
Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 09 March 2009
doi: 10.3389/neuro.11.006.2009

Technical integration of hippocampus, basal ganglia and
physical models for spatial navigation

Charles Fox1*, Mark Humphries1, Ben Mitchinson1, Tamas Kiss2, Zoltan Somogyvari 2, Tony Prescott1

1 Adaptive Behaviour Research Group, Department of Psychology, University of Sheffi eld, Sheffi eld, UK
2 Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest, Hungary

Computational neuroscience is increasingly moving beyond modeling individual neurons or neural
systems to consider the integration of multiple models, often constructed by different research
groups. We report on our preliminary technical integration of recent hippocampal formation,
basal ganglia and physical environment models, together with visualisation tools, as a case study
in the use of Python across the modelling tool-chain. We do not present new modeling results
here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment
with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a
fl exible platform, offering a signifi cant reduction in development time, without a corresponding
signifi cant increase in execution time. We illustrate this by implementing a part of the model in
various alternative languages and coding styles, and comparing their execution times. For very
large-scale system integration, communication with other languages and parallel execution may
be required, which we demonstrate using the BRAHMS framework’s Python bindings.

Keywords: hippocampus, basal ganglia, spatial navigation, place cells, plus-maze, BRAHMS, Python

CA1/CA3 encode position in space (O’Keefe and Conway, 1978;
Wiener, 1996); “grid”-cells in entorhinal cortex (EC) provide met-
ric information for path-integration via a tessellating rhomboid
pattern (Hafting et al., 2005; McNaughton et al., 2006); and hip-
pocampal lesions impair (but not necessarily abolish) rats’ abili-
ties to navigate in open environments (Whishaw, 1998). The basal
ganglia’s main input nucleus – the striatum – is a major target of
hippocampal formation output, and also appears necessary for
unimpaired spatial navigation: lesioning the connecting fi bres
impairs accurate navigation in open environments (see e.g. Devan
et al., 1996; Gorny et al., 2002; Whishaw et al., 1995), and block-
ing plasticity in the region of striatum targeted by hippocampal
fi bres prevents acquisition of paths to targets (Sargolini et al., 2003;
Smith-Roe et al., 1999).

A recurring theme in the basal ganglia literature is that they form
a selection mechanism for motor programs (Hikosaka et al., 2000;
Mink and Thach, 1993) or, more generally, for “actions” (Redgrave
et al., 1999). Thus, the specifi c hypothesis underlying our integrated
model is that the basal ganglia select movement direction based on
current spatial position provided by the hippocampal formation
input.

The system described below is a preliminary technical integration
of the action-selecting basal ganglia model of Gurney et al. (2001a,b)
with the hippocampal navigation model of Ujfalussy et al. (2008).
The basal ganglia model may be used to select between any types
of action, but simple predefi ned saliencies between two target loca-
tions are currently used. The hippocampus model may run using
any form of sensory input: at present we use visual input, but report
on the implementation of physical simulation of tactile whisker-like
sensors as an example of developing advanced sensors in Python,
which could form a further input in future. Neither the inputs to the
models or the placeholder function connecting them are intended

INTRODUCTION
As computational resources inexorably grow, computational neuro-
science is increasingly moving beyond modeling individual neurons
or neural systems to consider the integration of multiple models,
often constructed by different research groups. At the software level
there is a drive towards interoperability of simulators at both model
specifi cation (Goddard et al., 2001) and run-time stages (Cannon
et al., 2007). However, these efforts have concentrated on creating
small networks of different multi-compartment models (Gleeson
et al., 2007), or large networks of different single-compartment
spiking neuron models (Cannon et al., 2007).

Our focus here is on a third strand that can take advantage of
growth in computing power: the integration of multiple neural
models that form components of a brain-wide system, and the
testing of that integrated model in an embodied form. Embodiment
often takes the form of a robot and a test environment, whether
simulated or real. Requiring the neural models to generate appro-
priate behavioural output using only inputs available in the envi-
ronment is a strong test of the proposed computations of that
neural system (Humphries et al., 2005; Prescott et al., 2006). In
such large simulations, development time is as much an issue as
computation time – to implement and test the models, construct
simulated environments, implement realistic sensors, and so on.
This paper shows how Python provides an excellent solution to
both development and computation time problems; we also discuss
how Python can work with platforms designed for such large-scale
integration (Mitchinson et al., 2008).

As a case study, we report on our preliminary integration of
recent hippocampal formation and basal ganglia models, both
proposed components of the neural system for spatial naviga-
tion (Redish and Touretzky, 1997). The hippocampal formation’s
role in spatial navigation is not controversial: “place” cells within

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Michael E. Hasselmo, Boston
University, USA
Eilif Muller, Brain Mind Institute, EPFL,
Switzerland

*Correspondence:

Charles Fox, Adaptive Behaviour
Research Group, Department of
Psychology, Faculty of Pure Science,
University of Sheffi eld, Sheffi eld,
South Yorkshire, Western Bank,
Sheffi eld S10 2TP, UK.
e-mail: charles.fox@sheffi eld.ac.uk

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 2

Fox et al. Hippocampus, basal ganglia and physics integration

to be biologically realistic at this stage. The neural models control
a mobile rat-like robot in a standard plus-maze environment with
external landmarks, all implemented in a 3D simulator built using
existing Python modules. The purpose of this paper is to illustrate
a complete neural and physical simulation system, detailing the spe-
cifi c libraries and packages in the tool-chain that were found useful,
and not to make any new claims about the biological models. We
hope that it will provide a guide for others who wish to implement
similar systems, as it can be diffi cult for newcomers to select the best
tools from the plethora of open-source Python extensions.

COMPUTATIONAL MODELS
We are updating prior models of hippocampal formation-basal
ganglia interactions (Arleo and Gerstner, 2000; Chavarriaga et al.,
2005) by including the entire basal ganglia circuit and by using a
grid-cell driven model of hippocampus. In addition, prior models
assumed a direct, modifi able, projection from place cells to the stria-
tum (Arleo and Gerstner, 2000; Chavarriaga et al., 2005). However,
such a projection, if it exists, is minor compared to input from other
regions of the hippocampal formation, particularly the subicu-
lum, suggesting further stages of processing between the basic

 representation of position and the striatum (see e.g. Groenewegen
et al., 1999; van Groen and Wyss, 1990). In the current integrated
system, we provide a simple spatial decoding scheme as a proxy for
detailed models of the intervening structures to follow. We do not
here present new results from the individual models (Gurney et al.,
2001a,b; Ujfalussy et al., 2008), but report on systems integration
at a technical level using Python and BRAHMS.

