlation between the value of reliability and the value 
of time may not be as strong as say the correlation between the values of time in 
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different travel conditions. To test the impact of our joint specification, we 
performed a simple test where we ran the specification of the final car commute 
model on the SP1 data only, and this led to a change in the VTT by only 3.4%, 
suggesting that the use of game specific multipliers was sufficient to avoid any 
potential biasing impact of individual games, e.g. SP2, on the overall values. This 
justifies the use of a joint modelling approach, given the benefits in terms of 
covariates. 

 

4. Estimation results for joint models 

We now proceed with the presentation of the estimation results, where, for space 

reasons, the presentation in this paper focusses on the results for car and rail 

travellers. In general, parameters with a low level of statistical significance were 

removed from the model, with the exception of a number of key multipliers where 

we did not wish to impose equality with base categories. Parameters that did not 

have a significant estimate across any of the three purposes in estimation are not 

shown in the tables which follow; this applies for example to a large number of the 

dBF parameters, in addition of course to many of the covariates tested, whether 

traveller, trip or design related. 

4.1. Results for car 

The results for the car models for the three travel purposes are presented in Table 

3, and can be summarised as follows: 

parameters of base 𝜽𝟎 distribution 

 The models retrieve significant random heterogeneity for all three purpose 

segments as can be seen by the statistically significant and large estimates for 𝑏log (𝜃0), which gives the range of the underlying uniform distributions, while 𝑎log (𝜃0) gives the minimum value of the underlying distribution, so that its 

exponential gives the minimum value of  𝜃0. 

game-specific 𝜽𝟎 multipliers 

 As the game-specific multipliers cannot directly be interpreted as the 

differences in the valuations across games (cf. earlier discussion) analysis of 

the differences across games needs to happen at the implementation stage, on 

the basis of specific assumptions about Δt (see Section 5). 

key elasticities 

 Significant positive income elasticities on the various VTT measures are 

obtained across all three purposes; these are highest for other non-work, and 

lowest for employees’ business.  
 There are significant positive elasticities on the valuations in relation to 

reference cost and negative elasticities in relation to reference time, with the 

cost elasticities generally larger in absolute value than the time elasticities, 

implying that the VTT is higher for longer distance trips (which tend to be 

more expensive and take longer). The elasticities are strongest for other non-

work, and weakest for business. These time and cost elasticities can be related 
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to the damping effects on longer trips, where heterogeneity in valuations 

implies that sensitivity to both time and cost diminishes on longer trips, so 

cost increases would increase VTT, while time increases would reduce VTT.  

 A significant distance elasticity is observed only for employees’ business, 
which is positive, leading to higher valuations on longer trips even with time 

and cost being held constant. The 2003 study specified the cost elasticity as a 

proxy for distance, as no distance information had been collected in the 

survey, and hence could not attempt to distinguish between the two effects, 

but it has also been argued before that impacts of cost and time make more 

behavioural sense than a pure distance impact (Daly, 2010). These effects can 

be plausibly related to self-selection by travellers for the journeys concerned. 

traveller covariates 

 There are differences in VTT for travellers who do not report income, with 

separate effects for different groups. 

 Female commuters show higher valuations, while younger travellers, all else 

being equal, also have higher valuations for commute and for other non-work, 

where, for the latter, this captures both of the lowest two age categories. 

 There are lower valuations for households with two or more adults in the other 

non-work segment. 

 Households owning at least one car have higher valuations for other non-work 

trips, while households with two or more motorcycles have much lower 

valuations in the same segment. 

 Self-employed commuters have higher valuations, as do commuters where 

travel costs are paid by the company. 

 For employees’ business trips, the valuations are higher if the company buys 
savings come what may, and lower if it does not buy time savings. 

 For employees’ business trips, valuations are lower if self-employed, and then 

lower still if self-employed costs are not covered. 

trip covariates 

 Valuations are higher on other non-work trips with at least one night away 

from home. 

 Commuters travelling with others have lower valuations. 

 Commuters have lower valuations when driving on rural roads. 

 The impact of congestion during the reference trip is only evident for 

commuters and other non-work, and the statistical significance of the effects is 

low, albeit that we see higher valuations for respondents with more congestion 

on their reference trips. 

 For employees’ business travel with a London origin and destination, we 
observe higher valuations, although the statistical significance of the effect is 

low. 
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design covariates 

 We observe lower valuations when the cheap option is presented on the left 

for both SP1 and SP3 for commute and other non-work, where the effects are 

less strong and not as significant for SP3 as for SP1, or for other non-work as 

opposed to commute. 

 Valuations are lower in SP1 for employees’ business if time is shown above 
cost. 

 The scale (i.e. the inverse of the variance of the random error term) for SP2 is 

lower for commuters if SP2 is shown before SP3, and higher for employees’ 
business. 

scale parameters 

 The values for the scale parameters should not be compared between SP1 and 

SP2/SP3 given the different modelling approach that was used for SP1. 

