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Summary 

We consider the problem of sensorimotor co-ordination in mammals through the lens of 

vibrissal touch, and via the methodology of embodied computational neuroscience—using 

biomimetic robots to synthesize and investigate models of mammalian brain architecture.  

The chapter focuses on five major brain sub-systems and their likely role in vibrissal system 

function—superior colliculus, basal ganglia, somatosensory cortex, cerebellum, and 

hippocampus.  With respect to each of these we demonstrate how embodied modelling has 

helped elucidate their likely function in the brain of awake behaving animals.  We also 

demonstrate how the appropriate co-ordination of these sub-systems, with a model of brain 

architecture, can give rise to integrated behaviour in a life-like whiskered robot. 
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Research on active vibrissal touch has the potential to help us understand, perhaps even 

rethink, many of the key computations underlying sensorimotor co-ordination in the 

mammalian brain.  

Consider, for instance, the task of visually-guided reach and grasp which is widely studied in 

both humans and primates.  Work in humanoid robotics might decompose this task as the 

following steps: (i) identify a potential target in peripheral vision based on a rapid analysis of 

superficial salient features (colour, shape, movement); (ii) orient to and fixate on the object 

using foveal vision to form an internal 3-dimensional model of the object and of its key 

properties (shape, size, texture, and so forth); (iii) in parallel, form a second set of 

representations of the position and orientation of the object in space relative to those of the 

body, arm, and hand; (iv) match the first,  “what?”, model with a variety of stored “templates” 

in order to determine whether this particular item is, indeed, a suitable target for reaching; (iv) 

apply algorithms to the computed “where?” representations of the object and body, and make 

use of knowledge of the kinematic and dynamic properties of the arm, hand, and digits, to 

determine appropriate movement trajectories; (v) execute the planned movements largely 

ballistically but using some sensory feedback in the final approach, to locate, enclose, and lift 

the object in an effective way.  

Now consider the capacity of an animal such as the Etruscan shrew, the smallest living 

terrestrial mammal—and known to be a remarkably efficient predator—to localise, identify, 

and entrap an agile prey insect using only its whiskers (Brecht, Naumann et al., 2011). The 

problem is similar in many ways to that of human (or humanoid) sensory-guided reaching.  

The visual periphery compares to the macrovibrissae (the longer actuated facial whiskers on 

either side of the snout), and the visual fovea to the microvibrissae (the shorter non-moving 

whiskers on the upper lip and chin) and other tactile sensory surfaces around the mouth.  The 

orienting system, as in primate vision, is likely to have the superior colliculus at its core, and 

will be driven by a very rapid but coarse analysis of features in the whisker signals via a 

midbrain loop that co-ordinates movements of the whiskers, head and trunk. Further analyses 

of the whisker signals, from both the macro- and micro-vibrissae will involve the 

somatosensory cortices, and pathways through to the temporal lobes. These will likely 

involve the decomposition of sensory signals into components (self-motion, object properties 

such as shape, texture, etc.), but may also require the reintegration of decomposed features 

into more complete representations of the target. Alongside determination of object 

properties, information about the prey animal’s spatial position and orientation will also have 

to be computed from the same set of vibrissal deflection signals. The decision of whether to 

make an attack will then depend on a comparison of computed features with remembered 

patterns corresponding to previously successful (and unsuccessful) attacks. Whilst this 

process will likely involve cortical systems (including hippocampus) it will ultimately involve 

decision-making mechanisms in basal ganglia to decide if the template fits, and, if so, whether 

the attack option is appropriate right now (as opposed, say, to further approach behaviour or 

avoidance).  Planning and execution of the strike will also involve the motor cortex, and 

midbrain and brainstem motor systems which, together with the cerebellum, will co-ordinate 

precision orienting with biting, and may use additional sensory information from the vibrissae 

to accurately adjust the final phases of the strike.  

Despite the above similarities, however, a number of features of the shrew vibrissal system 

might lead us to think rather differently about this problem from the way we initially 

conceived our example task of human visually-guided reach. 

First, rather than being able to fixate and examine the target at leisure, the animal must make 

do with signals from a few fleeting contacts between the vibrissal tips and a small number of 

unknown locations on the target (Munz, Brecht et al., 2010). Further, both the sensors 



themselves and target are moving rapidly, the latter with unknown direction and speed.  In 

other words, this is a task, where information about the target is relatively sparse, and where 

timing and dynamics are crucial. The urgency of the required response means that the 

preparation of attack behaviour will likely occur alongside the processing of vibrissal signals 

to determine object properties—so that the former can be put into effect as soon as the weight 

of evidence lies in its favour. In other words, this task is perhaps more similar to the challenge 

faced by a batter trying to hit a moving ball in fading light—the target object suddenly and 

rapidly appears out of nowhere, and a successful response must be executed within a critical 

and narrow time window. 

Second, the shrew’s brain is tiny (Roth-Alpermann, Anjum et al., 2010). Not only must its 

predation behaviour be accomplished with 20,000 times fewer neurons that a human might 

utilise for reach and grasp, we also know from the speed of the attack (which can be as little 

as 80 milliseconds (Anjum, Turni et al., 2006)) that the shrew achieves its goal in a far 

smaller number of processing steps. Whatever phases are necessary for decomposition of 

sensory signals and their reconstruction as object representations, these will necessarily 

involve a small number of processing sites each made up of relatively few neurons.  The 

construction of complex internal models, for comparison against rich templates, looks 

decidedly improbable in this system.  More likely, key features are rapidly extracted and 

mapped, across a small number of synapses, into representations of their potential for action.  

Indeed, the step of “representing” the prey insect itself may even be missed out entirely. This 

animal may encode information about objects in its tactile world only in terms of their 

potential as affordances (Gibson, 1979) to guide different forms of approach, avoidance, or 

consummatory behaviour. Thus this is a system in which we can explore what is the 

minimum amount of internal transformation and representation needed in order to support 

complex, sensory-guided behaviour; and in which we can discover how active sensing 

systems (Prescott, Diamond et al., 2011) merge perception into action, via closed loop control 

(Ahissar and Kleinfeld, 2003), without the two ever being truly separate.  

Overall, then, while understanding this system will not directly answer the question of how 

the human brain performs reach-and-grasp, the study of vibrissal-guided behaviour could help 

us understand many aspects of mammalian sensorimotor control and perhaps rethink a 

number of assumptions based on more primate-centric analyses of brain processing.  