BASAL GANGLIA
The basal ganglia are a group of inter-connected subcortical nuclei,
which receive massive convergent input from most regions of cor-
tex, and output to targets in the thalamus and brainstem (Bolam
et al., 2000). We have previously shown how this combination of
inputs, outputs, and internal circuitry implements a neural sub-
strate for a selection mechanism (Gurney et al., 2001a,b, 2004;
Humphries and Gurney, 2002; Humphries et al., 2006; Prescott
et al., 2006). Figure 1 illustrates the macro- and micro-architec-
ture of the basal ganglia, highlighting three key ideas underlying
the selection hypothesis: that the projections between the neural
populations form a series of parallel loops – channels – running
through the basal ganglia from input to output stages (Alexander

FIGURE 1 | Architecture of the basal ganglia model. The main circuit (centre)
can be decomposed into two copies of an off-centre, on-surround network: a
selection pathway (right) and a control pathway (left). Three parallel loops –
channels – are shown in both pathways, with example activity levels in the bar
charts to illustrate the relative contributions of the nuclei (the three channels are
colour-coded black/grey/white, corresponding to the example bar charts). Note
that, for clarity, full connectivity is only shown for the second channel. Briefl y, the
selection mechanism works as follows. Constant inhibitory output from substantia
nigra pars reticulata (SNr) provides an “off” signal to its widespread targets in the
thalamus and brainstem. Cortical inputs representing competing saliences are

organised in separate channels (groups of co-active cortical neurons), which
project to corresponding populations in striatum and STN. In the selection circuit,
the balance of focussed (one-to-one) inhibition from striatum and diffuse (one-to-
many) excitation from STN results in the most salient input suppressing the
inhibitory output from SNr on that channel, signalling “on” to that SNr channel’s
targets. In the control circuit, a similar overlap of projections to GP exists, but the
feedback from GP to the STN acts as a self-regulating mechanism for the activity
in STN, which ensures that overall basal ganglia activity remains within operational
limits as more and more channels become active. For quantitative demonstrations
of this model, see Gurney et al. (2001b, 2004) and Humphries et al. (2006).

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 3

Fox et al. Hippocampus, basal ganglia and physics integration

and Crutcher, 1990); that the total activity from cortical sources
converging at each channel of the striatum encodes the salience of
the action represented by that channel; and that the selection of
an action is signalled by a process of disinhibition – the selective
removal of tonic inhibition from cells in the basal ganglia’s target
regions that encode the action (Chevalier and Deniau, 1990).

We use here the population-level implementation of this model
from Gurney et al. (2001b). The average activity of all neurons
comprising a channel in a population is represented by a single
unit that changes according to

τa a u= − + (1)

where τ is a time constant and u is summed, weighted input. We
use τ = 40 ms. The normalised fi ring rate y of the unit is given by
a piecewise linear output function

y F a

a

a a

a

= , =
≤

− < < +
≥ +

⎧
⎨
⎪

⎩⎪
()ε

ε
ε ε ε

ε

0

1

1 1

(2)

The following describes net input u
i
 and output y

i
 for the ith

channel of each structure, with n channels in total. Net input is
computed from the outputs of the other structures, except cortical
input c

i
 to channel i of striatum and subthalamic nucleus (STN).

The striatum is divided into two populations, one of cells with the
D1-type dopamine receptor, and one of cells with the D2-type
dopamine receptor. Many converging lines of evidence from elec-
trophysiology, mRNA transcription, and lesion studies suggest a
functional split between D1- and D2-dominant projection neurons
and, further, that the D1-dominant neurons project to SNr, and
the D2-dominant neurons project to globus pallidus (GP; Gerfen
and Wilson, 1996; Surmeier et al., 2007).

Activation of these receptors has opposite effects on striatal
input: D1 activation increases the effi cacy of the input; D2 activa-
tion decreases the effi cacy of the input (see Gurney et al., 2001b,
for full details). Let the level of tonic dopamine be λ: then the
increase in synaptic effi cacy due to D1 receptor activation is given
by (1 + λ); the decrease in synaptic effi cacy due to D2 receptor acti-
vation is given by (1 − λ). Normal dopamine levels were indicated
by λ = 0.2, and dopamine-depletion by λ = 0, following previous
work (Gurney et al., 2001b; Humphries and Gurney, 2002). The
full model is thus given by:

Striatum D1: u ci
d

i
1 1= +()λ (3)

 y F ai
d

i
d1 1 0 2= , .() (4)

Striatum D2: u ci
d

i
2 1= −()λ (5)

 y F ai
d

i
d2 2 0 2= , .() (6)

STN: u c yi
stn

i i
gp= − (7)

 y F ai
stn

i
stn= ,− .()0 25 (8)

Globus pallidus:

u y yi
gp

i
stn

i
d

i

n

= . −∑0 9 2

(9)

 y F ai
gp

i
gp= ,− .()0 2 (10)

SNr:

u y y yi
snr

i
stn

i
d

i
gp

i

n

= . − − .∑0 9 0 31

(11)

 y F ai
snr

i
snr= ,− .()0 2 (12)

Full details for the chosen constants can be found in (Gurney
et al., 2001a), and are summarised here. Thresholds for striatal out-
put were set ε > 0 so that a large positive input would be required for
any output from these neurons, modelling the large input required
to push the striatal projection neuron into its fi ring-ready “up-state”
(Gerfen and Wilson, 1996). The STN, SNr, and GP all had ε < 0, as
each of these has tonic output at rest (Bolam et al., 2000). Non-unity
weights (0.3,0.9) on inputs were set to be within analytically-derived
bounds for stable operation of the model (Gurney et al., 2001a).

We used forward Euler to simulate this system for a two-channel
model, with the same time-step of 10 ms as was used for the discrete
equations of the hippocampus model (see below).

The model was implemented in Python using an object-oriented
hierarchy. Neuron objects contain Dendrite objects, which store
modulated and unmodulated weights, and references to parent
neurons. Neurons also store their parameters (ε,τ,s) (where s is
the sign of dopamine action) and state (u,a,y). The neuron class
contains methods to apply dopamine modulation and determine
the unit’s output. A Population class groups units together, and con-
tains methods to instantiate sets of one-to-one (e.g. GP→SNr) or
diffuse (e.g. STN→SNr) links to other Populations. These methods
automatically construct Dendrite objects and update references.

We have found Python’s default and named arguments to be
especially useful in this type of modeling. Neurons may be given
many default parameter values which remain invisible in the user-
level code unless specifi cally overridden. For example, the sign s of
dopamine action is assumed to be zero (meaning no effect) unless
an easy-to-read named parameter is passed:

STN = Population(n, epsilon = −0.25)
STN.addParPopOneToOne(Cx, w_Cx_STN)
D2 = Population(n,dopamineAction = −1, epsilon = 0.2)
D2.addParDopamine(SNc)
D2.addParPopOneToOne(Cx, w_Cx_D2)

HIPPOCAMPAL FORMATION MODEL
The hippocampal formation comprises the EC, dentate gyrus (DG),
fi elds CA3 and CA1 of the hippocampus proper, and the subiculum.
These form a feed-forward loop of connections that starts and
ends in the EC. Though all structures are thought to contribute,
the hippocampal model of Ujfalussy et al. (2008) instantiates just
the minimum putatively required for the hippocampal formation
to act as a memory store (following Treeves and Rolls, 1994); for
spatial navigation, the memory formed is considered the place code
created by the place cells. Figure 2 shows the basic structure, formed
by just the EC, DG, and CA3.