 No specific insights could be obtained from comparing the relative values of 

μSP2 and μSP3 across purposes. 

dBF parameters 

 There are sign effects (gain-loss asymmetry) for time in SP1 and SP2 for 
commuters and SP1 for other non-work, while we note sign effects for cost for 
commuters in SP1 and SP3, and in SP2 for employees’ business and other 
non-work. This means that, in the contexts noted, valuations vary depending 
on whether there is a time/money gain or loss. 

 We observe size effects for time in SP1 and SP2 across all three purposes, and 

for cost in SP1 for employees’ business and other non-work. This means that, 

in the contexts noted, valuations vary by the size of the time/cost change away 

from the reference values. 

 There is asymmetric damping for time in SP1 across all three purposes, and in 

SP2 for employees’ business and other non-work, while, for cost, asymmetric 

damping is observed only for employees’ business and then only in SP3. 
Together with the findings for the sign effects, this could suggest a more 

binding constraint on time than on money, at least in the short term. 
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Table 3: estimation results for joint car models 

 Commute  Employees’ business  Other non-work 

Respondents 922  917  977 

Observations 13,830  13,755  14,655 

Final log-likelihood -7,332.67  -6,933.43  -7,585.74 

adjusted ρ2 0.23  0.27  0.25 

         

parameters of base 𝜃0 distribution est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 𝑎log (𝜃0) -0.3559 -1.74  0.5150 3.61  -0.8840 -2.65 𝑏log (𝜃0) 3.7060 15.62  3.3727 18.31  3.7141 19.16 

         

game specific 𝜃0 multipliers est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

SP1 travel time 1 -  1 -  1 - 

SP2 travel time 1.5988 4.05  1.1396 0.82  2.1875 5.52 

SP2 std dev of travel time 0.5803 -4.75  0.8765 -1.04  0.8118 -1.48 

SP3 free flow 0.6968 -2.26  0.5718 -4.54  0.5008 -4.43 

SP3 light congestion 0.9770 -0.14  0.9206 -0.74  0.8801 -0.90 

SP3 heavy congestion 1.8557 2.98  1.7076 4.23  1.9955 4.05 

         

key elasticities est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 

income elasticity (λincome) 0.5797 6.10  0.3003 3.64  0.6819 7.76 

distance elasticity (λdistance) 0 -  0.2390 3.41  0 - 

cost elasticity (λcost) 0.6790 3.70  0.4511 2.63  1.0492 6.56 

time elasticity (λtime) -0.6241 -2.62  -0.4538 -2.29  -0.9273 -4.72 

         

traveller covariates (multipliers on θ unless stated) est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

unstated income (ζincome not stated) 2.4775 0.65  0.5034 -2.41  1.0117 0.03 

unknown income (ζincome unknown) 1.4264 1.16  9.3098 2.90  0.2998 -5.89 

refused income (ζincome refused) 0.7697 -1.30  0.5812 -1.43  0.8644 -0.77 

female (base=male) 1.3674 2.26       
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aged 17-29 (base=30+) 1.3645 1.76       

aged 17-39 (base=40+)       1.4530 2.52 

household with 2+ adults (base=1 or no adults)       0.6980 -3.47 

1+ car owned (base=no cars)       2.6826 1.91 

2+ motorcycles owned (base=1 or 0 motorcycles)       0.4668 -1.65 

Self-employed (base=any other) 1.6669 1.97       

Travel costs paid by company (base=respondent or other paid) 2.2194 3.09       

Company would buy savings come what may (base=buys if benefits>costs, or unknown)    1.3044 1.34    

Company would not buy time savings (base=buys if benefits>costs, or unknown)    0.4435 -9.51    

Self-employed costs not covered (base=costs covered)    0.5629 -3.04    

Self-employed (base=paid employment)    0.6767 -2.56    

         

trip covariates (multipliers on θ unless stated) est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

1+ nights away (base=day return)       1.5522 2.14 

travelling with others (base=travelling alone) 0.6690 -3.37       

driving on rural roads (base=urban or motorway) 0.8119 -1.31       

light congestion (base=free flow) 1.4025 1.57     1.3554 1.51 

heavy congestion (base=free flow) 1.5604 1.78     1.4621 1.57 

trip with London base origin & destination (base=any other)    1.7530 1.42    

         

design covariates (multipliers on θ unless stated) est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

SP1 cheap option on left (multiplicative effects coding) 0.8842 -3.26     0.9259 -2.00 

SP3 cheap option on left (multiplicative effects coding) 0.9282 -1.37     0.9537 -0.85 

SP1 time shown above cost (multiplicative effects coding)    0.8878 -2.52    

SP2 scale (μSP2) multiplier if SP2 before SP3 (multipl. effects coding) 0.8938 -2.63  1.1531 2.52    

         

scale parameters est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 

μSP1 1.1975 14.71  1.7354 16.90  1.3014 16.53 

μSP2 7.7383 18.05  6.3695 10.95  7.5389 16.92 

μSP3 5.6636 14.65  7.2603 16.16  5.9410 17.07 

         

dBF parameters est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 
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βt,SP1 -0.4000 -3.64  -0.1141 -1.61  -0.1366 -1.91 

