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Abstract

Multilocus molecular data play a pivotal role in diagnosing cryptic species (i.e. genetically distinct but morphologically 

similar species). A multilocus phylogeographic survey has provided compelling evidence that Triturus ivanbureschi sensu 

lato comprises two distinct gene pools with restricted gene flow. We conclude that this taxon had better be treated as two 

distinct (albeit morphologically cryptic) species. The name T. ivanbureschi should be restricted to the western species, 

which is distributed in western Asiatic Turkey plus the south-eastern Balkan Peninsula. No name is as yet available for 

the eastern species, which is distributed in northern Asiatic Turkey. We propose the name T. anatolicus sp. nov. for the 

eastern species and provide a formal species description.
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Introduction

Diagnosing cryptic species. Speciation unaccompanied by morphological change has led to an underestimation of 

biodiversity (Bickford et al., 2007; Pfenninger & Schwenk, 2007). With the advent of molecular data, many 

‘cryptic species’—genetically distinct species that were previously unrecognized due to their morphological 

similarity—have been revealed (Beheregaray & Caccone, 2007; Bickford et al., 2007). DNA barcoding is an 

important tool in the search for cryptic diversity, but deals with mtDNA exclusively (Hebert et al., 2003). Although 

a phylogeographical survey with mtDNA provides an efficient manner to identify potential cryptic species, the 

biological significance of geographical populations with differentiated mtDNA should be explored before making 

taxonomical decisions (Balloux, 2010; DeSalle, 2006; Moritz & Cicero, 2004).

Indeed, mtDNA divergence may fail to reflect the presence of different species: a deep divergence that arose 

during historic allopatry can be accompanied by unlimited gene flow upon secondary contact (Pereira & Wake, 

2009) and in species with low dispersal and/or small population sizes, phylogeographic breaks in mtDNA can 

originate in the face of unimpeded nuclear gene flow (Irwin, 2002). Even if mtDNA does reflect the presence of 

distinct cryptic species, its spatial distribution will regularly deviate from the actual species boundary (Toews & 

Brelsford, 2012). This is because mtDNA is relatively susceptible to introgression (Petit & Excoffier, 2009), and 

positive selection (Chan & Levin, 2005) or hybrid zone movement (Currat et al., 2008) can subsequently cause a 

geographical asymmetry in mtDNA introgression to arise.

For candidate species identified based on differentiated mtDNA, the best evidence for evolutionary 

independence would be a congruent genetic divergence of many unlinked markers, distributed across the nuclear 

genome (Avise, 2000; Edwards, 2009). With the advent of next-generation sequencing, consulting a considerable 

number of nuclear markers for a large number of individuals of non-model species has come within reach (Ekblom 

& Galindo, 2011; Twyford & Ennos, 2012). We developed a next-generation sequencing protocol for marbled and 

crested newts, genus Triturus (Wielstra et al., 2014a) that can be applied to address taxonomical questions. A 
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recent study confirmed that one currently recognized crested newt species actually consists of two cryptic species 

(Wielstra et al., submitted). We present a taxonomic revision here.

The crested newt Triturus ivanbureschi comprises two species. Triturus ivanbureschi Arntzen and Wielstra 

2013 (in Wielstra et al., 2013b) comprises two candidate species and we refer to the collective as T. ivanbureschi

sensu lato . The two candidate species comprising T. ivanbureschi sensu lato were initially identified based on their 

deep genetic divergence of mtDNA, on par with recognized crested newt species (Wallis & Arntzen, 1989; Wielstra 

et al., 2010). There are no known morphological differences to distinguish the two (Arntzen, 2003; Ivanović et al., 

2013). A phylogeographical survey employing three nuclear introns provided support for the hypothesis of the two 

candidate species representing distinct species (Wielstra et al., 2013a). Ambiguous separation based on allozyme 

data (Arntzen & Wielstra, 2010) and the observation of recent mtDNA introgression (Wielstra et al., 2013a) 

supported a scenario of recent genetic interaction and suggested that the alternative hypothesis of ongoing gene 

flow could not be excluded (Wielstra et al., 2013b).

A study employing 52 nuclear markers and samples from across the putative hybrid zone, confirms that gene 

flow between the two candidate species that make up T. ivanbureschi sensu lato is restricted (Wielstra et al., 

submitted). Here we consider the two candidate species to represent distinct, albeit morphologically cryptic 

species. The first species covers the western part of the total range of T. ivanbureschi sensu lato, namely western 

Asiatic Turkey and the south-eastern Balkan Peninsula, and the second covers the eastern part, namely northern 

Asiatic Turkey. The two species meet at a hybrid zone in northwestern Asiatic Turkey (Wielstra et al., submitted). 