Following previous models (e.g. Treeves and Rolls, 1994), the
model of Ujfalussy et al. (2008) makes three key assumptions.
First, the DG region is a preprocessing stage for CA3, acting as a
competitive network that creates a sparse and clustered code of
the pre-synaptic EC input, which – similarly to other neocortical
regions – realises a denser representation. This sparse, orthogonal
code is in turn used as a teaching signal for the CA3 region. Second,
the CA3 region acts as an auto-association memory, which stores
memory traces in its extensive recurrent local collaterals for later
retrieval. Third, many previous hippocampal models (Arleo and
Gerstner, 2000; Rolls, 1995; Treeves and Rolls, 1994) assume that
the hippocampus operates in two distinct modes during learning

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 4

Fox et al. Hippocampus, basal ganglia and physics integration

and retrieval, which are also incorporated into the present model.
As in these models, switching between the two modes is performed
manually (contrary to models such as Hasselmo et al. (1995, 1996)
which explicitly address the separation between learning and recall).
Figure 2 shows the connections that change between the modes.

Entorhinal cortex
Grid cells in EC are modeled as having fi ring rates that are functions
of the agent’s actual physical position r = (x,y) in the simulated
environment. Grid cells each have two parameters, determining
the phase and scale of their receptive fi elds. The output of the i,jth
grid cell is

g si j k i j
k

() cos ()r w r, = ⋅ −⎡⎣ ⎤⎦∑1

3
2 θ

(13)

where s
i
 and θ

j
 are the ith scale factor and jth phase shift respectively,

and { }wk k= :1 3 are unit vectors at 60° from each other. We used an
ordered set of scale factors from 0.5 to 2.5 in steps of 0.5, and an
ordered set of phases from 0 to π in steps of π/5; i and j are indices
into these sets. Figure 3 shows that Eq. 13 produces receptive fi elds
with the characteristic rhomboid or “double triangle” tesselation
of grid cells (Hafting et al., 2005).

The EC relays input from several cortical areas (Marr, 1971) to
the hippocampal formation, and is thus often treated (e.g. Rolls,
1995; Rolls et al., 2006), as in the present model, as the input source
for all sensory information. Thus, as well as comprising a large
population of grid cells, EC is modelled with an additional popula-
tion of sensory cells. We use 100 visual cells, whose activations are
set by 10 × 10 grayscale images.

Dentate gyrus
The DG is thought to perform a principal-components-like dimen-
sionality reduction of input from the EC (Lorincz, 1998). Writing
w

ij
 for weights on inputs y

i
, the jth DG unit’s neural activation is

given by

a w yj ij i
i

= ∑

(14)

where the sum is taken over all EC inputs. Output fi ring rates {y
j
}

are given by a m-best function {y
j
} = F{a

j
} which preserves the m

largest activations, linearly re-maps them to the interval [0,1], and
sets the others to zero.

During the training phase only, every EC → DG weight is
updated at each time-step using the standard Hebbian learning
rule,

Δ = −w y y wij j i ijα ()

(15)

where α is the learning rate, and again j represents the DG cell
population and i represents the afferent EC population.

CA3 place cells
CA3 functions differently during training and recall. During train-
ing, CA3 is driven only by input from DG; hence unit activity
is updated according to Eq. 14 with j representing the CA3 cell
population and i representing the afferent DG population. CA3
output is computed from these activations with the same m-best
function used for the DG output.

Despite being driven by DG only, no learning is performed on
this connection. Instead, learning is performed on the otherwise
dormant EC→CA3 and CA3→CA3 pathways. EC→CA3 weights
are altered by Eq. 15, where y

i
 is EC output, and y

j
 is CA3 output.

Following Rolls (1995), each recurrent CA3→CA3 weight is altered
by the gated Hebbian rule,

Δ = − −w y y w wij i j ij ijα β()1

(16)

where β sets the “forgetting rate”, and i and j now both refer to cells
within the CA3 population.

During the recall phase, the EC input is used to initiate retrieval
of a stored memory pattern. First, the activation of CA3 units is
computed from the EC inputs only, using Eq. 14 with j representing
the CA3 cell population and i representing the afferent EC popu-
lation; their output is then computed using the m-best function.
Second, this initial output vector was used as the cue to retrieve
the memory trace in the CA3 autoassociative network. The activity

EC

DG CA3

EC

DG CA3

Training Recall

* * *

FIGURE 2 | Basic structure of the hippocampal model. Different
connections are active during learning and recall modes. Learning is
performed on the asterisked connections only. Thin lines indicate connections
which do not drive their targets, but perform learning only.

FIGURE 3 | Grid cell receptive fi elds from the model, over physical 2D

space. These are plotted with Pylab’s Matlab-style imagesc command.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 5

Fox et al. Hippocampus, basal ganglia and physics integration

of the kth CA3 unit is then the weighted sum of total output from
the EC and the recurrent connections

a w y w yk ik i
i

jk j
j

= +
∈ ∈
∑ ∑

EC CA3

(17)

with CA3 output y
k
 again computed by applying the m-best func-

tion. Activation (Eq. 17) and output calculations of the CA3 units
were iterated I times to bring the CA3 close to an attractor state as
in Hopfi eld-style networks (Hopfi eld, 1984).

We used eight DG cells and 30 CA3 cells with: learning rate
α = 0.05, forgetting rate β = 0.00002, sparsity m = 20 and I = 5
recurrent iterations.

Implementation in Python
The hippocampal model uses simple rate-coded units and linear
weights, in contrast to the basal ganglia’s leaky integrators. For this
reason the population activations and fi ring rates are amenable to
fast implementation as vectors rather than as attributes of individual
objects. Multiplication of population fi ring rates by weight matrices
may then be performed by matrix algebra. This style of programming
is common in Matlab, and may be performed in Python using the
Numpy library1. Numpy emulates much of Matlab’s matrix syntax,
including notation for slicing matrices (e.g. A = M[:,1:5]), address-
ing (M[2,3] = 4) and performing operations such as element-wise
addition (B = A + 1) as well as matrix algebra (C = dot(A,B)).

We have also made use of two further libraries: SciPy2 provides
a library of higher-level mathematical functions similar to Matlab’s
toolboxes; and Pylab3 provides interactive plotting commands. For
example, Figures 3 and 4 were plotted using Pylab. Pylab emulates
many of Matlab’s graphics commands including 2D and 3D graphs,
and image viewers. The Matlab application programmer interfaces
(APIs) are replicated almost literally, using the same function names
and argument conventions where possible, such as clf, plot and
imagesc.

Training
Training of the EC→DG, EC→CA3 and CA3→CA3 weights was
performed over fi ve epochs. Weights were initialised to random real
values from a uniform distribution ranging from 0 to 1. Grid and
visual cell input data was collected from a simulated robot moving
to a sequence of pre-determined points in a plus-maze environ-
ment (see “Building and Using the 3D Simulator” for simulator
details). The robot enters the maze from the open arm, then visits
each of the other arms in turn and comes to rest at the center.
About 1,500 data points were sampled during this motion. After
training, Python’s standard cPickle library provided a simple way
to serialise and save the trained Hippocampus object, using only
the following code:

file = open("myfile", "r")
cPickle.dump(myObject, file)
file.close()

The effect of training the hippocampus model with the grid cell
and visual input was to generate place fi elds in CA3, such as those

shown in Figure 4, which shows the locations of strongest fi ring
for nine of the 30 CA3 cells, superimposed on the robot’s path. Of
the 30 cells simulated, 11 responded to single places, 13 to two or
more places, and 6 were silent at all places (where a “single” place
is defi ned as a contiguous series of strong activations).