βt,SP2 -0.1564 -2.84  -0.4487 -5.10  -0.2435 -4.96 

βc,SP1    0.1013 1.83  0.1032 1.78 

γt,SP1 -0.2127 -3.52  -0.1293 -3.58  -0.1075 -2.75 

γt,SP2    -0.0627 -1.94  -0.0606 -1.79 

γc,SP3    -0.1581 -2.11    

ηt,SP1 0.2573 4.34     0.2237 4.20 

ηt,SP2 0.0874 1.43       

ηc,SP1 0.1267 2.18       

ηc,SP2    0.1959 2.15  0.2244 2.88 

ηc,SP3 0.2771 1.51       
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4.2. Results for rail 

The results for the rail models are presented in Table 4 and can be summarised as follows: 

parameters of base 𝜽𝟎 distribution 

 The models retrieve significant random heterogeneity for all three purposes.  

game specific 𝜽𝟎 multipliers 

 The multipliers (relative to the time measured in SP1) are all of the correct sign, with 

the negative multipliers for early arrival relating to a reduction in trip time.  

 We can draw some conclusions in relation to the crowding multipliers in SP3 as the 

same dBF parameters apply to all these multipliers, where we note a monotonic 

increase in sensitivity to different levels of crowding for both seated and standing 

passengers. Across purposes however, the sensitivity to highest crowding level for 

seated passengers is higher than the sensitivity to the lowest crowding level for 

standing passengers, and in fact for the two lowest levels of crowding for standing 

passengers for commute and other non-work. For other non-work, the sensitivity to the 

two lowest levels of crowding for seated passengers is constant.  

key elasticities 

 Significant positive income elasticities on the various VTT measures are obtained 

across all three purposes. 

 A distance elasticity is observed only for employees’ business, which is positive but 

not highly significant. 

 There are significant positive elasticities on the valuations in relation to cost, and 

negative elasticities in relation to time, implying that the VTT is higher for longer 

distance trips.  

traveller covariates 

 A diverse picture emerges for the various multipliers for respondents without income 

information, where the only highly significant effect is a much lower set of valuations 

for commuters with unstated income. 

 Female respondents on other non-work trips have lower valuations. 

 There are higher valuations for households with three or more children in the other 

non-work segment, and lower valuations for households with three or more adults in 

the commute segment. 

 For commute trips, valuations are higher if costs are paid by the company or any other 

party, while, for other non-work trips, they are higher if costs are paid by the company. 

 For employees’ business trips, the valuations are higher if the company buys savings 
come what may, and lower if it does not buy time savings or if the policy is unknown 

to the respondent. 

 For employees’ business trips, valuations are lower if self-employed, especially for 

blue collar. 

trip covariates 

 Valuations are lower for commuters on trips with overnight stays, higher for other non-

work for one-night return trips, and lower for employees’ business on trips with 
multiple nights away from home. 
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 Lower frequency leads to lower valuations for other non-work (if less than daily) and 

commute (if less than monthly). 

 Valuations are lower for commute and employees’ business for one-way trips. 

 Valuations are lower for weekend travel for other non-work. 

 Valuations are lower for travellers without a reserved seat for other non-work. 

 For employees’ business travel with a London origin and destination, we observe 

higher valuations. 

design covariates 

 We observe lower valuations when the cheap option is presented on the left for SP1 for 

other non-work. 

SP2 specific effects 

 The negative values for α show risk seeking behaviour across all purposes. 

 There is an overall preference for alternatives with constant travel times, i.e. no 

variability. 

scale parameters 

 The values for the scale parameters should not be compared between SP1 and SP2/SP3 

given the different modelling approach that was used for SP1. 

dBF parameters 

 There are sign effects (gain-loss asymmetry) for time in SP1 for commuters and 

employees’ business, for time in SP2 for commute and other non-work, for cost in SP2 

for commute and other non-work, and for cost for commute in SP3.  

 We observe size effects for time in SP1 and SP3 across all three purposes, and for cost 

in SP1 for employees’ business and in SP2 for all purposes. 
 There is asymmetric damping for time in SP1 for commute and other non-work, and for 

time in SP3 and cost in SP2 for commute and employees’ business. Together with the 
findings for the sign effects, this could suggest a more binding constraint on time than 
on money, at least in the short term.
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Table 4: estimation results for joint rail models 

 Commute  Employees’ business  Other non-work 

Respondents 847  945  996 

Observations 12,340  13,390  14.275 

Final log-likelihood -6,016.62  -6,903.61  -7,371.27 

adjusted ρ2 0.29  0.25  0.25 

         

parameters of base 𝜃0 distribution est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 𝑎log (𝜃0) 0.4305 4.15  0.6025 5.21  0.8655 4.55 𝑏log (𝜃0) 2.7356 18.92  2.6219 20.66  2.8442 22.52 