An overview of the distribution of the two species is provided in Fig. 1 and a summary of the genetic data as 

analyzed with Structure 2.3.3 (Pritchard et al., 2000) is provided in Fig. 2. The name T. ivanbureschi sensu stricto

applies to the western species, considering that the type locality is in Bulgaria (Wielstra et al., 2013b). As no name 

is as yet available for the eastern species (Wielstra et al., 2013b) we provide one here, together with a formal 

species description.

FIGURE 1. The two cryptic species comprising Triturus ivanbureschi sensu lato are distributed in Asiatic Turkey and the 

south-eastern Balkan Peninsula. A rough distribution outline for T. ivanbureschi sensu stricto is shown in green and for T. 

anatolicus sp. nov. in red. The two taxa meet at a hybrid zone in northwestern Asiatic Turkey. A rough distribution outline for 

T. karelinii sensu stricto – with which Triturus ivanbureschi sensu lato until recently was considered to be conspecific – is in 

blue. Records of Triturus newts are absent from most of NE Turkey, suggesting that the ranges of T. anatolicus sp. nov. and T. 

karelinii sensu stricto do not meet. White dots represent type localities for, from left to right, T. ivanbureschi sensu stricto, T. 

anatolicus sp. nov. and T. karelinii sensu stricto.

Results 

Description of a new crested newt species

Triturus anatolicus sp. nov.

Type material. Holotype. RMNH.RENA.48232, an adult male (Fig. 3) from Gölköy, near Kalecik, Turkey 
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(coordinates: 40.077°N, 33.341°E, elevation: 1230 meter a.s.l.; Fig. 4), collected 6 April 2014 and donated to 

Naturalis Biodiversity Center by Kurtuluş Olgun from the Department of Biology at Adnan Menderes University, 

Aydın, Turkey. Paratypes. Six males (RMNH.RENA.48233-48238), six females (RMNH.RENA.48239-48245), 

and a juvenile (RMNH.RENA.48246), with collection details identical to the holotype. For imagery, see Fig. 3 and 

online Appendix 1 and 2.

FIGURE 2. Genetic data for Triturus ivanbureschi sensu lato presented in Wielstra et al. (submitted) illustrate the sharp 

geographical overturn between the genotypes representing its two constituent species. Panel (a) shows the 67 sampled 

populations as dots with the colored background representing a rough distribution outline of the two species based on nuclear 

DNA. Populations are colored according to the mtDNA type present; western populations of Triturus anatolicus sp. nov. 

possess mtDNA of Triturus ivanbureschi sensu stricto. Those populations harboring individuals showing introgression and 

genetically admixed individuals based on nuclear DNA (as defined below) are highlighted. Panel (b) shows a Structure plot 

representing Q scores with which the 428 sampled individuals were allocated to two different species (k = 2 was the optimal 

number of gene pools inferred in the Structure analysis). The individuals are ordered based on the Q score with which they are 

allocated to T. ivanbureschi sensu stricto, from high to low values. Individuals allocated to their respective species with Q ≥ 

0.987 are considered genetically pure. Individuals showing introgression are defined as being allocated to a species with 0.987 

> Q > 0.85 and genetically admixed individuals as being allocated to either species with Q ≤ 0.85. Those individuals that are 

not genetically pure are highlighted in panel (b). Note that nuclear introgression is geographically asymmetric.

Diagnosis. The new species is assigned to the genus Triturus because it possesses the characteristics of crested 

newts (the T. cristatus superspecies), in particular the combination of a denticulated crest (in males in breeding 

costume), a dark brown dorsal coloration and an orange ventral side covered with black spots. Based on mtDNA 

sequence data, crested newts from the type locality are firmly placed in the genus Triturus, within the distinct 

‘central T. karelinii sensu lato’ mtDNA lineage (Wielstra et al., 2010). Although identification based on mtDNA is 

possible across the majority of the range of the new species, mtDNA derived from T. ivanbureschi has introgressed 

at the western part of the range (Wielstra et al., submitted; Fig. 2). The pattern of asymmetric introgression is 

mirrored by certain individual nuclear DNA markers and we consider this to represent a genomic footprint of 

hybrid zone movement (Wielstra et al., submitted; Fig. 2). As yet only multilocus nuclear DNA sequence data 

distinguish T. anatolicus sp. nov. unambiguously from T. ivanbureschi – and from T. karelinii, with which both T. 

anatolicus sp. nov. and T. ivanbureschi were until recently considered conspecific (Wielstra et al., submitted). No 

morphological features are currently known to distinguish the three species comprising T. karelinii sensu lato. How 

to separate T. anatolicus sp. nov., T. ivanbureschi and T. karelinii from the other crested newt species is discussed 

in Wielstra et al. (2013b).