In this chapter we consider five major brain sub-systems and their likely role in vibrissal 

system function—superior colliculus (SC), basal ganglia (BG), primary somatosensory cortex 

(S1), cerebellum, and hippocampus—bearing in mind the behavioural domain of whisker-

guided predation in animals such as the shrew or rat. One of these, the somatosensory cortex, 

is specialised for tactile processing, but shares many aspects of its computational architecture 

with other areas of mammalian cortex. The remaining four (basal ganglia, cerebellum, 

superior colliculus and hippocampus) are more “general purpose” in the sense that they 

appear to have some characteristic function that operates in a similar way across different 

sensory modalities or motor functions but that is also tuned, in some appropriate manner, to 

the particular requirements of processing and control for vibrissal touch. We are therefore 

hopeful that the insights obtained by studying the role of each of these sub-systems in the 

vibrissal processing of rodent-like mammals will generalise to understanding their functional 

capacities in other domains too.  Each of these systems is the subject of a vast neuroscientific 

literature that we cannot even begin to summarise here.  We therefore restrict our focus to 

providing a brief outline of the hypothesized functional role of each system in vibrissal touch 

and then describe how we have investigated this from an embodied computational 

neuroscience perspective that seeks to develop and test systems-level computational models 

of neural circuits embedded within the control system of biomimetic robots.  



One might ask why we bother to build robot models of animals and their nervous systems? 

One answer, suggested the neurobiologist Valentino Braitenberg (Braitenberg, 1986), is that 

synthesis (engineering a model of a biological system) is quite different from analysis 

(reverse-engineering an existing biological system); thus, in building a robot model of our 

target animal, that mimics sufficiently some aspects of its body, brain and behaviour, we can 

expect to learn a good deal about the original creature. Another answer is that a robot model 

should allow us to conduct experiments that will help us better understand the biological 

system, and moreover would be impossible (or at least much more difficult) to perform in the 

original animal (Mitchinson, Pearson et al., 2011; Rosenblueth and Wiener, 1945). Finally, 

neurobiological studies have shown us that the brain nuclei and circuits that process vibrissal 

touch signals, and that control the positioning and movement of the whiskers, form a neural 

architecture that is a good model of how the mammalian brain, more generally, co-ordinates 

sensing with action. Thus, a further reason for building biomimetic robot models is to provide 

improved insight into brain architecture as a whole. Indeed, by building robotic whisker 

systems—see examples of our whiskered robots in Figure 1—we consider that we are taking 

significant steps towards building an integrated robotic model of the mammalian brain.   

FIGURE 1 HERE 

 

A control architecture for behavioural integration in vibrissal touch 

We begin our consideration of the sensorimotor co-ordination for vibrissal touch by 

addressing the overall problem of behavioural integration, or behavioural coherence, that is 

central to the task of building life-like systems (Prescott, 2007). Living, behaving systems 

display patterns of behaviour that are integrated over space and time such that the animal 

controls its effector systems in a co-ordinated way, generating sequences of actions that 

maintain homeostatic equilibrium, satisfy drives, or meet goals. How animals achieve 

behavioural integration is, in general, an unsolved problem in anything other than some of the 

simplest invertebrates. What is clear from the perspective of behaviour is that the problem is 

under-constrained since similar sequences of overt behaviour can be generated by quite 

different underlying control architectures (Hallam and Malcolm, 1994). This implies that to 

understand the solution to the integration problem in any given organism is going to require 

investigation of mechanism in addition to observations of behaviour. In this regard, physical 

models—such as robots—can prove useful as a means of embodying hypotheses concerning 

alternative control architectures whose behavioural consequences can then be measured 

observationally (Mitchinson, Pearson et al., 2011). Research with robots has repeatedly 

demonstrated forms of emergent behaviour (Mitchinson, Pearson et al., 2012)—the 

appearance of integrated behavioural sequences that are not explicitly programmed—

demonstrating the value of this embodied testing for suggesting and testing candidate 

mechanisms. 

The biological literature provides a range of different hypotheses concerning the mechanisms 

that can give rise to behavioural integration; here, we highlight two—behavioural and 

salience map competition.  

The neuroethology literature suggests a decomposition of control into behavioural sub-

systems that then compete to control the animal (see (Prescott, Redgrave et al., 1999; 

Redgrave, Prescott et al., 1999) for a review). This approach has been enthusiastically 

adopted by researchers in behaviour-based robotics (see, e.g. (Brooks, 1991)) as a means of 

generating integrated patterns of behaviour in autonomous robots that can be robust to 

sensory noise, or even to damage to the controller.  



An alternative hypothesis emerges from the literature on spatial attention, particularly that on 

visual attention in primates including humans (Gandhi and Katnani, 2011). This approach 

suggests that actions, such as eye movements and reaches towards targets, are generated by 

first computing a ‘salience map’ that integrates information about the relevance (salience) to 

the animal of particular locations in space into a single topographic representation. Some 

maximisation algorithm is then used to select the most salient position in space towards which 

action is then directed. It is usual in this literature to distinguish between the computation of 

the salience map, the selection of the target within the map, and orienting actions that move 

the animal, or its effector systems, towards the target. In the mammalian brain these different 

functions may be supported by distinct (though overlapping) neural mechanisms (Posner, 

1980).  

Of course, the approaches of behavioural competition and salience map competition are not 

mutually exclusive and it is possible to imagine various hierarchical schemes, whereby, for 

instance, a behaviour is selected first and then a point in space to which the behaviour will be 

directed. Alternatively, the target location might be selected and then the action to be directed 

at it. Finally, parallel, interacting sub-systems may simultaneously converge on both a target 

and suitable action (Cisek, 2007). We recently investigated the hypothesis that a salience map 

model can be used to generate action sequences for a biomimetic whiskered robot snout 

mounted on a mobile robot platform, and compared this with an earlier control model based 

on behaviour selection (Mitchinson, Pearson et al., 2012). Both control systems generated 

life-like sequences which alternate between exploration and orienting behaviour, but in the 

salience map version these higher-level behavioural `bouts' were an emergent consequence of 

actions determined by following a shifting focus of spatial attention (determined by a salience 

map) rather than resulting from the alternation of distinct behavioural primitives.  

In the mammalian brain, sensorimotor loops involving the cortex, superior colliculus, basal 

ganglia, cerebellum and hippocampus may interact to implement a control system similar to 

this hypothesised salience map model.  Figure 2 summarises the multi-level loop architecture 

used in our recent biomimetic robot Shrewbot, which is derived from our general 

understanding of the control architecture of the rat vibrissal system. We cannot represent the 

whole brain in our model from the outset, and there is no general agreement on the function 

of some of the neural centres. Since the robot must generate behaviour if we are to experiment 

with it, our breakdown of the control system into modules is by function, but the particular 

breakdown chosen is deeply inspired by our understanding of brain anatomy. This places us 

in a strong position to hypothesise relationships between structure and function in the neural 

system, and these hypotheses are a major outcome of our robot work. Here, the component 

‘selection mechanism', modelled on the mammalian basal ganglia and superior colliculus, is 

responsible for selecting and driving the majority of movements of the robot's body (neck and 

wheels). Below this system, motor systems implement control commands, and low-level 

reflex loops support some rapid responses to current conditions (for instance, whisker 

protraction is inhibited by contact with the environment (Pearson, Mitchinson et al., 2010)). 