         

game specific 𝜃0 multipliers est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

SP1 travel time 1 -  1 -  1 - 

SP2 travel time 1.2356 2.58  1.8071 4.45  1.0877 0.70 

SP2 early delay -2.1925 -2.83 (vs -1)  -2.7967 -3.28 (vs -1)  -2.5482 -3.49 (vs -1) 

SP2 late delay 3.5360 5.07  4.9920 5.36  3.4967 6.10 

SP3 seated with 50% Load Factor 0.7033 -3.07  0.8509 -1.20  
0.7336 -2.42 

SP3 seated with 75% Load Factor 0.7621 -2.45  0.8618 -1.08  

SP3 seated with 100% Load Factor 0.9695 -0.29  1.1280 0.89  1.0242 0.19 

SP3 seated with 1 pass standing per m2 1.0543 0.50  1.2790 1.83  1.1642 1.17 

SP3 seated with 3 pass standing per m2 1.2704 2.24  1.5289 3.13  1.4280 2.69 

SP3 standing with 0.5 pass per m2  1.1216 0.97  1.4506 2.40  1.2417 1.51 

SP3 standing with 1 pass per m2 1.1574 1.19  1.5612 2.79  1.2962 1.69 

SP3 standing with 2 pass per m2 1.2750 1.88  1.7642 3.20  1.6055 3.04 

SP3 standing with 3 pass per m2 1.5246 3.25  1.8148 3.00  1.8298 3.66 

SP3 standing with 4 pass per m2 1.8026 4.49  2.2878 4.05  2.2197 4.74 

         

key elasticities est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 

income elasticity (λincome) 0.2979 4.44  0.3566 5.69  0.2936 6.10 

distance elasticity (λdistance) 0 -  0.0585 1.15  0 - 

cost elasticity (λcost) 0.6640 7.82  0.7428 12.67  0.5983 10.35 

time elasticity (λtime) -0.2753 -2.49  -0.3479 -3.87  -0.5406 -7.20 
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traveller covariates (multipliers on θ unless stated) est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

unstated income (ζincome not stated) 0.3871 -5.58  1.0728 0.24  0.6251 -1.50 

unknown income (ζincome unknown) 1.5947 0.82  1 -  1.1516 0.52 

refused income (ζincome refused) 0.6543 -1.62  2.4822 0.93  1.1719 0.59 

female (base=male)       0.8429 -2.37 

household with 3+ children (base=2 or fewer children)       1.6202 2.10 

household with 3+ adults (base=2 or fewer adults) 0.8539 -1.64       

Travel costs paid by company or other (base=respondent paid) 2.0689 4.16       

Travel costs paid by company (base=respondent or other paid)       1.6473 2.39 

Company would buy savings come what may (base=buys if benefits>costs)    1.4692 2.09    

Company policy on savings unknown (base=buys if benefits>costs)    0.5616 -2.62    

Company would not buy time savings (base=buys if benefits>costs)    0.3504 -19.00    

Self-employed briefcase (base=paid employment)    0.5489 -5.82    

Self-employed blue collar (base=paid employment)    0.3612 -6.64    

         

trip covariates (multipliers on θ unless stated) est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

1+ nights away (base=day return) 0.5676 -5.22       

1 night away (base=day return or 2+ nights away)       1.4008 2.40 

2+ nights away (base=day return or 1 night away)    0.7714 -2.29    

frequency less than once per day (base=daily)       0.6477 -2.75 

frequency less than once per month (base=1 or more times per month) 0.7227 -2.60       

one-way trip (base=return trip) 0.6023 -2.80  0.6996 -2.04    

weekend travel (base=weekday travel)       0.6439 -3.30 

no reserved seat (base=reserved seat)       0.8514 -1.90 

trip with London base origin & destination (base=any other)    1.9416 2.86    

         

design covariates (multipliers on θ unless stated) est. rob t-rat (1)  est. rob t-rat (1)  est. rob t-rat (1) 

SP1 cheap option on left (multiplicative effects coding)       0.9490 -2.13 

         

SP2 specific effects est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 

risk averseness parameter (α)  -0.0395 -3.11  -0.0070 -2.48  -0.0279 -3.81 
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constant for alternatives with zero variability (expressed in £) 0.4465 4.60  0.3814 2.12  0.5682 5.44 

         

scale parameters est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 

μSP1 1.8210 18.90  2.1018 20.06  1.8857 21.80 

μSP2 7.2521 9.91  10.8840 10.40  6.9026 12.09 

μSP3 6.5578 13.48  7.1558 11.31  6.6187 12.93 

         

dBF parameters est. rob t-rat (0)  est. rob t-rat (0)  est. rob t-rat (0) 

