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Bone targeted treatments have transformed the quality of life
and physical functioning of patients with metastatic bone disease
and, in certain circumstances, have been shown to prevent the
development of bone metastases and improve survival. However,
the steps in development of these agents have been somewhat
disjointed and based on good fortune as well as scientific en-
deavour and rational clinical development.

Although bisphosphonates were first synthesised in the late
19th century, initial usage was restricted to a range of industrial
processes and their potential clinical relevance was not appre-
ciated until the late 1960s [1]. Then, following development for the
treatment of osteoporosis and Paget's disease of bone, a few aca-
demic groups began to investigate the role of bisphosphonates in
oncology, primarily with a focus on hypercalcaemia of malignancy,
which 25 years ago was a common metabolic, life threatening
complication of advanced cancer. The treatments at the time such
as calcitonin, mithramycin and corticosteroids in addition to in-
travenous rehydration were all sub-optimal and typically only
controlled serum calcium for a few days so there was a major
unmet clinical need for a safe and effective treatment strategy.

The early trials focused on the use of etidronate and clodronate
with some success [2]. Initially, there were concerns that in-
travenous aminobisphosphonates, such as pamidronate, would
result in renal damage and for this reason, very low dose admin-
istration (1 mg daily) was first used [3]. Subsequently, larger single
doses were shown to be safe and effective [4,5], ultimately leading
to the regulatory approval of pamidronate 60–90 mg as a single
infusion alongside intravenous fluids for hypercalcaemia of
malignancy.
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In the 1980s, small trials with oral clodronate and oral pami-
dronate had suggested useful effects on skeletal morbidity in
breast cancer and multiple myeloma [6,7]. Subsequently, a number
of European investigators showed that intermittent intravenous
pamidronate had clinically useful effects on bone pain from me-
tastatic disease and induced radiographic sclerosis of lytic meta-
static lesions [8,9]. The latter imaging change was initially inter-
preted as a possible antitumour effect with healing of lytic me-
tastases. However, this was almost certainly not the case but
simply reflected the effects of treatment uncoupling bone re-
sorption and formation with specific inhibition of tumour induced
osteolysis but continued new bone formation. However, as a result
of these pilot studies, Ciba Geigy, the manufacturer of pamidronate
at the time, initiated large randomised clinical trials to evaluate
the effects of intravenous pamidronate every 3–4 weeks on disease
progression and a new endpoint termed skeletal related events
(SREs) to objectively reflect the skeletal morbidity associated with
metastatic bone disease. SREs included radiotherapy to bone for
pain relief or structural damage, pathological fracture, spinal cord
compression, orthopaedic intervention for impending or actual
fracture and hypercalcaemia. These studies [10–12], and similar
trials with oral clodronate [13], showed significant benefits in
breast cancer and multiple myeloma patients with a 25–30% re-
duction in SREs, reduced pain and improved quality of life. As a
result of these trials intravenous pamidronate or, in some health
care settings, oral clodronate became part of standard manage-
ment for patients with bone involvement from breast cancer or
multiple myeloma since the mid 1990s.

In the late 1990s, more potent bisphosphonates were devel-
oped; both oral ibandronate and intravenous zoledronic acid were
evaluated with the latter showing slight superiority over pami-
dronate for breast cancer patients [14]. Additionally, placebo
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controlled trials in castrate resistant prostate cancer [15] and other
solid tumours [16] associated with bone metastases (e.g. lung and
renal cancers) showed that SREs were significantly reduced with
zoledronic acid and this agent became the standard of care
throughout most of the world for patients with bone metastases
from solid cancers and applied to patients with osteoblastic as
well as osteolytic bone metastases. Furthermore, survival in mul-
tiple myeloma was improved with zoledronic acid when compared
to oral clodronate [17] and thus zoledronic acid became the pre-
ferred bisphosphonate also for patients with multiple myeloma.