DECODING PLACE
We used a placeholder function for decoding hippocampal place
representations into striatal input, as a proxy for detailed models of
the intervening structures (e.g. CA1, subiculum) to follow. A simple
linear regression was used to fi nd a linear mapping from the vec-
tor of place cell activations to the Cartesian (x,y) spatial positions.
SciPy provides such regression in its linear algebra sub-package
(function linalg.lstsq).

BUILDING AND USING THE 3D SIMULATOR
THE PLUS-MAZE ENVIRONMENT
We used Python to construct a plus-maze environment in which to
test our current and future forms of the integrated basal ganglia-
hippocampus model. The plus-maze environment was chosen as
it is widely used for neural recording studies that probe the roles
of striatum, hippocampus, and their interactions in spatial tasks
(Albertin et al., 2000; Khamassi, 2007; Mulder et al., 2004; Tabuchi
et al., 2000, 2003). Following these studies, the simulated plus-maze
comprised a symmetric arrangement of walled arms, and two extra-
mazecues (Figure 5).

The neural model was used to control the “ICEAsim” simu-
lated robot, a differential wheels robot in a rat-like form, created
by Cyberbotics (Lausanne) for the ICEA project4. ICEAsim was

FIGURE 4 | Receptive fi elds for nine CA3 place cells, superimposed on the

robot’s path around the plus maze. Crosses show locations where cells
fi ring rates are in the top 5% of their activity throughout the path. Plotting was
performed with Pylab’s plot command, which has similar syntax to Matlab.

1www.numpy.scipy.org
2www.scipy.org
3www.matplotlib.sourceforge.net 4www.iceaproject.eu

www.numpy.scipy.org
www.scipy.org
www.matplotlib.sourceforge.net
www.iceaproject.eu

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 6

Fox et al. Hippocampus, basal ganglia and physics integration

initially created under Cyberbotics’ Webots simulator (Michel,
2004), but was readily imported into a Python simulation via the
standard VRML format. Wheel commands are sent via a higher-
level (and non-biological) function which takes as input a requested
target location to which to move. Our implementation of ICEAsim
added two whisker sensors, which output the angle and curvature
at their bases for use in tactile perception algorithms (see “Python
Physics Implementation” and “Comparison to PyRobotics”). We
added realistic whisker-like sensors as the basis for future studies:
while rats can successfully navigate in the dark, and correspond-
ing place fi elds are formed in the hippocampal formation, this has
been attributed entirely to idiothetic (self-motion) cues (Quirk
et al., 1990; Rossier et al., 2000); surprisingly little attention has
been paid to the potential role of rats’ whiskers in constructing
spatial maps in the dark.

For the purposes of this paper, we used a simple task and a place-
holder function to test that the models were correctly implemented
and technically integrated. After hippocampal training (a separate
task, not involving basal ganglia), the robot was simply required to
successfully navigate to the end of a maze arm, starting from the
entrance of the maze. The basal ganglia model received input sali-
ences {c

1
,c

2
} on two channels, corresponding to two actions (“go to

left arm” and “go to right arm”), and which – in this preliminary
system – were assigned predefi ned time series. The placeholder
function monitored the hippocampal position estimate, and when
this estimate was close to the center of the maze, the action cor-
responding to the basal ganglia output channel (in SNr) with
minimum value was selected and executed to completion. A “go
to left arm” or “go to right arm” routine is called, which uses hip-
pocampal output to estimate the required path to follow and sets

the robot’s differential wheel speeds accordingly. Figure 5 illustrates
the simulated robot’s behaviour: video of the robot’s movement,
and corresponding activity in the integrated neural models, are
available as Supplementary Material. Future biological models of
basal ganglia-hippocampus interactions may of course replace the
predefi ned time series and placeholder function with more complex
and ongoing interactions between the models, using the technical
integration framework presented here.

PYTHON PHYSICS IMPLEMENTATION
To simulate tactile whisker sensors requires realistic physics mod-
eling, as the precise bending (Birdwell et al., 2007), vibration
(Ueno and Kaneko, 1994) and other dynamics (Ritt et al., 2006)
of whiskers are crucial in making inferences from touch. The Open
Dynamics Engine (ODE) is an excellent open-source (BSD license)
physics engine, and we use the PyODE wrapper (pyode.source-
forge.net) to use it from Python. ODE provides primitive objects
such as cubes, spheres and cylinders, which may be combined and
transformed to produce objects such as the walls of the plus-maze
and the parts of the robot. PyODE wraps all the major ODE func-
tions for shapes, kinematics and collision handling, and provides
access to ODE’s standard set of fl exible joints. We use the latter to
construct rotating wheels, and whiskers. The whiskers are modelled
as a series of spherical or cylindrical segments, connected by joints
with rotational Hooke’s law springs. ODE handles the constraint
forces required to keep joints together automatically; however very
small time steps (and hence long simulation times) are needed
when the number of segments is above three. For example with
three segments per whisker the simulation requires about 3 min to
run stably on a 1.6-GHz machine; with four segments it requires
about 10 min.

VISUALISATION
3D visualisation is important in robotics simulation, both to ensure
that the simulation is behaving as intended, and also to provide
realistic visual input to robot sensors, for processing by neural
models.

OpenGL is a standard 3D graphics API5, and is implemented
by the free software Mesa and by many hardware-specifi c graphics
drivers. OpenGL provides low-level graphics commands to draw
lines, triangles and polygons, and position lights and cameras.
The OpenGL API is wrapped in Python by pyOpenGL (pyopengl.
sourceforge.net).

Higher-level graphics commands – such as drawing cubes,
cylinders and cones using scene graphs – are provided by the
OpenInventor API, implemented by the free software Coin6. Coin
has been wrapped for Python by the Pivy binding7 (Fahmy, 2006)
which we use here. Pivy allows raw pyOpenGL commands to be
mixed into its higher-level structures where necessary.

To simulate vision (for input to the hippocampus model) we
read back images from simulated cameras attached to the robot.
Pivy wraps Coin’s SoOffScreenRenderer function to perform
this task. (Modelers are advised that use of this function may be

FIGURE 5 | The simulated plus-maze environment. The hippocampus
reports the current estimated location, shown by the cross on the fl oor. When
this estimate is close to the center of the plus-maze, the basal ganglia is
consulted for an action to turn. 3D physical simulation and visualisation uses
PyODE and Pivy.

5www.OpenGL.org
6www.coin3d.org
7www.pivy.coin3d.org

www.OpenGL.org
www.coin3d.org
www.coin3d.org

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 7

Fox et al. Hippocampus, basal ganglia and physics integration

incompatible with the use of direct rendering on some graph-
ics hardware. Disabling direct rendering solves this problem but
reduces execution speed.) If graphical output is required in video
form only – such as for presentation but not as data for neural
 models – the free program Yukon8 is able to export OpenGL graph-
ics to .avi movies, whose frame-rate and resolution may be edited
with the free Avifi x program9.