βt,SP1 -0.2137 -3.31  -0.1462 -3.62  -0.1327 -2.79 

βt,SP3 -0.2418 -2.51  -0.1421 -3.14  -0.1861 -3.72 

βc,SP1    0.0683 1.75    

βc,SP2 0.2478 3.78  0.1351 1.95  0.1587 2.84 

γt,SP1 -0.1093 -2.39     -0.1364 -5.19 

γt,SP3 -0.1216 -2.00  -0.1016 -3.48    

γc,SP2 0.3456 3.40  -0.2641 -3.61    

ηt,SP1 0.0951 1.63  0.1109 3.87    

ηt,SP2 0.1408 2.18     0.2858 4.40 

ηc,SP2 0.2058 2.01     0.2319 1.54 

ηc,SP3 0.1379 1.90       
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5. Translation into values for appraisal 

5.1. Sample enumeration work and error calculations 
The eleven estimated behavioural models (i.e. one for each available mode-purpose 

combination, noting that business travel for bus was excluded from our scope) relate 

to the estimation sample alone. Despite its broad representativeness, reweighting is 

required to produce fully representative values. To this end, an R-based 

Implementation Tool was programmed matching each observed trip in the English 

National Travel Survey (NTS) to its corresponding behavioural model. The NTS is 

an established series of household surveys of personal travel in Great Britain, 

designed to track the long-term development of trends in travel. NTS data is 

collected via interviews with people in their homes and a diary that they keep for a 

week to record their travel. The NTS covers travel by all age groups, including 

children. In each year, diary data was collected from over 7,700 households, 

covering over 18,000 individuals. We used NTS data for the years 2010-2012, 

where fares and incomes have been adjusted to 2014 prices and values using CPI 

for fares and CPI and real income growth for incomes. The response rates from the 

NTS survey were 60% in 2010 and 61% in 2011 and 2012. 

For each trip in the NTS, the travel cost and travel time were identified in 

combination with the corresponding socio-economic characteristics, and 

appropriate values were then calculated for each of the different valuations from 

our models, along with accompanying error measures.  

 

Trip specific mean and variance in VTT    
The implemented models, using a mixed logit formulation, do not produce a single 

estimate of VTT for a particular trip but rather a distribution. For the 

Implementation Tool, the mean and variance of the distribution are used to 

represent the distribution. Based on (28) and the estimated parameters a and b of 

the log-uniform distribution, the mean and variance of the value of time for trip i 

(using SPx) are: 

 𝐸(𝑉𝑇𝑇𝑖) = exp(𝜅𝑆𝑃𝑥𝑎) exp(𝜅𝑆𝑃𝑥𝑏)−1𝜅𝑆𝑃𝑥𝑏 𝜁𝑆𝑃𝑥,𝑉𝑇𝑇 ∏ 𝑧𝑚𝑖𝜆𝑚𝑚 ∏ 𝜁𝑛𝑧𝑛𝑖𝑛 |Δ𝑡|𝜅𝑆𝑃𝑥−1 (34) 

𝑉𝑎𝑟(𝑉𝑇𝑇𝑖) = exp(2𝜅𝑆𝑃𝑥𝑎) [exp(2𝜅𝑆𝑃𝑥𝑏)−12𝜅𝑆𝑃𝑥𝑏 − (exp(𝜅𝑆𝑃𝑥𝑏)−1)2 𝜅𝑆𝑃𝑥2𝑏2 ] (𝜁𝑆𝑃𝑥,𝑉𝑇𝑇 ∏ 𝑧𝑚𝑖𝜆𝑚𝑚 ∏ 𝜁𝑛𝑧𝑛𝑖𝑛 |Δ𝑡|𝜅𝑆𝑃𝑥−1)2
 

          (35) 

Note that the above measure of variance does not relate to estimation uncertainty 

and sampling error, but only to unobserved heterogeneity in preferences across the 

population9.  

 

Sample enumeration 

VTT estimates were calculated by sample enumeration using a sample of trips 

drawn from the NTS. The NTS trips are weighted by expansion factors provided 

                                            
9 To explain the rationale for the within-record variance, we note that for a given person we do not 

know where that person is positioned on the estimated distribution of unobserved preference 

heterogeneity. Hence the corresponding variance in (35) denotes this uncertainty related to a specific 

record. 
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with the NTS survey10 and the trips can additionally be distance weighted, so that 

the VTT from sample enumeration represents the VTT for an average kilometre.  

This approach implies calculating the distance-weighted VTT for a given 

population segment given values for E(VTT) and 𝛥𝑡: 𝑉𝑇𝑇𝑆̅̅ ̅̅ ̅̅ ̅(Δ𝑡) = ∑ 𝑤𝑖𝑙𝑖𝐸(𝑉𝑇𝑇𝑖(Δ𝑡))𝑖∈𝑆 ∑ 𝑤𝑖𝑙𝑖𝑖∈𝑆       (36) 

where we take the sum over every NTS trip i in the segment 𝑆, with wi being the 

NTS expansion weight for the trip and li being the relevant trip length. The expected 

VTT depends on the covariates of trip i ensuring variation across records. 