There have been great strides in our understanding of the
biology of bone metastases and the regulation of bone cell func-
tion. This included the discovery of RANK ligand [18] and the
subsequent development of denosumab, a specific humanised
antibody to RANK ligand. Large phase III trials showed that de-
nosumab was somewhat more effective in preventing skeletal
morbidity in solid tumours (although not to date in multiple
myeloma), was easier to administer as a subcutaneous injection,
was associated with fewer renal adverse events and did not induce
the acute phase response associated with intravenous aminobi-
sphosphonates [19–21]. As a result, clinical practice guidelines
generally recommend denosumab as the preferred agent [22] al-
though they recognise, that from a health economic perspective
now that bisphosphonates are generic, that health care systems
may find it difficult from a financial perspective to support de-
nosumab for all clinical situations and zoledronic acid remains a
reasonable alternative.

For several decades there has been interest in the potential of
bone-targeted agents, through their profound effects on bone
physiology, to modify the process of metastasis and have effects on
important disease outcomes such as recurrence and survival [23].
This hypothesis has been the focus of extensive laboratory and
clinical research in a several tumour types. Multiple clinical trials
with bisphosphonates have been performed; no convincing effi-
cacy has been seen in patients with prostate [24] or lung cancers
[25] and variable outcomes in terms of disease recurrence re-
ported in breast cancer [26–30]. We showed that disease outcomes
in breast cancer, both in patients [30] and animal models of me-
tastasis [31], were influenced by levels of reproductive hormones
and that this appeared to explain the variable results seen in in-
dividual clinical trials.

In a recent initiative with the Early Breast Cancer Clinical Trials
Group (EBCTCG), individual patient data from around the world
were collected to enable a meta-analysis of 18,766 women in-
cluded in randomised trials that evaluated the effect of an ad-
juvant bisphosphonates on breast cancer outcomes [32]. With
3453 and 2106 breast cancer recurrences and deaths respectively,
this meta-analysis allowed the identification of important clinical
benefits that could not be reliably demonstrated in individual
trials. Bisphosphonates were shown to reduce first distant recur-
rence in bone (RR¼0.83; 95%CI 0.73–0.94, 2p¼0.004) and the
meta-analyses confirmed a significant interaction between treat-
ment efficacy and menopausal status. There were no demonstrable
benefits in premenopausal women but in 11,767 postmenopausal
women, highly significant reductions in bone recurrence
(RR¼0.72; 95%CI 0.60–0.86, 2p¼0.0002) and breast cancer mor-
tality (0.82; 95%CI 0.73–0.93, 2p¼0.002) were seen. These findings
are currently changing clinical practice and in many countries
becoming part of routine adjuvant therapy [22,33].

Denosumab also has some beneficial effects on the underlying
disease with evidence of modest activity in delaying the devel-
opment of bone metastases in prostate cancer patients with rising
PSA levels despite androgen deprivation therapy (ADT) [34]. Pre-
liminary data also suggest possible efficacy in postmenopausal
breast cancer patients but definitive results are awaited from the
ongoing large phase III D-CARE trial [35].
Finally, the knowledge obtained from studies of bone-targeted
treatments in osteoporosis has been applied to the cancer setting.
Many patients, notably breast cancer patients receiving aromatase
inhibitors or experiencing chemotherapy induced premature me-
nopause and men with prostate cancer receiving ADT experience
rapid bone loss due to the resultant suppression of circulating
oestradiol levels and are at increased risk of fragility fractures.
Both bisphosphonates [36] and denosumab [37] have been shown
to prevent this treatment induced bone loss with the effects of
denosumab on fracture incidence particularly impressive [37,38].

In the future we can expect to see the currently available bone-
targeted agents applied increasingly widely across multiple dis-
ease settings with further gains in quality of life and, potentially in
some disease settings, improvements in disease outcomes with
fewer bone recurrences and improved patient survival. Ad-
ditionally, new bone-targeted agents such as radium-223 are al-
ready being incorporated into the management of advanced
prostate cancer [39] and may have a future role in other diseases
[40]. The search is now on for a safe and effective anabolic agent
[41] that can augment the efficacy of the many resorption in-
hibitors we already have available and further improve bone
structure and the response to treatments that directly target the
cancer.
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