Above this system, we are beginning to add more cognitive components that modulate 

selection. The component labelled ‘abstraction' (Sullivan, Mitchinson et al., 2012) gleans 

additional information about what has been contacted by the vibrissal sensors in a manner 

analogous to processing centres such as the somatosensory cortex.  Elsewhere, the component 

labelled ‘allocentric memory' retains a memory of the robot's past spatial experience and thus 

models some of the functionality of the mammalian hippocampal system (Fox, Evans et al., 

2012a; O'Keefe and Nadel, 1978). ‘Signal conditioning’ indicates the importance of early 

processing of sensory signals to, for instance, distinguish components of the signal that may 

be due to the organism’s (or robot’s) own movement rather than to contact with the external 



world.  Some neurobiological evidence, and our own modelling work, suggest an important 

role for the cerebellum in this regard (Anderson, Pearson et al., 2010; Anderson, Porrill et al., 

2012).  

 

FIGURE 2 HERE 

 

Orienting the tactile fovea with the superior colliculus 

To demonstrate the capacity of this architecture for generating integrated behaviour we have 

focused on the problem of orienting to interesting or novel stimuli detected by the robot 

vibrissae.  To develop our model of orienting we first assume a ‘tactile fovea' (Brecht, 

Preilowski et al., 1997), as the region of the snout with the highest density of microvibrissae, 

and focus on the key component of orienting behaviour in rodent-like mammals of bringing 

the fovea to a target. For instance, when faced with a task of discriminating between multiple 

objects, rat behaviour can be described as foveation (targeting the sensory fovea) to each 

discriminandum in sequence (Brecht, Preilowski et al., 1997). In our control architecture, 

then, the selection mechanism thus drives movements of the fovea with its output being the 

desired instantaneous velocity of the foveal position. In this model the movement of the 

remaining nodes of the animal/robot are unconstrained at the level of the selection mechanism 

and, instead, are determined at the level of the body (i.e. the motor system).  Specifically, 

nodes such as the neck joints, and body are ‘enslaved’ to the fovea, and move so as to carry 

the fovea towards its target as smoothly and directly as possible. One could say that our 

robots are ‘led by the nose'. This is, of course, a simplification of biological behaviour, though 

we have been surprised by how life-like (and practical) the resulting behaviour can be. 

In primates, foveation is well studied with respect to the visual system and is known to be 

mediated by the Superior Colliculus (SC) (Gandhi and Katnani, 2011). In rats, stimulation of 

SC can evoke not only eye movements (McHaffie and Stein, 1982), but also orienting-like 

movements of the snout, circling, and even locomotion (Sahibzada, Dean et al., 1986). Recent 

neurobehavioural evidence also directly implicates SC as having a major role in rodent prey 

capture (Favaro, Gouvea et al., 2011).  More generally, the SC appears to be a very plausible 

location to integrate tactile signals for spatial attention. It has the right inputs with signals 

arriving from the vibrissae via the from trigeminal sensory complex (Cohen, Hirata et al., 

2008), and with further inputs converging from several relevant areas of cortex including S1 

(Cohen, Hirata et al., 2008; Hemelt and Keller, 2007; Miyashita and Hamada, 1996). The 

organization of the SC is topographic in both its sensory and motor aspects, with a sensory 

topography appropriate to encoding a salience map centred on the foveal region of the snout 

(Benedetti, 1991; Drager and Hubel, 1976) and motor maps suitably configured to generate 

orienting head movements (Sahibzada, Dean et al., 1986). Inspired by these facts, we have 

developed a model of foveal velocity vector generation that mirrors the features of SC—that 

is, we employ a topographic saliency map driven by sensory input and modulated by 

information from mid- and upper-brain, with a simple motor output transform that drives 

foveation to the most salient region of local space (Mitchinson, Pearson et al., 2012). In the 

case of our robots, salience is excited by whisker contact and endogenous noise and 

suppressed by a top-down ‘inhibition-of-return’ signal from an allocentric memory 

component that lowers the salience of regions that have recently been foveated. The selection 

task, then, is to choose between foveation targets in nearby space. 

 

This saliency map model of tactile attention has recently been extended to incorporate the 

regulation of vibrissal movement (Mitchinson and Prescott, 2013). To evaluate the model we 



tested it within a simulated two-dimensional environment containing configurable ‘obstacles’, 

under conditions analogous to those used in behavioural experiments (Grant, Mitchinson et 

al., 2009; Mitchinson, Martin et al., 2007; Mitchinson, Grant et al., 2011; Towal and 

Hartmann, 2006), and showed that it exhibits many of the modulations of whisker movement 

previously reported and summarised in Figure 3 (Mitchinson and Prescott, 2013). The model 

can also account for anticipatory aspects of active vibrissal control (see e.g. (Arkley, Grant et 

al., 2014; Grant, Mitchinson et al., 2009)) that cannot be the outcome of purely reflexive 

mechanisms. Here again the SC is implicated as a key sub-system in the rodent brain. 

Stimulation of SC can generate modulatory (non-periodic) whisker movements (Hemelt and 

Keller, 2008) suggesting a role in determining the protraction amplitude of the whiskers. 

Accordingly, SC outputs directly target the facial nucleus which is the motor nucleus that 

drives the whisker musculature (Miyashita and Mori, 1995). The receptive fields of SC 

neurons that are sensitive to deflection of single macrovibrissae are large and overlapping 

under anaesthesia (Drager and Hubel, 1976).  Since the whiskers sweep back and forth during 

exploration this raises the possibility that, in the awake behaving animal, vibrissal receptive 

fields in SC are actually sharply tuned, but encode target locations in a head-centred spatial 

map (that might be contacted by moving whiskers) rather than contacts on distinct 

macrovibrissae per se. 

 

FIGURE 3 HERE 

 

The role of the cortex and basal ganglia in decision-making 

Whilst the SC provides a mechanism that can control the orienting movements of the head 

and sensory systems, it is only one of many structures involved in identifying and selecting 

targets for foveation. Studies in primates implicate sensory processing in cortical areas (Gold 

and Shadlen, 2001) coupled with action selection in the basal ganglia (BG) (Chambers, 

Humphries et al., 2011; Hikosaka, Takikawa et al., 2000; Redgrave, Prescott et al., 1999) as 

critical substrates for the decision-making aspects of target selection.  Our research with 

whiskered robots is helping us to analyse the contributions of these different neural systems to 

perceptual decision making in the mammalian brain. 

The last two decades have seen major advances in our understanding of decision making as 

statistically optimal inference from noisy and ambiguous sensations using Bayesian 

probability theory (Knill and Pouget, 2004). A Bayesian approach to the task of classification 

involves recording the likelihoods of measurements from example sensory data. Given new 

test data, these likelihoods can be used with Bayes’ rule to calculate the posterior probability 

of the test data being drawn from each trained class, that is, the likelihood of the data 

belonging to any given category given the history of past data.  Within the broader class of 

Bayesian classifiers the approach of sequential analysis (Wald, 1947) operates by applying 

Bayes’ rule repeatedly to accumulating evidence for competing perceptual hypotheses, 

derived from time series of sensory data, until a preset threshold is reached.  This method can 

be likened to a process that has been observed in parietal cortex when monkeys are required 

to make perceptual judgements about visual motion direction and where individual neurons 

have been recorded that noisily ramp-up their firing rates until reaching a decision threshold 

(Bogacz, Brown et al., 2006; Gold and Shadlen, 2007; Platt and Glimcher, 1999). 