In addition to the main 3D representation of the physical world,
it is often useful to attach additional graphical monitors to show the
internal state of the neural models in real-time. Pivy – like Coin –
takes control of program fl ow, calling back user functions to draw
and update the world. When multiple displays are required – or
when handing over control is too intrusive – it is useful to instan-
tiate several processes running Pivy. We use the Python Remote
Objects package (PyRo10) to handle communication between such
processes. PyRo allows an object from one process to appear on
another as if it was resident there, allowing function to be called and
data to be passed easily. PyRo processes communicate via TCP/IP
so the monitors may run on different machines to the main simula-
tion. Figure 6 shows a screen-shot of the state visualisation tool we
built for the integrated basal ganglia-hippocampus model.

COMPARISON TO PYROBOTICS
Our simulation is constructed using Python wrappers for ODE and
OpenGL. An alternative approach to simulation would be to use
the higher-level Player interface and Gazebo simulator11 which are
available though the PyRobotics12 integrated robotics simulator.
PyRobotics allows worlds and robots to be built from standard com-
ponents using XML specifi cation, and controllers written in Python.
This approach is recommended for simulations requiring standard
physics, but our use of the lower-level APIs was determined by the
need to write custom physics code for the whisker sensors. Whiskers
are diffi cult to model and coding with ODE directly allows fi ner

control over the contacts and forces that are simulated than would
be available in a higher-level simulator. Our custom simulations are
not intended to be an integrated robotics simulator, but they serve
as an example of lower-level PyODE and Pivy simulation.

SPEED COMPARISONS
Python is often thought of as being a “slow language” and if this is
the case then it would be a barrier to its use in large scale, compu-
tationally-intensive neural simulations. However, various libraries
and programming styles exist that can improve performance. We
investigated a variety of these to evaluate Python’s suitability for
large simulations. We chose execution of the previous basal ganglia
model alone as a benchmark representative of many neural simula-
tion tasks, and used a model with 100 channels running over 1,000
time steps to provide a sizable task requiring time of the order of
seconds. Neural models are commonly implemented in high-level
Matlab code (and its open-source equivalent, Octave), or in low-level
C code. C code allows and requires the user to perform their own
memory management, leading to greater development time but often
faster running times. We re-implemented the basal ganglia model in
these languages, writing the fastest code our skills allowed.

In addition to the object-oriented Python model described
earlier, we also re-implemented Python models using the Numpy,
Pyrex and Weave libraries. As described above, Numpy provides
Matlab-like data structures, operations and syntax, to the extent
that the Matlab program can be ported to Numpy with only minor
syntactic modifi cations. Pyrex13 is a Python-like language for writ-
ing Python extension modules, which provides C-like manual typ-
ing and data structures. As with C, Pyrex increases development
time by adding work to the programmer’s load, but may increase
execution time as a result. Programming Pyrex is conceptually simi-
lar to writing C programs, but using a Python-like syntax and allow-
ing very simple integration into pure Python code. Weave (part of
SciPy) allows inline C code to be embedded directly into Python
fi les, and its “converters” library automates data type conversion
between languages. We implemented inline Weave code within the
body of the main Numpy simulation loop.

Another way to improve Python speed is to use more advanced
compilers and virtual machines. There is much current research
into such tools but a popular system is Psyco14. We used Psyco to
run the pure Python, object-oriented model (it has negligible effect
on Numpy code, in which most of the computation is performed
by external numerical C libraries).

Table 1 shows the average execution times for the above imple-
mentations (and a BRAHMS version discussed below). Execution was
performed on a 1.6 GHz, 1.5 GB Ubuntu system and time averages
were taken over fi ve runs. No calls were made to platform-specifi c
BLAS or random-number generator libraries within the simulation
loops (such calls are not required or useful in implementing the
basal ganglia model’s equations). It can be seen that for the Matlab
and C-like programming styles (i.e. Numpy and Pyrex respectively)
Python is about four times slower than the non-Python alternative.
Weave is only a fraction slower than raw C, the overhead being due

FIGURE 6 | Real-time graphical neuron monitor, showing basal ganglia

and hippocampus model populations. The monitor runs remotely from the
simulation over TCP/IP using Pyro, and displays graphics using Pivy.

8www.dbservice.com/projects/yukon
9www.transcoding.org
10www.pyro.sourceforge.net
11www.playerstage.sourceforge.net
12www.pyrobotics.org

13www.cosc.canterbury.ac.nz/greg.ewing/
14www.psyco.sourceforge.net

www.dbservice.com/projects/yukon
www.transcoding.org
www.transcoding.org
www.transcoding.org
www.transcoding.org
www.transcoding.org
www.transcoding.org

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 8

Fox et al. Hippocampus, basal ganglia and physics integration

to type conversions. The object-oriented version has a much larger
run-time – as expected of this style of programming – and the time
is reduced by about 25% using Psyco.

These results suggest that Python is not inherently “slow” – a
factor of four is not large in such comparisons – though it can be
used to write slow but conceptually meaningful, human-readable,
object-oriented code if desired. Alternatively, if human comprehen-
sion is less important, then Matlab-like and C-like programming
styles can be used to regain speed. In most cases it is desirable to
work on an easily comprehendible “reference implementation” of
a model at fi rst, then develop a faster implementation once the
research is complete. Python eases this often diffi cult transition as
Numpy, Weave and Pyrex commands may be gradually mixed into
and replace the research code: the more traditional replacement of
Matlab by C programs requires a complete rewrite from scratch.

SUBJECTIVE EXPERIENCES WITH Python
The above has considered architectural and computational features
of Python and its associated libraries that are useful in embodied
neural modeling. However these are not the only criteria for choos-
ing a language for development: at least as important are the more
subjective aspects of the system during development and debug-
ging. Here we offer our experiences of hands-on development of
the neural and physical models.

We have found that Python supports a wide range of coding
styles. In particular, it is possible to code almost literal line-by-
line translations of Matlab programs by making heavy use of
Numpy’s matrices and Pylab’s plotting facilities. A key feature
is the ability to use interpreted Python from a command line,
enabling Matlab-like exploitation of data, testing of functions,
and calculator-style calculations. There is typically a little more
keyboard typing than when using Matlab. Throughout we have
drawn explicit parallels between using Python and Matlab, as
Matlab (or Octave) is often the preferred choice for rapid model
development and analysis.

Python’s class system allows Java-like object-oriented construc-
tion of dendrites, neurons and populations. Stylistically its use is
similar to Java, or C++ with passing by reference. We have found
it a natural but relatively slow-execution way to model neural
systems.

The physical and neural simulation, with OpenGL interface,
runs at comparable speed to commercial robotics simulators such

as Webots (Cyberbotics, Lausanne). We have found development
time to be much improved over C++, and comparable with Matlab.
However Python gives more versatility than Matlab, allowing easy
integration with many open-source libraries and the underlying
operating system. Our development has used Emacs with its Python
mode. In particular, this integrates with the Python debugger, pdb,
to allow visual stepping through code and command-line interac-
tion as in Matlab. This type of interaction can be especially impor-
tant in neural and AI programs, whose states and interactions can
become very complex in unpredicted ways.

LARGE-SCALE INTEGRATION WITH BRAHMS
All of the components discussed above (basal ganglia, hippoc-
ampus, 3D simulator) were implemented as stateful functions
in Python. Thus, integrating them into a computational system
was straightforward, by writing a simple Python “main” func-
tion that called these objects in turn to progress them through
time. Such an approach to integration is effective, so long as
there is no requirement for integration across more complex
boundaries. One example of a more complex boundary is cross-
language: integrating between functions written in Python, C,
Java, or Matlab, for instance, is not generally straightforward.
Whilst Python might be a suitable language for large portions of
a development, bottleneck computations may benefi t from being
recoded in a lower-level language such as C. Besides, contribut-
ing authors may not all share competence and/or enthusiasm
for Python development.