In discussing the variation of VTT, we need to distinguish carefully between the 

variation of VTT in the population, which we describe in our model, and the error 

arising in the model because the parameters are estimated with error. First, we focus 

on the population variance T of VTT, which comprises the within-record variance 

T1 and the between-record variance T2, which are independent, so that T=T1+T2. 

The within-record variance is generated by the mixed logit model and was already 

defined above (35). The between-record variance can be calculated as: 

 𝑇2 = ∑ 𝑤𝑖𝑙𝑖(𝑉𝑇𝑇𝑖(Δ𝑡)−𝑉𝑇𝑇̅̅ ̅̅ ̅̅ 𝑆(Δ𝑡))𝑖∈𝑆 2∑ 𝑤𝑖𝑙𝑖𝑖∈𝑆 = ∑ 𝑤𝑖𝑙𝑖(𝑉𝑇𝑇𝑖(Δ𝑡))𝑖∈𝑆 2∑ 𝑤𝑖𝑙𝑖𝑖∈𝑆 − (𝑉𝑇𝑇𝑆̅̅ ̅̅ ̅̅ ̅(Δ𝑡))2
 (37) 

 

This is a relatively straightforward calculation when the mean is also being 

accumulated. 

Error in the mean 

To calculate error in the mean VTT estimate for a segment, we apply the ‘delta 
method’ for the variance of a function of random variables, which can be shown to 
be in some respects optimal when applied to maximum likelihood estimates (Daly 

et al. 2012). The error in 𝑉𝑇𝑇̅̅ ̅̅ ̅̅ 𝑆 is calculated by: 𝑣𝑎𝑟(𝑉𝑇𝑇̅̅ ̅̅ ̅̅ 𝑆) = Φ′ΨΦ       (38) 

where Φ is the vector of first derivatives of 𝑉𝑇𝑇̅̅ ̅̅ ̅̅ 𝑆 with respect to the estimated 

parameters and Ψ is the covariance matrix of those parameters. Given the 

formulation of 𝑉𝑇𝑇̅̅ ̅̅ ̅̅ 𝑆 it is clear that: Φ = ∑ 𝑤𝑖𝑙𝑖𝜙𝑖𝑖∈𝑆∑ 𝑤𝑖𝑙𝑖𝑖∈𝑆         (39) 

where 𝜙𝑖 is the vector of first derivatives of VTT for the specific record i. For 

calculation, therefore, we need to accumulate the components of Φ at the same 

time, and with the same weights, as we accumulate the VTT itself.  

 

                                            
10 The NTS expansion factors weight a specific trip based on the frequency of reporting long and 

short distance trips in the NTS travel diaries relative to a nationally representative sample whilst 

accounting for the drop-off recording during the week in which the travel diary is registered. 

Additionally, it accounts for non-response (incomplete surveys) at the household level, based on 

analyses that are not available to us. The applied weights are those as recommended by the official 

NTS documentation.    
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Error in the NTS sample: bootstrapping 

The NTS sample used in this study is large so that it should give a reliable picture 

of the total population. Further, weights are provided with the data that should 

correct for several biases, such as differential response by specific population 

groups. However, it remains a sample survey and is thus subject to error. Moreover, 

some of the segments of interest are small fractions of the total population, so that 

for these segments the sample error may be larger. It is, therefore, useful to develop 

methods for estimating the error arising because of the sample nature of the NTS 

data. The method used for this calculation was the ‘bootstrap’.  

The bootstrap method works by constructing different samples from the original 

sample. This is done by drawing samples of the original size from the original 

sample, with replacement, so that some records may be sampled several times and 

others not at all. The well-researched literature on the bootstrap method assures us 

that the variation across these samples gives a good and unbiased representation of 

the true variation due to sampling.  

 

5.2. Assumptions made for 𝚫t 

As already discussed in Section 3, the calculation of the VTT measures from our 

models is dependent on an assumption relating to Δ𝑡 (see e.g. (15)). Different VTT 

measures will be obtained with different sizes of time changes. This is reflected in 

the formulae in the present section once again also being a function of Δ𝑡. In 

appraisal, an overriding consideration is that we should obey basic laws of ‘adding 
up’: the incremental value of (A minus B) plus the incremental value of (B minus 
C) should equal the incremental value of (A minus C). Thus, there is a strong 

appraisal argument for the use of a constant unit value, and we would need equally 

strong counter arguments to move away from this position, which appears to be 

taken by most governments (Daly et al., 2014). Nevertheless, given the dependence 

of VTT on Δ𝑡, there is still the need to take a view on what value to use. 