Using our whiskered robots, we have explored the possibility that sequential Bayes can 

provide an effective general classifier for object properties detected using vibrissal sensors. 

Examining characteristics such as texture, radial distance to contact, speed of object 



movement and novelty, and using a range of robot platforms deploying different strategies for 

the control of whisker movement and position, we have shown that sequential Bayes is 

reliable, accurate (hit rates of >90% on several tasks), and out-performs a number of 

competing classification methods such as spectral templates, maximum likelihood, and multi-

layer neural networks (Lepora, Pearson et al., 2010; Lepora, Fox et al., 2012; Lepora, Evans 

et al., 2010; Lepora, Sullivan et al., 2012; Sullivan, Mitchinson et al., 2012).  That a 

classification method that matches with primate data can operate effectively with signals from 

artificial whiskers gives hope that a single theory of perceptual decision-making can be 

developed that will apply equally to primate vision and rodent vibrissal touch. The further 

implication of these studies is that a common memory format (log likelihoods) could be used 

to encode tactile memories for object properties. These models also have the potential to 

address questions about the nature of tactile memory in animals such as the Etruscan shrew 

since the ability to classify objects (for instance, as prey items that can be attached) requires 

efficient and compact memory traces, and the ability to make timely and appropriate decisions 

based on accumulating evidence. 

 

Alongside evidence that cortex accumulates evidence for competing hypotheses, converging 

evidence from neurobiology and computational modelling, is showing that the BG anatomy 

maps onto a network implementation of an optimal statistical method for hypothesis testing 

that provides for timely and efficient selection of an appropriate response (Bogacz and 

Gurney, 2007; Gurney, Prescott et al., 2004; Lepora and Gurney, 2012). As noted above, in 

the sensory component of this process, evidence for the alternative interpretations of a 

stimulus accumulates in neuronal “evidence bins” (e.g., that a visual stimulus is moving right 

rather than left) and this accumulated evidence competes within the BG to elicit an action 

(e.g., press right lever or left lever). In the vibrissal system, the substantial projections from 

layer 5a of S1 cortex to the striatum—the major input structure of the BG—could provide a 

neural substrate for decision-making in relation to tactile object properties. We have used 

insights from experimental data, and from recent recordings in cortical areas during decision-

making tasks (e.g. (Diamond, von Heimendahl et al., 2008)), to revise and extend existing 

primate-based computational models of the decision-making process (Lepora, Fox et al., 

2012; Lepora and Gurney, 2012) and are in the process of exploring the implications of these 

revisions for decision-making in embodied robotic models. 

 

The vibrissal somatosensory cortices—feature maps for detecting 
behavioural affordances 

Within the parietal lobes of all mammals there are localised cortical areas that are more 

specialised towards particular sensory modalities—such as somatosensation, vision, audition 

and vestibular sensing—and other areas that are more multisensory in nature.  In vibrissal 

specialists, such as rats, mice and shrews, the somatosensory areas devoted to the region of 

the snout are massively expanded compared to those of most mammals.  In these species, 

multiple somatotopic maps of the body have been identified, the principal ones being labelled 

primary and secondary somatosensory cortex (S1 and S2). Whilst both of these areas have 

large domains devoted to the vibrissae, barrel-like aggregates of neurons (“barrels”) have 

been identified only in S1. The size of the area of cortex devoted to the large macrovibrisae 

appears to reflect the high innervation levels of the whisker follicles (see also discussion of 

cortical area size in (Catania and Catania, This Volume)). In the mouse, S1 cortex represents 

approximately 13% of the cortical surface area in total and 69% of the somatosensory cortex 

(Lee and Erzurumlu, 2005). 



In rats and mice, S1 barrels exist for both the large and motile macrovibrissae in the 

posteriomedial barrel field (PMBF) and for the smaller non-actuated microvibrissae in the 

anterolateral barrel field (ALBF) (Woolsey, Welker et al., 1975), however, research has 

almost entirely focused on the larger barrels found in PMBF because of their ease of 

stimulation via the macrovibrissae. S1 and S2 are reciprocally connected with each other and 

also, via the corpus collosum, with their contralateral other halves (Keller, 1995).  S1 is also 

connected with a number of other cortical regions including the motor and perirhinal cortices. 

Other major S1 projection areas include the thalamic areas from which it receives input (VPM 

and POm), the reticular nucleus of the thalamus, and, of particular interest here, sub-cortical 

targets in the basal ganglia, pontine nuclei (cerebellum), and superior colliculus (Keller, 

1995).  

 

For a vibrissal-specialist like the Etruscan shrew, successful prey capture is critically 

dependent on accurate and rapid detection of tactile stimulus velocity. This leads to the 

general question of how the brain might extract movement direction and speed from patterns 

of vibrissal deflection. Since it was first proposed, Jeffress’ place theory (Jeffress, 1948) has 

been a dominant model for understanding how sensory motion is encoded in the brain (Joris, 

Smith et al., 1998). The idea is that coincidence detector neurons receive input from sensors 

after delays governed by the distance of each neuron from the corresponding signal sources. 

The inter-sensor time difference is then encoded by the location of neurons that are active 

because their connection delays exactly compensate the inter-sensor stimulation interval. The 

place theory therefore suggests an important role for neural geometry in computing the 

motion of sensory stimuli. Despite being a general theory of neural computation, most of the 

evidence for the place theory is provided by studies of the auditory system of auditory 

specialists such as the barn owl. The evidence from studies of mammalian auditory systems is 

inconclusive, for example, rabbit auditory cortex neurons are tuned to much longer inter-aural 

delays than can be accounted for by known axonal connection velocities (Fitzpatrick, Kuwada 

et al., 2000), and evidence from other sensory modalities is sparse. 

In order to provide a further test of the generality of the place theory, we sought to apply it to 

a model of tactile stimulus processing in rodent barrel cortex (Wilson, Bednar et al., 2011). 

We asked whether model cortical neurons receiving synaptic inputs via delays governed by 

realistic connection geometry and plausible axonal propagation speeds would match the range 

of real responses to paired stimulation of adjacent whiskers. Validating this hypothesis we 

recreated,  in simulation, the broad range of spiking patterns displayed by layer 2/3 barrel 

cortex neurons when adjacent whiskers are deflected through the range of inter-stimulus 

intervals, as measured electrophysiologically by Shimegi et al. (Shimegi, Akasaki et al., 

2000). These biological experiments have shown that, when two adjacent whiskers are 

stimulated in a sequence with a few milliseconds interval, the responses of cortical neurons 

depends strongly on their positions (whether closer to the barrel of the first or second 

whisker), and are typically stronger than the sum of the responses to independent whisker 

deflections for a specific time interval (figure 4 left). Our modelling results (figure 4 right) 

showed—consistent with a place theory interpretation—that this broad range of recorded 

response profiles emerges naturally from the connection geometry as a function of the 

anatomical location of the neuron. In practical terms, the result that stimulus-evoked 

responses can be predicted by neuron location is important because it suggests that neural 

geometry needs special consideration as we construct theories of cortical processing.  