Other obstacles to integration include different component
authors, particularly in different groups. This can be problem-
atic since different authors tend to design different interfaces
for their components and, in the world of research, rarely have
time to properly document these interfaces. Integrating through
time – that is, using code written some years ago with code writ-
ten today – can throw up the same problems as integrating across
authors, particularly if documentation is lacking. Cross-platform
integration is sometimes necessary, particularly as emphasis shifts
to high-performance or embedded computing, and this is far from
trivial.

As such multi-module eclectic models become prevalent, and
with growing interest in widely varying use cases (high-performance,
desktop, embedded), a general solution to the integration problem
is urgently required. One such solution is the BRAHMS Modular
Execution Framework (brahms.sourceforge.net; Mitchinson et al.,
2008). BRAHMS consists of a supervisor, which is analogous to the
simple Python “main” function mentioned above, a fi xed supervi-
sor interface against which software components can be devel-
oped (currently available in C, C++, Matlab and Python), and a
user-extensible set of data types for passing data between software
components (forming the inter-process interface). Components
need not agree between themselves on implementation: they need
only conform to these two interfaces provided and made public by
the framework. A BRAHMS system, constructed from processes
authored as described below, can be parallelised across compu-
ter cores sharing memory or connected by an MPI layer or LAN;
alternatively, it can be run on an embedded system, since BRAHMS
is lightweight. Here we describe the BRAMHS Python language
binding.

Table 1 | Computation times for the basal ganglia model implemented

in different languages and programming formats.

Language/format Time (s)

Object-oriented Python 66.1

As above, with Psyco 48.6

Octave 1.31

Numpy Python + BRAHMS 0.89

Numpy Python 0.82

Pyrex 0.22

Matlab 0.21

Scipy.weave.inline 0.05

Raw C 0.04

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 9

Fox et al. Hippocampus, basal ganglia and physics integration

A BRAHMS PROCESS IN Python
The current BRAHMS Python binding (called “1262”) requires that
the process be implemented as a function; this function is rendered
stateful by passing in and out a reference to a dictionary object,
called persist. The function is a handler for framework events,
so its body consists of a switch block on the event type. The 1262
template provided with BRAHMS handles four events.

The fi rst, (EVENT_MODULE_INIT), returns information about the
process to the framework, and is already implemented completely in
the template. The developer can update the author information as
appropriate and familiarise themself with the two possible process
fl ags (discussed below). The second, (EVENT_STATE_SET), passes
the component its state, which is obtained by the framework from
the system document. This “state” typically consists only of proc-
ess parameters for initialisation. The third event, (EVENT_INIT_
CONNECT), requires that the process validate its inputs and create
its outputs (discussed below). The fourth, (EVENT_RUN_SERVICE),
requires that the process service its inputs and outputs (read input
data, write output data) at some time, t. This implies that the proc-
ess must complete its computations at least up to time t (a process
is free to progress its state beyond t for any reason). This last event
(discussed below) is received multiple times during execution and
is, effectively, the process step function.

Connectivity
In general, a system to be computed may include any number of
processes, each of which has each of its outputs dependent on
some subset of its inputs. A valid (fully specifi ed) system may
have arbitrary (including recursive) output structure dependen-
cies. Since processes are responsible for instantiating their own
outputs this requires, in general, multiple calls from the framework
to each process in the system to request that it create outputs. The
BRAHMS supervisor takes care of making these calls (by sending
event EVENT_INIT_CONNECT), guarantees that more inputs will
be available on each subsequent call (with zero to N available on
the fi rst call, and exactly N available on the last), and requires that
each process follow a simple algorithm on receiving each call. The
algorithm is: (a) observe (and validate, if necessary) the structure
of any newly presented inputs; (b) create as many outputs as pos-
sible. This algorithm will successfully instantiate any valid system.
When required dependencies are not met, the framework will raise
a “deadlock” error.

EXAMPLE
We have constructed and executed successfully a second version of
the integrated basal ganglia, hippocampus and physical world simu-
lation in which these three components are implemented as sepa-
rate BRAHMS modules. Such conversion is straightforward, with
each module being pasted into the template and modifi ed such that
it expresses the interface described above. Wrapper code linking a
Hippocampus Python object to BRAHMS is given in the Appendix.
We tested the overhead introduced by the BRAHMS framework by
running a BRAHMS-wrapped version of the Numpy basal ganglia
model used in the previous speed comparisons. Table 1 shows that
the overhead of using BRAHMS is very small; yet using it will now
allow extensions to the basic integrated model in any (currently
supported) language or level of modelling detail.

CONCLUSIONS
For large-scale integration and testing of neural models, Python can
achieve an excellent balance between development time and com-
putational run-time. The fl exibility offered by its modules allows
programmers to adopt the style most comfortable to them, without
a strong penalty in computation time. We have shown here how
all these aspects have contributed to the construction of both an
integrated basal ganglia-hippocampal formation model for spatial
navigation and its embodiment. Moreover, Python either forms the
basis for (PyNN; neuralensemble.org/trac/PyNN), or is compatible
with (BRAHMS; Mitchinson et al., 2008), platforms that address
larger-scale integration across modelling levels and hardware. Thus,
Python is a crucial part of the neuroinformaticstoolbox: fl exible,
usable, readable, and scalable.

APPENDIX
The following shows the code used to link the Hippocampus model
to the BRAHMS framework. The code implements four BRAHMS
events. The persistent state consists of an instance of a pre-trained
Hippocampus object, created in EVENT_STATE_SET. Servicing
(EVENT_RUN_SERVICE) consists of reading the BRAHMS inputs,
passing them in an appropriate format to the Hippocampus object,
and passing its output back to BRAHMS. The other events are
described in the Section “A BRAHMS Process in Python”.

import brahms
from hc import *
def brahms_process(persist, input):
 output = {’info’:{},’operations’:[],’event’:
 {’response’: 0}}

if input[’event’][’type’] == EVENT_MODULE_INIT:
 #these flags inform BRAHMS that this process
 #needs all inputs to be available before it can

initalise,
 #and that the process does not change the sample rate.
output[’info’][’flags’] = F_NEEDS_ALL_INPUTS + F_NOT_

RATE_CHANGER
 output[’info’][’component’] = (0, 1)
 output[’info’][’additional’] = "
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_STATE_SET:
 #create an instance of the Python Hippocampus object
 pars = persist[’state’]
 persist[’ptHC’] = loadHippocampus()
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_INIT_CONNECT:
 #check the data types of the BRAHMS inputs
 p = input[’iif’][’default’][’ports’]
 if len(p) ! = 1:
 output[’error’] = ’expects one input’
 return (persist, output)
 if p[0][’class’] ! = ’dev/std/data/numeric’:
 output[’error’] = ’expects data/numeric INPUT’
 return (persist, output)
if p[0][’structure’] ! = ’DOUBLE/REAL/102’:
 output[’error’] = ’expects real double 2x1 input’
 return (persist, output)
 #create a BRAHMS output