Description of holotype. A relatively robust crested newt, with a broad head (wider than neck) and well 

developed limbs. Four fingers and five toes. Toes fringed but interdigital webbing absent. Relative length of fingers 

left 1 < 4 < 2 < 3, right 4 < 1 < 3 < 2 (3 and 4 possibly regenerated). Relative length of toes on both sides 1 < 5 < 2 

< 4 < 3. Skin granulated on dorsal and lateral sides, tail base and throat; tail and venter smooth. Gular fold 

inconspicuous. Swollen cloaca with papillae bordering cloacal slit. Denticulated crest, indented over the position of 

the legs and cloaca. Laterally compressed tail with evident dorsal fin and less conspicuous ventral fin. In life a 
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brownish-blackish base color on the dorsolateral side, with scattered black flecks, most pronounced and marbled 

on the head. Bluish-white streak along the lateral side of the tail along the caudal vertebrae. A deep-orange ventral 

side and throat, dotted with small angular black spots; throat spots smaller and denser than belly spots. In the 

preserved state colors have slightly faded (see online Appendix 1).

TABLE 1. Number of rib-bearing pre-sacral vertebrae and measurements (in millimeters) for the holotype and paratypes 

of Triturus anatolicus sp. nov.

continued.

Abbreviations used are: NRBV = Number of rib-bearing pre-sacral vertebrae; SVL1 = Snout-vent length up to and 

including the insertion of the hind-legs; SVL2 = Snout-vent length up to and including the cloaca; TL = Total length; 

ILD = Inter-limb distance; HL = Head length; HW = Head width; Arm = Length of the right arm including the third 

finger; Finger3 = Length of the right third finger; Leg = Length of the right leg including the fourth toe; Toe4 = Length of 

the right fourth toe. * Finger c3/4 regenerated; ** Deformed tail tip.

Museum number Sex Material NRBV SVL1 SVL2 TL ILD

RMNH.RENA.48232 male holotype 13 53 61 108 27

RMNH.RENA.48233 male paratype 13 63 71 126 34

RMNH.RENA.48234 male paratype 12 53 60 110 29

RMNH.RENA.48235 male paratype 13 53 61 109 26

RMNH.RENA.48236 male paratype 13 50 58 100 27

RMNH.RENA.48237 male paratype 13 56 64 115 30

RMNH.RENA.48238 male paratype 13 53 60 110 29

RMNH.RENA.48239 female paratype 13 57 62 118 31

RMNH.RENA.48240 female paratype 13 62 68 133 32

RMNH.RENA.48241 female paratype 13 58 63 122 33

RMNH.RENA.48242 female paratype 13 58 62 123 30

RMNH.RENA.48243 female paratype 13 62 67 117 ** 33

RMNH.RENA.48244 female paratype 13 65 70 131 36

RMNH.RENA.48245 female paratype 13 56 60 111 31

RMNH.RENA.48246 juvenile paratype 13 51 55 102 29

Museum number Sex Material HL HW Arm Finger3 Leg Toe4

RMNH.RENA.48232 male holotype 16.2 10.6 18.7 5.6 * 22.1 9.5

RMNH.RENA.48233 male paratype 18.4 12.0 26.9 10.4 26.6 11.6

RMNH.RENA.48234 male paratype 16.5 11.5 22.7 8.6 25.9 10.4

RMNH.RENA.48235 male paratype 16.3 11.2 22.0 7.9 22.9 8.8

RMNH.RENA.48236 male paratype 15.5 10.7 20.2 7.7 21.3 8.6

RMNH.RENA.48237 male paratype 16.7 11.9 19.1 5.5 23.7 9.3

RMNH.RENA.48238 male paratype 16.6 11.5 20.8 7.8 22.8 9.4

RMNH.RENA.48239 female paratype 16.8 11.2 21.5 6.8 21.9 8.1

RMNH.RENA.48240 female paratype 18.5 13.0 23.6 8.9 24.1 9.5

RMNH.RENA.48241 female paratype 17.2 11.5 20.8 7.9 22.2 7.8

RMNH.RENA.48242 female paratype 17.1 11.4 20.9 7.8 21.1 8.1

RMNH.RENA.48243 female paratype 18.6 13.3 23.4 9.0 22.9 7.1

RMNH.RENA.48244 female paratype 18.7 13.5 24.4 9.5 23.0 8.6

RMNH.RENA.48245 female paratype 16.1 11.0 20.7 7.2 22.6 8.0

RMNH.RENA.48246 juvenile paratype 15.2 10.3 17.6 6.6 18.6 6.7
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FIGURE 3. The holotype and one of the paratypes of Triturus anatolicus sp. nov. in life. Lateral (a) and ventral (b) view of a 

male (below, holotype, RMNH.RENA.48232) and a female (above, paratype, RMNH.RENA.48239).
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FIGURE 4. The type locality of Triturus anatolicus sp. nov. at Gölköy, Turkey.