 

Based on the variation of VTT with Δ𝑡, the previous British study (in effect11) 

made the calculation of VTT for appraisal based on a Δ𝑡 of 11 minutes (Mackie et 

al., 2003). The Danish VTT study (Fosgerau et al. 2007a) suggested different values 

of t for different modes, though for most modes the calculated VTT was stable for 

t between 10-20 min. Based on this, they decided that 10 minutes was ‘reasonable’ 
for all modes. The Swedish VTT study (Börjesson and Eliasson 2014) also chose 

varying Δ𝑡 values, especially between long and short distances: in the event, they 

decided to use 15 minutes for regional trips and 20 minutes for long distance, 

though these were essentially arbitrary decisions based on what was felt to be 

‘reasonable’. In Norway the VTT for short distance modes turned out to be rather 

stable at t =10 min, but not for long distance modes. They used a Δ𝑡 of 10 minutes 

for short distance travel and 15 minutes for all long-distance modes, following 

similar reasoning to the British, Danish and Swedish studies. 

 

                                            
11 Although the so-called ‘perception’ function used in that study differed from the dBF approach 

used here, the same issues apply. 
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Good practice would suggest that the estimated behavioural models should only be 

applied within the range of covariate values over which they have been estimated. 

The range of t presented in our own SP data tended to be on the low side 

(particularly for bus and ‘other PT’, where more than 80% of the values were less 

than 10 minutes), but for car and rail a reasonable proportion (more than 15%) were 

greater than 20 minutes. Based on these distributions, it was decided with the 

Department that a value of t of 10 minutes is defensible as a basis for appraisal 

values. The values presented in the official British VTT report are therefore all 

based on the assumption that t = 10 minutes.  

 

Table 5 presents the outputs of the Implementation Tool at t = 10 minutes for each 

mode-purpose combination, focussing for now on SP1. The results confirm general 

patterns that VTT is highest for the car and rail alternatives, but lower for bus and 

other forms of public transport. This distinction is most apparent for the business 

trips (EB) and less prevalent for other non-work related trips. Besides there being 

significant variation in the VTT across mode-purpose combinations, there is also 

significant variation in the VTT within the populations of interest. With the 

application of log-uniform (and more so with lognormal) densities in the mixed 

logit model, we see that the population standard deviation exceeds the mean VTT. 

This is a direct consequence of the right-skewness of the log-uniform distribution, 

which also drives the discrepancy between the mean and median in the VTT 

distribution. 

 

Uncertainty surrounding the weighted population mean VTT estimates is primarily 

driven by estimation uncertainty. Table 5 shows that controlling for potential 

sampling error in the NTS data increases the error only slightly. However, the 

standard errors are still relatively small and in most cases between 10-15% of the 

mean value.            

Table 5: Output of the Implementation Tool for SP1 based on 𝚫𝒕 = 10 minutes. 

(VTT estimates in £/hour, 2014 perceived prices) 
Commute 

 Mean Pop. Stdev St. err. mean  

St. err. mean 

+ bootstrap 

Car 11.695 18.654 1.969 1.970 

Bus 3.148 3.260 0.458 0.458 

OtherPT 6.348 6.472 0.874 0.876 

Rail 12.423 19.284 0.866 0.898 

     

EB 

 Mean Pop. Stdev St. err. mean 

St. err. mean 

+ bootstrap 

Car 16.738 22.123 1.953 1.959 

Bus NA NA NA NA 

OtherPT 8.328 10.635 1.305 1.330 

Rail 27.609 38.209 2.388 2.599 

     

OtherNW 

 Mean 

Pop.  

Stdev St. err. mean 

St. err. mean 

+ bootstrap 

Car 4.910 9.196 1.756 1.756 

Bus 3.257 4.276 0.410 0.411 
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OtherPT 5.232 5.576 0.550 0.553 

Rail 8.675 10.472 0.605 0.615 

 

5.3. Differences across valuations 
 

The behavioural modelling work conducted in this study provides a rich set of 

results, with a number of different valuations for travel time obtained across (in 

general) three different SP games. This represents an extension beyond traditional 

European VTT work, which has relied solely on SP1 results when producing values 

for appraisal, but introduces a need to check whether there is substantial evidence 

of differences across the individual games. 

 

We now consider the behaviour of the VTT outputs for across the different SP 

games and the corresponding sensitivity to the selection of t. Figure 1 presents the 

different valuations obtained for car travellers across the different games and across 

all three purposes. We show these calculations across a range of Δ𝑡 values.  

 

SP1 and SP2 were the only situations in which we could detect behavioural effects 

associated with t. Accordingly, we see constant values for the valuation of 

standard deviation of time (SP2sd) and the three valuations from SP3. The expected 

ordering for SP3, with the VTT in heavy congestion (𝑉𝑇𝑇ℎ𝑐) being highest, 

followed by the VTT for travel in light congestion (𝑉𝑇𝑇𝑙𝑐) and in free flow 

conditions (𝑉𝑇𝑇𝑓𝑓). The graphs clearly show the important role of t and the 

corresponding interpretation of the SP1 (and SP2) estimates. At t=1 the SP1 value 

is very close (or even below) the VTTff estimate. The VTT in SP1 and SP2 then 

increases rapidly, but less steeply in the range between t=10 and t=20.  