Further consideration of the role of neural geometry may lead to predictions about sensory 

processing in species that maintain map-like representations compared with those that do not. 

For example, whilst individual neurons in rodent primary visual cortex respond selectively for 



the orientation of visual edges, they are arranged randomly in the cortex with respect to their 

orientation preference (Ohki, Chung et al., 2005). Presumably rodents would therefore be 

poor at using map-dependent mechanisms to extract stimulus velocity in the orientation 

domain (i.e., when extracting information about image rotation), compared to primates that 

have smooth topological maps for orientation preference and so might use place-coding 

mechanisms. In more general terms, evidence supporting the place theory from a tactile 

mammalian sensory system provides new insight into understanding how the brain represents 

moving sensory input. Finally, in the context of the vibrissal system, and the barrel cortex, 

this study provided a novel account of the fusion of information at the multi-whisker level 

that both explained existing data, by casting it within a general and powerful framework 

(place theory), and made testable predictions that could be investigated experimentally.   

 

FIGURE 4 HERE 

 

 

A key feature of the mammalian sensory cortices is the presence of self-organising 

topological maps. Cortical maps for features of each sensory modality can be highly plastic 

and shaped by a combination of physical and environmental constraints (Feldman and Brecht, 

2005; Fox and Wong, 2005). We recently conducted a series of experiments driving map self-

organisation with activity patterns representing tactile stimulation of an array of artificial 

whiskers, in order to predict the organisation of object representations in the somatosensory 

cortex (Wilson, 2011). Inputs to the model were patterns of activity in simulated layer 4, 

encoding the spatial location and direction of whisker deflections caused by tactile stimuli 

that varied in shape, direction and speed. Layer 4 activity patterns were then remapped as 

layer 2/3 activity patterns using distance-dependent signalling delays in the layer 4 to layer 

2/3 projection, to additionally encode the relative timing of whisker deflections (Wilson, 

Bednar et al., 2011). This model represents a biologically grounded method by which to map 

the full spatial-temporal pattern of multi-whisker inputs to an essentially spatial representation 

of the stimulus across layer 2/3. Layer 2/3 activity patterns representing the range of multi-

whisker stimulus patterns could thus be presented to a self-organising map model of postnatal 

development in layer 5, using an approach that we have shown previously to recreate known 

topological feature maps in layer 2/3 (Wilson, Law et al., 2010).  

 

Our model of layer 5 map self-organisation, like our previous model for layer 2/3 map self-

organisation, is based on the LISSOM (Laterally Interconnected Synergetically Self-

organising Map) algorithm originally developed to capture the self-organising properties of 

primate visual cortex (Miikkulainen, Bednar et al., 2005). In our barrel cortex model, 

responses across the cortical sheet became organised into coextensive topological maps, 

wherein iso-feature contours for tactile stimulus shape, direction, and speed preferences 

intersected at right angles (see Figure 5). The model therefore makes the critical prediction 

that orthogonal tactile feature spaces are represented in the somatosensory cortex by 

orthogonal feature maps (and hence by orthogonal spatial codes). A series of controlled 

simulation experiments suggested further that i) speed and shape selective neurons align to 

regions of low selectivity in and between direction pinwheels, ii) direction, shape, and speed 

maps are acquired in developmental sequence, iii) stimulus direction is resolved by afferent 

projections to layer 5, whereas shape and speed are resolved by subsequent recurrent 

interactions in layer 5. These findings constitute specific, testable predictions about the 

development of functional maps and object representations in somatosensory cortex, i.e., that 

maps for the tactile motion direction implied by multi-whisker deflection sequences emerge 

earlier and more robustly than lower-order feature maps representing e.g., stimulus shape and 



speed. These modelling predictions were validated in experiments that connected self-

organising networks to an artificial sensor array stimulated by a table-top positioning robot 
(Wilson, 2011). 

FIGURE 5 HERE 

 

The cerebellum viewed as an adaptive filter and forward model 

In experiments with the Scratchbot robot platform we occasionally observed that the robot 

would orient (foveate) as if to a target when no object is in fact present.  On further 

investigation it appeared that on these occasions the sensory signal generated by active 

whisking is wrongly interpreted as contact with a target. This empirical observation in our 

biomimetic robot contrasts with the lack of reports of such ‘phantom’ orienting in normal rats. 

On the other hand, it has been shown that in rats sensory signals are generated by whisking 

movements. Specifically, a study by Leiser and Moxon reported that trigeminal ganglion cells 

of the rat fired during active whisking in air with no object contacts but were silent when the 

whiskers were at rest (Leiser and Moxon, 2007). The implication of this result is that whisker 

sensory signals may include self-generated artefacts during whisking. The fact that the robot 

does show phantom orienting and rats appear not to suggests that, unlike the robot, rats can 

discriminate between the component of a sensory signal that originates from an external 

source and the component that is self-generated by its own whisking movements. We can ask 

the question: how is this discrimination achieved? This leads us to suggest that the rat may 

actively cancel self-generated sensory signals —what we might call ‘self-induced’ or ‘self-

generated’ noise. 

Interestingly, noise cancellation in biological systems has a well-investigated precedent—

interference cancellation in passive electro-sensing in electric fish (for review see Bell et al. 

(Bell, Han et al., 2008)).  Of particular interest here is the evidence that suggests a cerebellar-

like structure performs the function of noise cancellation in these animals (Bell, Han et al., 

2008; von der Emde and Bell, 1996).  Additionally, this cerebellar-like structure is thought to 

act analogously to an adaptive filter (Montgomery and Bodznick, 1994; Sawtell and 

Williams, 2008), linking biological noise cancellation to both the signal processing literature 

(Widrow and Stearns, 1985) as well as the adaptive filter model of the cerebellum (Fujita, 

1982). In humans, a similar capacity to predict or cancel self-induced sensory signals is 

indicated by our inability to entertain ourselves by self-tickling (as opposed to be tickled by 

someone else). In this case, functional MRI data (Blakemore, Wolpert et al., 1998) also 

indicates a role for the cerebellum in predicting sensory signals due to self-movement thereby 

making them seem less amusing! 

The above considerations led us to the hypothesis that rats may use their cerebellum to 

generate a signal which cancels the effects of self-generated whisking noise on incoming 

sensory signals from the whiskers (see (Anderson, Pearson et al., 2010; Dean, Porrill et al., 

2010) for a review of the wider literature on the role of the cerebellum in sensory noise 

cancellation). Our first step in investigating this hypothesis was to determine whether our 

proposed mechanism would work in principle, by using it to achieve noise cancellation in a 

whisking robot (Anderson, Pearson et al., 2010). The step had two goals, first to solve the 

practical problem of noise cancellation in the robot, and secondly to provide a theoretical 

basis for studying noise cancellation in whisking animals.  Our approach was to use 

inspiration from the signal processing literature to form a prototype hypothesis of a whisking 

noise cancellation scheme.   