The number of rib-bearing pre-sacral vertebrae (NRBV) is 13, as determined from X-ray photographs (see 

online Appendix 2). The following measurements are in millimeters and have been determined with plastic Vernier 

calipers. Snout-vent length up to and including the hind-legs 53; Snout-vent length up to and including the cloaca 

61; Total length 108; Inter-limb distance 27; Head length 16.2; Head width 10.6; Length of the right arm including 

the third finger 18.7; Length of the right third finger 5.6; Length of the right leg including the fourth toe 22.1; 

Length of the right fourth toe 9.5.

Description of paratypes. The morphology of the paratypes resembles that of the holotype in general, but the 

pattern of black spots on the ventral side is highly variable among individuals (online Appendix 1). Compared to 

males (such as the holotype), adult females have non-swollen cloacae, lack the denticulated crest and possess a less 

pronounced tail fin. All paratypes have an NRBV count of 13 except one, which has an NRBV count of 12 (Table 

1; online Appendix 2). In Table 1 the same measurements as taken for the holotype are provided for the paratypes.

Distribution. The distribution encompasses Asiatic Turkey south of the Black Sea, reaching up to c. 200 

kilometers inland (usually less), but not into inner Anatolia. To the west the new species reaches the Bosphorus at 

the northern side of the Marmara Sea. On the southern side of the Marmara Sea it meets T. ivanbureschi sensu 

stricto, east of Lake Ulubat and west of the city of Bursa. The two species form a hybrid zone here (Wielstra et al., 

submitted). To the east the new species reaches the town of Yomra, just east of the city of Trabzon. The nearest 

known Triturus localities further east are from the extreme NE of Turkey, over 150 km away, and probably concern 

T. karelinii sensu stricto (Wielstra et al., 2013a). An outline of the distribution of the new species is provided in 

Fig. 1. A database of distribution records is provided in Wielstra et al. (2014b).

Etymology. The specific epithet reflects the distribution of the new Triturus species. Triturus anatolicus sp. 

nov. is endemic to Anatolia. It is the only Triturus species to which this applies. It should be noted that the range of 

T. ivanbureschi sensu stricto covers western Anatolia (Wielstra et al., 2013a; Wielstra et al., submitted) and the 

range of T. karelinii sensu stricto probably protrudes into northeastern Anatolia (Wielstra et al., 2010).
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Proposed vernacular name. We propose to use the vernacular name Anatolian Crested Newt for T. anatolicus 

sp. nov. This name highlights its status as an Anatolian endemic. We suggest to use the vernacular name Balkan 

Crested Newt for T. ivanbureschi sensu stricto (rather than Balkan-Anatolian Crested Newt previously applied to T. 

ivanbureschi sensu lato). Although T. ivanbureschi sensu stricto also partially occurs in Anatolia, the main part of 

its range is in the Balkan Peninsula.

Conclusion

We have taken a cautious approach in revising the taxonomy of T. karelinii sensu lato. We first split the group into 

T. karelinii sensu stricto and T. ivanbureschi sensu lato and preferred to await a detailed analysis of the putative 

hybrid zone between the two candidate species within T. ivanbureschi sensu lato before considering whether 

further taxonomic change was warranted (Wielstra et al., 2013b). By applying a next-generation sequencing 

protocol for Triturus (Wielstra et al., 2014a) to a detailed sampling in and around the putative hybrid zone 

(Wielstra et al., submitted) we could confirm the existence of an as yet undescribed cryptic species in T. 

ivanbureschi sensu lato. This gave us the confidence to describe T. anatolicus sp. nov. in the present paper. Our 

studies on Triturus illustrate how ‘shallow genomics’ (Zilversmit et al., 2002), in which a comprehensive but 

tractable portion of the total genome is employed to approximate evolutionary history, can be a driving force in 

taxonomy. As yet no diagnostic morphological characters are known to distinguish the three species comprising T. 

karelinii sensu lato. This raises the question: are the three crested newt species truly cryptic, or have they not been 

studied closely enough? Considering that previous morphological studies have mainly focused on the species 

meeting in the Balkan Peninsula rather than T. karelinii sensu lato (Arntzen, 2003) we suspect the latter. A future 

morphological study, using the genetic results as a guidance, should prove illuminating.

Online appendices

The following supplementary materials are available on the Zootaxa server:

Online Appendix 1—Pictures of the ventral side of the holotype and paratypes of Triturus anatolicus sp. nov.

Online Appendix 2—X-ray photographs of the holotype and paratypes of Triturus anatolicus sp. nov.
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