 

Whilst the SP1 valuation is typically positioned between the VTThc and VTTlc 

values, this changes depending on the assumption made for Δ𝑡, with the SP1 value 

eventually exceeding the high congestion value from SP3. As such, it is extremely 

hard to justify interpreting the corresponding SP1 value as one relating to trips with 

‘medium’ congestion.  
 

Similarly, the fact that the SP2 valuation differs from the SP1 valuation casts further 

doubt as to what type of time the valuations in SP1 relate to. For this reason, many 

studies around the world have moved away from approaches not describing travel 

time as relating to specific conditions and instead rely on values from games of the 

SP3 type. One can then for example also produce also a weighted VTT accounting 

for the real-world mix of traffic conditions (which may differ from that in the 

sample) or look at how that weighted VTT might evolve if traffic conditions change. 

Of course, one could find a value for Δ𝑡 that would mean that the VTT from SP1 

corresponds to a weighted value from SP3, but it would then not be possible to 

adjust this to different traffic conditions but would remain a function of the (latent) 

traffic conditions that respondents consider when answering SP1 type questions. 

The fact that SP3 seems not to be affected by reference dependence effects to the 

same extent, makes its values easier to use (not requiring an assumption for Δ𝑡) 

and also poses the question of whether reference dependence effects have been 

amplified by the survey setting. Additionally, the use of SP3 results in appraisal 

gives greater flexibility in updating values over time as a function of changes in 
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congestion. Similar patterns to these car travel results were also observed for the 

other modes. 

 

 

 

Figure 1: VTT measures across different games and 𝚫𝒕 assumptions for car 

travel

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

V
T

T
 (

£
/h

r)

Δt

Commute

SP1 SP2 SP2sd SP3ff SP3lc SP3hc

0

5

10

15

20

25

30

35

40

0 5 10 15 20

V
T

T
 (

£
/h

r)

Δt

Employees' Business

SP1 SP2 SP2sd SP3ff SP3lc SP3hc

0

2

4

6

8

10

12

14

0 5 10 15 20

V
T

T
 (

£
/h

r)

Δt

Other non-work

SP1 SP2 SP2sd SP3ff SP3lc SP3hc



 

37 

 

6. Conclusions 

This paper has given an overview of the data collection and estimation work carried 
out for the 2014/2015 national value of time study in Great Britain. The study used 
data from Stated Preference (SP) surveys on which we estimated advanced discrete 
choice models to produce valuations for different components of travel time and 
journey conditions. Our study used three games, which considered different trade-
offs, namely: SP1 (time vs. money), SP2 (time vs. money vs. reliability), and SP3 
(time vs. money vs. crowding/congestion). 

The modelling of this data was developed in a systematic fashion, whereby 
alternative model specifications were tested in relation to: 

       time and cost gains, losses and size effects; 

       person characteristics such as age, gender, employment status, household 
composition and income; and 

       trip characteristics such as mode, purpose, distance and geography. 

Our modelling work made use of state-of-the-art approaches and made a number of 
departures from current practice in the UK. We additionally made some 
improvements over the leading work from the recent Scandinavian studies, for 
example in terms of reference dependence in games other than SP1. Our 
contributions to the methodological framework are three-fold. Firstly, we extend 
the De Borger and Fosgerau (2008) framework for reference dependence and 
asymmetry to the case of games with more than two attributes using a multiplicative 
error specification. Secondly, we allow for joint estimation across different SP 
games in the presence of differences in these size and sign effects, which requires 
an alternative specification of deterministic heterogeneity. Thirdly, we seem to 
offer the first large scale application of the log-uniform distribution in choice 
modelling, thereby minimising complications associated with the right tail of the 
VTT distribution across the population.   

The use of a joint modelling framework across all the three SP games allowed us to 
examine the differences between individual valuations across games. This joint 
estimation yielded key insights, for example showing the extent of VTT increases 
with road congestion (for car and bus), as well as with the level of crowding (for all 
PT modes). It also showed differences across modes and across purposes as to what 
type of trip conditions in SP3 the values from SP1 relate to. This raises questions 
as to the interpretation of SP1, in terms of the traffic conditions perceived by 
respondents when making their choices. Overall, SP1 also shows more prevalent 
size and sign effects than SP2 and SP3, provoking the question of whether simpler 
settings increase the scope for reference dependence. Finally, the values coming out 
of SP2 diverge from those of SP1 and SP3, and this is likely to be a behavioural 
impact in terms of how respondents react to variability in trip times. In general, our 
findings arguably call for the use of more detailed scenarios (in terms of moving 
away from simple time-money trade-offs), as is done in many other countries, while 
the differences between SP2 and SP3 results potentially call for a joint treatment of 
reliability and quality.  

More generally, the methodological developments reported here further extend and 
improve the available toolkit for future VTT studies around the world. The 
recognition of the complex heteroskedasticity patterns, size and sign effects and 
deterministic heterogeneity has served to explain at least a share of the differences 
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in valuations across respondents. Random (unexplained) heterogeneity of course 
remains, and the incorporation of attitudinal constructs and traveller specific 
constraints provide further directions for improvements. 
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