The subject of noise cancellation has been studied in the signal processing literature since the 

1960s (for early references see Widrow et al. (Widrow and Stearns, 1985)).  Much of the 

formative work was conducted by Bernard Widrow and was linked as an application problem 

to the least-mean-squares (LMS) adaptive filtering algorithm. The generic noise cancellation 

scheme is illustrated in figure 6, for detailed explanation see (Anderson, Pearson et al., 2010). 

The weights of the adaptive filter in the noise cancellation scheme (figure 6a) are adjusted by 

removing the correlations in the clean signal from the reference noise, implemented via the 

LMS rule. In the context of whisking, the self-generated noise is thought to be caused by the 

movement of the whisker, either by inertia of the whisker base in the follicle or the whisker 

musculature pressing and activating the mechanoreceptors (Leiser and Moxon, 2007).  

Ultimately, this activation is caused by the motor command to the whisker plant.  Hence, we 

regard the motor command (either high- or low-level) as the reference noise, which is 

correlated with the noise signal but uncorrelated with signals related to object contacts. In our 

proposed whisking noise cancellation scheme (illustrated in figure 6b) the cerebellum learns 

to predict self-generated noise from the motor commands that cause the whisker movements.  

Hence, the cerebellum learns an internal forward model of the whisker dynamics that 

transform motor commands into sensory signals.  

 

FIGURE 6 HERE 

 

 

Adaptive filter model of the cerebellum 

In the above whisking noise cancellation scheme we use the adaptive-filter to computationally 

model the cerebellum, as originally proposed by Fujita (Fujita, 1982). The mapping of this 

scheme onto the cerebellar microcircuit is illustrated in figure 7. We have previously 

investigated the computational properties of this model for adaptive motor control (Dean, 

Porrill et al., 2002; Dean and Porrill, 2008; Porrill, Dean et al., 2004; Porrill and Dean, 2007), 

and others have proposed that it could be used in principle to learn forward models (see 

(Dean, Porrill et al., 2010) for review). However, our vibrissal noise study was, to our 

knowledge, the first instance of the adaptive-filter model of the cerebellum being applied to 

learning a specific forward model (i.e. of whisker dynamics) for the purposes of noise 

cancellation.  

  

FIGURE 7 HERE 

 
 

To develop and validate our proposed whisking noise cancellation scheme we recorded 

experimental data from Scratchbot during ‘free’ whisking (i.e. with no object contacts).  Note 

that free-whisking is an ideal scenario to test the noise cancellation scheme because during 

free whisking the whisker sensory signal should be zero.  Hence, whilst the whisker dynamics 

are unknown and therefore the optimal cerebellar filter is also unknown, the output of the 

cancellation scheme is known: it should be zero.  Therefore it is straight-forward to evaluate 

the performance of the noise cancellation scheme during free-whisking.  Figure 8 shows 

example results of the application of the cerebellar noise cancellation algorithm to free-

whisking data.    

   

FIGURE 8 HERE 

 

 

 



In a further extension of our sensory noise cancellation model (Anderson, Porrill et al., 2012) 

we have shown that the addition of sensory information from the whiskers allows the adaptive 

filter to learn a more complex internal model that performs more robustly than a forward 

model based on efference copy signals alone, particularly when the whisking-induced 

interference has a periodic structure. More generally, our analysis of the whisking noise 

cancellation scheme reveals that the functional role of the cerebellum may be to learn a 

forward model of the whisker/follicle dynamics.  This links to separate speculation over the 

functional role of the cerebellum in motor control and sensory processing, where it has been 

suggested that the cerebellum can learn a variety of forward and inverse models in control and 

state estimation tasks, see for instance (Dean and Porrill, 2014; Wolpert, Miall et al., 1998). 

Our development of the whisking noise cancellation scheme from a theoretical basis has led 

to a number of experimental predictions relating to the functionality of different components 

of the cerebellar micro-circuit: (i) that the mossy fibres transmit a copy of motor command, 

(ii) that the Purkinje cell output is an estimate of the self-induced noise signal, (iii) that the 

climbing fibre teaching signal is an estimate of the ‘clean’ whisker sensory signal, and (iv) 

that the superior colliculus is the target of the cerebellar output and acts to compare predicted 

and actual sensory signals (Anderson, Porrill et al., 2012). 

 

Cerebellar/collicular algorithms for orienting and predictive pursuit 

Cerebellar circuits are likely to be important for fast predictive control of ballistic movements 

needed for tasks such as prey tracking and capture since cerebellar damage is known to impair 

predictive aspects of motor behaviour (Bastian, 2006). An important role might lie in the 

calibration of sensory maps used to generate fast orienting movements. We have hypothesised 

(Porrill, Anderson et al., 2010) that the known extensive cerebellar-collicular connectivity 

(see (Anderson, Porrill et al., 2012; Teune, van der Burg et al., 2000)), together with the 

adaptive filter cerebellar architecture described above, could play a role in calibrating 

predictive topographic maps in the colliculus. We are currently investigating how this model 

can be employed in a predictive architecture in which features appear in the salience map at 

their predicted rather than their current positions. 

The cerebellum may also calibrate sensory information that provides input to the predictive 

system. For example, as described above, we have developed a cortical algorithm for 

estimating contact timing for a target moving through the robotic whisker array illustrated in 

figure 9 left (Wilson, 2011). Figure 9 (centre) shows target velocities recovered from these 

timings, whilst incorporating a cerebellar learning element produced a more accurate 

calibration as shown in Figure 9 (right). 

 

FIGURE 9 HERE 

 

Tactile self-localisation and mapping in the hippocampus 

The lifestyle of any small mammal, even one as tiny as the Etruscan shrew, requires the 

capacity to know where you are at all times with respect to key locations such as the nest, 

important feeding sites, and significant danger zones. Indeed, as we have seen above, simply 

to explore space efficiently using vibrissal touch requires some long-term memory of 

locations you have visited in the recent past, and the capacity to update an estimate of your 

own position as you move around. In the mammalian brain the hippocampal system is known 

to be important in building and maintaining representations of the environment (the ‘place 

cell’ system (O'Keefe and Nadel, 1978)) and in maintaining estimates of changes in position 



determined through path integration (the ‘grid cell’ system (Moser, Kropff et al., 2008)). 

Recent data also demonstrates that the hippocampus also encodes tactile information that 

describe the environmental context obtained through vibrissal touch (Itskov, Vinnik et al., 

2011).  

 
The principal input structures of the hippocampus are the superficial layers of Entorhinal 

Cortex (EC). EC projects to Dentate Gyrus (DG) which is believed to increase the sparcity of 

the encoding generated by the EC. Both EC and DG project to CA3, which also receives 

strong recurrent connections that are disabled (Hasselmo, Schnell et al., 1995) by septal 

acetylcholine (ACh). CA3 and EC project to CA1, which in turn projects to the deep layers of 

Entorhinal cortex, there is also a back-projection from CA3 to DG (Scharfman, 2007). 