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 10

Fox et al. Hippocampus, basal ganglia and physics integration

 persist[’hOut’] = brahms.operation(
 persist[’self’],OPERATION_ADD_PORT,
 ",’dev/std/data/numeric’,
 DOUBLE/REAL/’ + str(persist[’state’][’n_out’]),
 out’)
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_RUN_SERVICE:
 ptHC = persist[’ptHC’] #retreive my persistent state
 #retreive my current inputs from BRAHMS
 ins = input[’iif’][’default’][’ports’][0][’data’]
 x = ins[0]
 z = ins[1]
 img = ins[2:102]
 img = array(img.ravel())
 img.shape = (100,1)
 #call to the Python Hippocampus object
 x_hat, z_hat = ptHC.step(x,z,img)
 #create output and send it to BRAHMS
 myOutput = numpy.array([x, z, x_hat, z_hat], numpy.
double)

 brahms.operation(persist[’self’], OPERATION_SET_CONTENT,
persist[’hOut’], myOutput)

 output[’event’][’response’] = C_OK

#return the output and the modified persistent state
return (persist, output)

ACKNOWLEDGEMENTS
This work was supported by the European Union Framework 6
IST project 027819 (ICEA project: www.iceaproject.eu) and the
European Union Framework 7 ICT project 215910 (BIOTACT
project: www.biotact.org).

SUPPLEMENTARY MATERIAL
Videos and source code from the simulation and speed
 comparisons are presented in the Supplementary Material. The
Supplemental Material for this article can be found online at
http://www.frontiersin.org/neuroinformatics/paper/10.3389/
neuro.11.006.2009

REFERENCES
Albertin, S. V., Mulder, A. B., Tabuchi, E.,

Zugaro, M. B., and Wiener, S. I.
(2000). Lesions of the medial shell of
the nucleus accumbens impair rats
in fi nding larger rewards, but spare
reward-seeking behavior. Behav. Brain
Res. 117, 173–183.

Alexander, G. E., and Crutcher, M. D.
(1990). Functional architecture of
basal ganglia circuits: neural substrates
of parallel processing. Trends Neurosci.
13, 266–272.

Arleo, A., and Gerstner, W. (2000).
Spatial cognition and neuro-mimetic
navigation: a model of hippocampal
place cell activity. Biol. Cybern. 83,
287–299.

B i r d w e l l , J . , S o l o m o n , J . ,
Thajchayapong, M., Taylor, M.,
Cheely, M., Towal, R., Conradt, J., and
Hartmann, M. (2007). Biomechanical
models for radial distance determi-
nation by the rat vibrissal system.
J. Neurophysiol. 98, 2439–2455.

Bolam, J. P., Hanley, J. J., Booth, P. A., and
Bevan, M. D. (2000). Synaptic organ-
isation of the basal ganglia. J. Anat.
196(Pt 4), 527–542.

Cannon, R. C., Gewaltig, M.-O.,
Gleeson, P., Bhalla, U. S., Cornelis, H.,
Hines, M. L., Howell, F. W., Muller, E.,
Stiles, J. R., Wils, S., and Schutter, E. D.
(2007). Interoperability of neuro-
science modeling software: cur-
rent status and future directions.
Neuroinformatics 5, 127–138.

Chavarr iaga, R. , Ströss l in, T. ,
Sheynikhovich, D., and Gerstner, W.
(2005). A computational model of
parallel navigation systems in rodents.
Neuroinformatics 3, 223–241.

Chevalier, G., and Deniau, J. M. (1990).
Disinhibition as a basic process in the

expression of striatal function. Trends
Neurosci. 13, 277–280.

Devan, B. D., Goad, E. H., and Petri, H. L.
(1996). Dissociation of hippocam-
pal and striatal contributions to
spatial navigation in the water maze.
Neurobiol. Learn Mem. 66, 305–323.

Fahmy, T. (2006). Pivy – Embedding a
Dynamic Scripting Language into
a Scene Graph Library. Master’s
Thesis, Vienna, Vienna University of
Technology.

Gerfen, C., and Wilson, C. (1996).
The basal ganglia. In Handbook of
Chemical Neuroanatomy, Vol 12,
Integrated Systems of the CNS,
Part III, L. Swanson, A. Bjorklund, and
T. Hokfelt, eds (Amsterdam, Elsevier),
pp. 371–468.

Gleeson, P., Steuber, V., and Silver, R. A.
(2007). neuroConstruct: a tool for
modeling networks of neurons in 3D
space. Neuron 54, 219–235.

Goddard, N. H., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for col-
laborative modelling in neuroscience.
Philos. Trans. R Soc. Lond., B, Biol. Sci.
356, 1209–1228.

Gorny, J. H., Gorny, B., Wallace, D. G., and
Whishaw, I. Q. (2002). Fimbria-for-
nix lesions disrupt the dead reckoning
(homing) component of exploratory
behavior in mice. Learn Mem. 9,
387–394.

Groenewegen, H. J., Mulder, A. B.,
Beijer, A. V. J., Wright, C. I., Lopes Da
Silva, F. H., and Pennartz, C. M. A.
(1999). Hippocampal and amygdaloid
interactions in the nucleus accumbens.
Psychobiology 27, 149–164.

Gurney, K., Prescott, T. J., and Redgrave, P.
(2001a). A computational model of

action selection in the basal ganglia I: a
new functional anatomy. Biol. Cybern.
85, 401–410.

Gurney, K., Prescott, T. J., and Redgrave, P.
(2001b). A computational model of
action selection in the basal ganglia II:
analysis and simulation of behaviour.
Biol. Cybern. 85, 411–423.

Gurney, K. N., Humphries, M., Wood, R.,
Prescott, T. J., and Redgrave, P. (2004).
Testing computational hypotheses of
brain systems function using high level
models: a case study with the basal
ganglia. Network 15, 263–290.

Hafting, T., Fyhn, M., Molden, S.,
Moser, M.-B., and Moser, E. I. (2005).
Microstructure of a spatial map in
the entorhinal cortex. Nature 436,
801–806.

Hasselmo, M., Schnell, E., and Barkai, E.
(1995). Dynamics of learning and
recall at excitatory recurrent synapses
and cholinergic modulation in rat hip-
pocampal region ca3. J. Neurosci. 15,
5249–5262.

Hasselmo, M., Wyble, B. , and
Wallenstein, G. V. (1996). Encoding
and retrieval of episodic memories:
role of cholinergic and gabaergic
modulation in the hippocampus.
Hippocampus 6, 693–708.

Hikosaka, O., Takikawa, Y., and Kawagoe, R.
(2000). Role of the basal ganglia in
the control of purposive saccadic eye
movements. Physiol. Rev. 80, 953–978.

Hopfi eld, J. J. (1984). Neurons with graded
response have collective computa-
tional properties like those of two-
state neurons. Proc. Natl. Acad. Sci.
U.S.A. 81, 3088–3092.

Humphries, M. D., Gurney, K., and
Prescott, T. J. (2005). Is there an inte-
grative center in the vertebrate brain-
stem? A robotic evaluation of a model

of the reticular formation viewed as an
action selection device. Adapt. Behav.
13, 97–113.