Although the classical view of hippocampus is as a single loop, there is also a second loop—

EC and CA1 project to Subiculum (Sub), which projects to the midbrain Septum (Sep) via 

fornix. Septal ACh and GABA fibres then project back to all parts of hippocampus. Figure 10 

summarises many of these connections. 

 

There have been two broad schools of hippocampal modelling one based acquiring spatial 

sequences, and the other on the notion auto-associative memory including pattern 

reconstruction based on partial or noisy input (see (Fox and Prescott, 2010a) for review). 

However, the objectives of both auto-associative and spatial sequence memories can be 

combined by a general Bayesian filter with noisy observations, which seeks infers the 

(hidden) state of the world.  Such a filter that maintains just a single estimate of the current 

state-of-the-world (e.g. of location in spatial map) is known as a ‘unitary particle filter’.  We 

have developed a model of spatial learning in the rodent hippocampus (Fox and Prescott, 

2010a), viewed as a unitary particle filter, by mapping key structures in the hippocampal 

system onto the components of a Temporal Restricted Boltzmann Machine—a probabilistic 

algorithm for learning sequence data developed by researchers in machine learning (see, e.g. 

(Taylor, Hinton et al., 2007)). The algorithm approximates Bayesian filtering to infer both 

auto-associative de-noised percepts and temporal sequences, that is, it can clean-up and fill-

out incoming sensory patterns and can use these to recall or forecast sequences of places 

visited during navigation. The mapping to the hippocampal system (see Figure 10) proposes a 

novel role for the subiculum, and for ACh from the septum, in detecting when the animal has 

become lost (by detecting a mismatch between predicted and actual sensory signals).  A 

follow-up paper (Fox and Prescott, 2010b) extended this model to include online learning of 

connections to and from the simulated hippocampal CA3 region.  

 

FIGURE 10 HERE 

 

 

Building on our computational models of hippocampus, we have developed tactile Self-

Localisation and Mapping (tSLAM) for whiskered mobile robot platforms. tSLAM provides a 

robot with a means of mapping and navigating a novel environment by touch information 

alone, something which has never previously been developed in robotics. A critical step, was 

the development of a hierarchical Bayesian ‘blackboard’ architecture (Fox, Evans et al., 

2012b) to investigate how to fuse information from multiple local tactile feature reports to 

recognise objects in the world. This work also involved developing techniques for online 

head-centric spatial localisation of whisker contacts, and their subsequent world-centric 

transformation. To achieve tSLAM we have developed a particle-filter based mapping and 

localisation algorithm, taking odometry (path integration) and tactile information from the 



robot in real-time. This information is then integrated into an occupancy grid map, and a 

current position estimate.  

 

The tSLAM system has now been piloted on two whiskered robot systems—Crunchbot, a 

modified Roomba vacuum-cleaner robot with a small array of static whiskers (Fox, Evans et 

al., 2012b), and Shrewbot a robot with multiple actively controlled whiskers and a 3 degrees-

of-freedom neck (see Figure 1 and (Pearson, Fox et al., 2013)). In the case of the Shrewbot 

platform, odometry derived from the robot base and neck were passed at regular intervals (in 

phase with the whisking) to a population of particles each maintaining an estimate of head 

pose and location within a 2-dimensional occupancy grid. The importance of each particle 

was calculated by fusing the likelihood that each whisker in the array is at the estimated 

location in the map based on tactile information sampled throughout the previous whisk. The 

screen shot shown in Figure 11 shows a one hour experimental run of Shrewbot in a 3m 

diameter arena. The pink regions representing areas of the map that have a high probability of 

occupancy, the dashed white line representing ground truths taken from the over head video 

camera. The dashed white representation of Shrewbot is its ground truth location, whilst the 

solid representation is the current best estimate of pose and location taken from the particle 

with highest importance (cloud visible as red dots near the head).  
 

FIGURE 11 HERE 

 

We have also used the Shrewbot platform to model the active touch based hunting behaviour 

of the Etruscan Shrew (Mitchinson, Pearson et al., 2014). A study of vibrissal-guided 

predation of insects by the shrew (Munz, Brecht et al., 2010) identified three distinct phases 

of hunting behaviour: search, contact and attack. The search phase was reproduced on 

Shrewbot using the tactile attention based model of action selection described above, whereby 

the locus of attention drives the orienting behaviour of the robot between subsequent whisks. 

Upon making contact, an internal geometric model of two classes of object was compared to 

the sparse 3-dimensional tactile information derived from the whisker array. The two classes 

of object were vertical "walls" and the dome shaped covering of a mobile robot referred to as 

"preybot" (see Figure 12). Shrewbot’s reflexive whisker control strategies (Pearson, 

Mitchinson et al., 2011) caused an increase in the whisking set angle similar to that reported 

in (Munz, Brecht et al., 2010) as well as an increase in the number and frequency of whiskers 

making controlled contacts with the object. This information was collated into a "prey belief" 

metric that influenced the decision to either attack the object (preybot) or to ignore it (walls). 

In parallel to the attack decision process, the centre of mass of the preybot was also estimated. 

To accommodate the relatively sparse information from whisker contacts, some of the known 

characteristics of the preybot were used to better infer its location and orientation and hence 

its affordances as a potential “prey” object. The velocity of the preybot was derived from this 

information and thence a prediction of where a particular point on that robot (in this case the 

tail) should be in the near future. This location in space was then set as the target for an 

attack.  

 

FIGURE 12 HERE 
 

 

Conclusion 
In this chapter we have briefly summarised an extensive programme of work aimed at 

describing and simulating, in biomimetic (robotic) models, the control architecture for 

sensorimotor co-ordination in the vibrissal touch system of small mammals.  We have shown 



how the evolution of our robot models has progressively captured more-and-more of the 

important features of the biological target system including morphology, sensory 

transduction, motor control, and internal processing.  Focusing initially on the problem of 

orienting to vibrissal contacts we have shown that models of the superior colliculus and basal 

ganglia can be combined to generate sequences of exploratory and orienting movements that 

allow the robot to explore an environment, and orient to unexpected contacts, in a life-like 

way.  Our robot experiments also revealed a need to pre-process sensory signals in order to 

distinguish real physical contacts from ‘ghost’ contact signals induced by the whisking 

movements of the artificial vibrissae.  This led to a novel hypothesis about the role of the 

cerebellum in vibrissal processing and the demonstration that adaptive filter algorithms 

modelled on cerebellar microcircuitry can be effective in predicting/cancelling self-induced 

sensory noise.  The task of developing integrated sequences of movements in whiskered 

robots also revealed the need for spatial memory systems that could effectively encode and 

remember the location of object contacts and allow the robot/animal to maintain a good 

estimate of its position in space.  To make these systems more effective in identifying, and 

responding appropriately, to tactile environmental affordances, we are also developing models 

of cortical systems (particular of primary somatosensory cortex), and have shown that model 

basal ganglia circuits can make timely decisions between alternatives based on cortical 

encodings of vibrissal touch signals.  Whilst we have yet to realise the full architecture shown 

in Figure 2 in a single robot, our latest robotic models show a capacity for integrated 

behaviour that has surprised and impressed exhibition and conference audiences into thinking 

that they are observing something like a ‘robot animal’.  From the perspective of 

understanding brain architecture, we also consider that we have made important steps towards 

understanding and demystifying the neural-basis for sensorimotor co-ordination in 

mammalian brains including our own. 
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Figure Legends 

Figure 1. Biomimetic whiskered robots.  From left to right: Whiskerbot, Scratchbot, Shrewbot, 

Generation 2 Biotact Sensor.  Each robot has a snout configured with an array of moveable artificial 

whiskers. Different mechanisms have been explored for whisker actuation and for sensory 

transduction in the different devices. We have also gradually evolved the overall design of the whisker 

morphology and of the neuromimetic control architecture.  The most recent model systems (Shrewbot, 

G2 Biotact Sensor) feature arrays of individually actuated whiskers with intrinsic transduction systems 

based on Hall effect sensors that can measure whisker deflection in three dimensions.  For further 

details of the ‘evolution’ of our whiskered robots see (Mitchinson, Pearson et al., 2011; Mitchinson, 

Sullivan et al., 2013; Prescott, Pearson et al., 2009).  Photos by Martin Pearson (Whiskerbot, 

Scratcbot, Biotact Sensor) and Tony Prescott (Shrewbot). 

 

Figure 2. Model of brain architecture for control of a whiskered mobile robot. The abstract 

components of the model can be mapped to key sub-systems in the mammalian brain (see text).  

Figure reproduced from Figure 2 of (Mitchinson, Pearson et al., 2012) with permission from Springer. 



Figure 3. Model of the regulation of whisking behaviour by spatial attention. Top-left. A mix of 

exogenous (tactile) and endogenous (other) influences affect the locus/region of spatial attention. This 

locus drives head movements and is responsible for the modulation of whisker movements from whisk 

to whisk. Bottom-left. Three frames from an overhead video of a rat executing an orient to an 

unexpected contact. Centre. The implementation used to test the model—additional components are a 

simple oscillator to generate periodic whisking (OSC), an implementation of inhibition-of-return 

(IOR) to generate sufficiently rich orienting behaviour for testing, and a physical model of 

whisker/environment interactions. Right. Comparison of results from current model (A) and 

recordings of rat behaviour (B) under three analyses, from top: Contact-induced asymmetry (see, e.g. 

(Mitchinson, Martin et al., 2007))—if an animal approaches a surface at an oblique angle then 

protraction of whiskers ipsilateral to the surface is reduced (red color / dark shading inside boundary), 

whilst protraction of whiskers on the contralateral side is increased (blue color / light shading); Head-

turning asymmetry (see, e.g. (Towal and Hartmann, 2006))—as an animal turns the whiskers typically 

move asymmetrically as if to anticipate obstacles in the direction of the turn; Spread reduction during 

contact (see. e.g. (Grant, Mitchinson et al., 2009))—whilst exploring a surface the whiskers are 

brought closer together with the effect of increasing the number of whisker-surface contacts. Adapted 

from figures 2, 3, 7 and 8 of (Mitchinson and Prescott, 2013) which should be consulted for further 

explanation of the model and results. 

 
Figure 4. Spatiotemporal interactions of cortical responses to paired whisker stimulations. The 

left panel shows experimental data replotted from Figure 8e of (Shimegi, Akasaki et al., 2000) with 

permission from Society for Neuroscience. The right panel shows the behaviour of our model 

(Wilson, Bednar et al., 2011). In both panels, the response facilitation index – computed as the ratio 

between the response to a paired stimulation of adjacent whiskers A and B and the linear sum of the 

responses to either A or B separately – is shown as a function of the time interval that separated the 

two whisker deflections.  Figure reproduced from (Wilson, Bednar et al., 2011). 

Figure 5. The emergence of orthogonal coding for tactile stimuli of different shapes 

(concavity/convexity), directions, and speeds, in a self-organising model of map development in 

the barrel cortex.  See (Wilson, 2011) for further details. 

Figure 6. Noise cancellation schemes.  (a) A generic adaptive noise cancellation scheme, see for 

instance Widrow and Stearns (Widrow and Stearns, 1985). (b) A proposed biological whisking noise 

cancellation scheme. See (Anderson, Pearson et al., 2010) for further details. 

 
Figure 7.  Schematic diagram of the organization of the cerebellar microcircuit and its 

interpretation as an adaptive linear filter. (a) Simplified architecture of cerebellar cortex. (b) 

Adaptive filter model of the cerebellum. Adapted from Figure 1a,b of (Dean, Porrill et al., 2010) 
with permission from Nature Publishing Group. 

 

Figure 8. Results from applying the noise cancellation algorithm to the free-whisking sensory 

signal.  (a) Low frequency linear noise cancellation in the range 0-5 Hz. (b) High frequency nonlinear 

noise cancellation (up to 100 Hz). See (Anderson, Pearson et al., 2010) for further details. 

Figure 9. Cortical algorithm for contact timing. a) A planar target is moved through a robotic 

whisker array on an xy-plotter through eight speeds and eight directions to generate a set of multi-

whisker deflection patterns b) plot of target velocities recovered from the relative timing of whisker 

responses, as computed using a cortical velocity-encoding algorithm based on (Wilson, 2011); plotted 

against the x and y components of the stimulus motion velocity, the distortion of the cortical estimates 

compared to a regular grid of true velocities is clear c) estimation of the motion velocities are 

improved by cerebellar correction after randomised representation of the data set. 

 

Figure 10. Model of spatial memory in the hippocampal system viewed as a particle filter. 

Structures are labelled with UML notation indicating many-to-many fully connected links (* → *), 

one-to-one links (1 → 1) and many-to-one links (* → 1). Thick lines are ACh projections, thin lines 

are glutamate.  The model implements a spatial memory system for location based on multisensory 



signals from tactile, visual, and path integration signals. See text for abbreviations showing the 

proposed mapping to regions of the rodent hippocampal system. Reproduced from Figure 1 of (Fox 

and Prescott, 2010a) with permission from IEEE. 

Figure 11. Tactile Self-localisation and Mapping (tSLAM) in the Shrewbot whiskered robot 

platform. Screen shot taken from a combined video of overhead camera view (right) with an 

appropriately scaled and rotated 2d occupancy grid representation of the arena in a typical particle 

after approximately 1 hour of whisker based tactile exploration (left). Figure reproduced from 

multimedia supplement to (Pearson, Fox et al., 2013) with permission from IEEE. 

 

Figure 12. Tactile identification and tracking of a target in a whiskered robot. Snapshots taken 

with an overhead camera of Shrewbot approaching the “preybot” during hunting behaviour. The 

images indicate: search (frame 1), contact (frame 2 and 3), attack (frame 4) and a return to search 

(frame 5). Figure reproduced from Figure 3 of (Mitchinson, Pearson et al., 2014) with permission from 

Elsevier. 
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