Humphries, M. D., and Gurney, K. N.
(2002). The role of intra-thalamic
and thalamocortical circuits in action
selection. Network 13, 131–156.

Humphries, M. D., Stewart, R. D., and
Gurney, K. N. (2006). A physiologically
plausible model of action selection and
oscillatory activity in the basal ganglia.
J. Neurosci. 26, 12921–12942.

Khamassi, M. (2007). Complementary
Roles of the Rat Prefrontal Cortex and
Striatum in Reward-Based Learning
and Shifting Navigation Strategies.
Ph.D. Thesis, Paris, University Paris 6.

Lorincz, A. (1998). Forming independent
components via temporal locking of
reconstruction architectures: a func-
tional model of the hippocampus.
Biol. Cybern. 79, 263–275.

Marr, D. (1971). Simple memory: a theory
for archicortex. Philos. Trans. R. Soc.
Lond., B, Bio. Sci. 262, 23–81.

McNaughton, B. L., Battaglia, F. P.,
Jensen, O., Moser, E. I. , and
Moser, M.-B. (2006). Path integration
and the neural basis of the ‘cognitive
map’. Nat. Rev. Neurosci. 7, 663–678.

Michel, O. (2004). Webots(tm): profes-
sional mobile robot simulation. Int. J.
Adv. Robotic Syst. 1, 39–42.

Mink, J. W., and Thach, W. T. (1993). Basal
ganglia intrinsic circuits and their role
in behavior. Curr. Opin. Neurobiol. 3,
950–957.

Mitchinson, B., Chan, T., Humphries, M.,
Chambers, J., Fox, C., and Prescott, T.
(2008). BRAHMS: Novel middleware
for integrated systems computation.
Proceedings of the IEEE International
Conference on Intelligent Robots and
Systems. Nice, France.

www.iceaproject.eu
www.biotact.org
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11.006.2009

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 11

Fox et al. Hippocampus, basal ganglia and physics integration

Mulder, A. B., Tabuchi, E., and Wiener, S. I.
(2004). Neurons in hippocampal affer-
ent zones of rat striatum parse routes
into multi-pace segments during
maze navigation. Eur. J. Neurosci. 19,
1923–1932.

O’Keefe, J., and Conway, D. H. (1978).
Hippocampal place units in the freely
moving rat: why they fi re where they
fi re. Exp. Brain Res. 31, 573–590.

Prescott, T. J., Montes Gonzalez, F. M.,
Gurney, K., Humphries, M. D., and
Redgrave, P. (2006). A robot model of
the basal ganglia: behavior and intrinsic
processing. Neural Netw. 19, 31–61.

Quirk, G. J., Muller, R. U., and Kubie, J. L.
(1990). The firing of hippocampal
place cells in the dark depends on the
rat’s recent experience. J. Neurosci. 10,
2008–2017.

Redgrave, P., Prescott, T. J., and Gurney, K.
(1999). The basal ganglia: a vertebrate
solution to the selection problem?
Neuroscience 89, 1009–1023.

Redish, A. D., and Touretzky, D. S. (1997).
Cognitive maps beyond the hippoc-
ampus. Hippocampus 7, 15–35.

Ritt, J., Andermann, M., Skowronski-
Lutz, E., and Moore, C. (2006).
Characterization of Vibrissa Motion
During Volitional Active Touch.
Atlanta, Barrels XIX.

Rolls, E. (1995). A model of the opera-
tion of the hippocampus and cortex
in memory. Int. J. Neural Syst. 6,
51–71.

Rolls, E., Stringer, S., and Elliot, T. (2006).
Entorhinal cortex grid cells can map to
hippocampal place cells by competi-
tive learning. Network 17, 447–465.

Rossier, J., Kaminsky, Y., Schenk, F., and
Bures, J. (2000). The place preference
task: a new tool for studying the relation
between behavior and place cell activity
in rats. Behav. Neurosci. 114, 273–284.

Sargolini, F., Florian, C., Oliverio, A.,
Mele, A., and Roullet, P. (2003).
Differential involvement of NMDA
and AMPA receptors within the
nucleus accumbens in consolidation
of information necessary for place
navigation and guidance strategy of
mice. Learn Mem. 10, 285–292.

Smith-Roe, S. L., Sadeghian, K., and
Kelley, A. E. (1999). Spatial learning
and performance in the radial arm
maze is impaired after n-methyl-d-
aspartate (NMDA) receptor blockade
in striatal subregions. Behav. Neurosci.
113, 703–717.

Surmeier, D. J., Ding, J., Day, M., Wang, Z.,
and Shen, W. (2007). D1 and D2
dopamine-receptor modulation of
striatal glutamatergic signaling in
striatal medium spiny neurons. Trends
Neurosci. 30, 228–235.

Tabuchi, E., Mulder, A. B., and Wiener, S. I.
(2003). Reward value invariant place
responses and reward site associated
activity in hippocampal neurons
of behaving rats. Hippocampus 13,
117–132.

Tabuchi, E. T., Mulder, A. B., and
Wiener, S. I. (2000). Position and
behavioral modulation of syn-
chronization of hippocampal and
accumbens neuronal discharges in
freely moving rats. Hippocampus 10,
717–728.

Treeves, A., and Rolls, E. (1994).
Computational analysis of the role
of the hippocampus in memory.
Hippocampus 4, 374–391.

Ueno, N., and Kaneko, M. (1994).
Dynamic Active Antenna – A Principle
of Dynamic Sensing. IEEE ICRA, San
Diego, CA, USA, pp. 1784–1790.

Ujfalussy, B., Eros, P., Somogyvari, Z., and
Kiss, T. (2008). Episodes in space: a
modelling study of hippocampal
place representation. In From Animals
to Animats 10, Vol. 5040 of LNAI, M.
Asada, J. Hallam, J.-A. Meyer, and
J. Tani, eds (Berlin, Springer-Verlag),
pp. 123–136.

van Groen, T., and Wyss, J. M. (1990).
Extrinsic projections from area CA1
of the rat hippocampus: olfactory,
cortical, subcortical, and bilateral
hippocampal formation projections.
J. Comp. Neurol. 302, 515–528.

Whishaw, I. Q. (1998). Place learning in
hippocampal rats and the path inte-
gration hypothesis. Neurosci. Biobehav.
Rev. 22, 209–220.

Whishaw, I. Q., Cassel, J. C., and
Jarrad, L. E. (1995). Rats with fi mbria-
fornix lesions display a place response

in a swimming pool: a dissociation
between getting there and knowing
where. J. Neurosci. 15, 5779–5788.

Wiener, S. I. (1996). Spatial, behavioral
and sensory correlates of hippocam-
pal CA1 complex spike cell activity:
implications for information process-
ing functions. Prog. Neurobiol. 49,
335–361.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 10 September 2008; paper pend-
ing published: 21 October 2008; accepted:
20 February 2009; published online: 09
March 2009.
Citation: Fox C, Humphries M, Mitchinson
B, Kiss T, Somogyvari Z and Prescott T (2009)
Technical integration of hippocampus, basal
ganglia and physical models for spatial nav-
igation. Front. Neuroinform. (2009) 3:6.
doi: 10.3389/neuro.11.006.2009
Copyright © 2009 Fox, Humphries,
Mitchinson, Kiss, Somogyvari and Prescott.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

