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Summary 

Rats sweep their facial whiskers back and forth to generate tactile sensory information 

through contact with environmental structure. The neural processes operating on the 

signals arising from these whisker contacts are widely studied as a model of sensing in 

general, even though detailed knowledge of the natural circumstances under which such 

signals are generated is lacking. We used digital video tracking and wireless recording 

of mystacial electromyogram signals to assess the effects of whisker-object contact on 

whisking in freely moving animals exploring simple environments. Our results show 

that contact leads to reduced protraction (forward whisker motion) on the side of the 

animal ipsilateral to an obstruction and increased protraction on the contralateral side. 

Reduced ipsilateral protraction occurs rapidly and in the same whisk cycle as the initial 

contact. We conclude that whisker movements are actively controlled so as to increase 

the likelihood of environmental contacts whilst constraining such interactions to involve 

a gentle touch. That whisking pattern generation is under strong feedback control has 

important implications for understanding the nature of the signals reaching upstream 

neural processes. 
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Introduction 

“Active sensing” involves controlling the position and orientation of the sensory 

apparatus so as to enhance the organism’s capacity to obtain behaviorally-relevant 

information (Aloimonos, Weiss, & Bandopadhay, 1988; Ballard, 1991; Chapman, 1994; 

J. J. Gibson, 1962; Lungarella, Pegors, Bulwinkle, & Sporns, 2005). The rat whisker 

system is widely seen as a paradigmatic example of such an active sense system 

(Derdikman et al., 2006; Hartmann, 2001; Kleinfeld, Ahissar, & Diamond, 2006; 

Szwed, Bagdasarian, & Ahissar, 2003), even though our understanding of the strategies 

that guide whisker movements during natural behavior is limited, in part due to the 

difficulty of accurately observing whisker positions in freely moving animals. The 

neural processes that operate on the signals arising from whisker contact with the 

environment are also widely studied as a useful model of mammalian sensory 

processing (see e.g. Ahissar & Arieli, 2001; Bruno & Sakmann, 2006; Dyck, 2005; 

Feldman & Brecht, 2005; Harris, Petersen, & Diamond, 1999; Kleinfeld, Ahissar, & 

Diamond, 2006). The correct interpretation of contact-induced activity in neural 

pathways will depend, however, on understanding how whisker movements are 

regulated; both because evoked activity in the somatosensory system differs according 

to whether a whisker is actively moved against an object or passively deflected 

(Derdikman et al., 2006; Ferezou, Bolea, & Petersen, 2006), and because active control 

strategies may constrain the types of whisker deflections to which upstream processes 

are exposed. The study of whisker control in behaving animals is therefore an essential 

part of the ongoing investigation of this important model sensory system. 

During exploratory behaviour, the large facial whiskers (“macrovibrissae”) of the 

rat are swept back and forth such that the tips follow curved trajectories sampling the 
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space surrounding the animal's head and snout (Bermejo, Vyas, & Zeigler, 2002; 

Brecht, Preilowski, & Merzenich, 1997; Carvell & Simons, 1990; Gustafson & Felbain-

Keramidas, 1977; Kleinfeld, Ahissar, & Diamond, 2006; Vincent, 1912). This 

“whisking” is performed in bouts of one to many individual “whisks”. Whisker 

movements are driven by pattern generators that in unobstructed, or “free”, whisking 

appear to operate independently of direct sensory feedback (Berg & Kleinfeld, 2003a; 

Gao, Bermejo, & Zeigler, 2001). Studies of free whisking in the head-fixed animal 

further report a preponderance of bilateral symmetry and synchrony, and stereotypical 

kinematics within, and to a lesser extent between, bouts (Berg & Kleinfeld, 2003a; 

Bermejo, Vyas, & Zeigler, 2002; Gao, Bermejo, & Zeigler, 2001; Sachdev, Berg, 

Champney, Kleinfeld, & Ebner, 2003). Individual primary afferents innervating each 

whisker follicle respond reliably to step deflections of their associated whisker, in a way 

that has been repeatedly characterized in animals under various levels of anesthesia 

(Gibson & Welker, 1983a, 1983b; Jones, Depireux, Simons, & Keller, 2004; 

Lichtenstein, Carvell, & Simons, 1990; Shoykhet, Doherty, & Simons, 2000). It is 

tempting, then, to think that the signals generated during natural whisker movement can 

be reliably inferred from those derived during unmodulated whisking behaviour such as 

that observed during artificially-induced invariant whisking against an obstacle (Szwed, 

Bagdasarian, & Ahissar, 2003; Yu, Derdikman, Haidarliu, & Ahissar, 2006). Recent 

observations of unrestrained animals show, however, that the kinematics of whisking 

can vary considerably, but predictably, even on timescales shorter than a single whisk 

(Towal & Hartmann, 2006). This implies that the encoding of the environment 

generated at the sensory periphery could depend strongly on the nature of the whisking 

control strategy. In our own high speed video recordings we have noted that whisking in 
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the freely moving animal is frequently directed towards nearby surfaces, with multiple 

whiskers making environmental contacts during a typical whisk cycle, even where the 

rat is proceeding across a flat, featureless floor (Prescott, Mitchinson, Redgrave, 

Melhuish, & Dean, 2005). These observations suggest that the study of whisking pattern 

generation during natural behaviour may produce different results from those obtained 

in studies in which whisking is largely or entirely unobstructed.   

Recording whisking behaviour in freely moving rats is technically challenging, 

however it is becoming possible to make detailed observations of whisking control in 

such circumstances (Hartmann, 2001; Hartmann, Assad, Rasnow, & Bower, 2000; 

Knutsen, Derdikman, & Ahissar, 2004; Prescott et al., 2005; Towal & Hartmann, 2006). 

Here we report two experiments that demonstrate that whisking pattern generation in 

unrestrained animals is strongly modulated by contact with the environment.  In the first 

we use quantitative analysis of multiple short clips of high speed video to show 

evidence of fast feedback modulation within a single whisk cycle. In the second, we use 

longer recordings (equivalent to many thousands of whisk cycles) of whisker 

electromyogram (EMG) data, obtained alongside automated tracking of head 

movements, to show that feedback-induced asymmetry is a consistent feature of 

whisking behaviour in the presence of a unilateral obstruction such as a single nearby 

wall. 
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Results 

High-speed videography of contact induced whisking modulation 

Rat whiskers have a small diameter (typically less than 0.1mm at the base) and peak 

instantaneous velocities that, during exploratory whisking, can exceed 1ms
-1

. Obtaining 

useful observations of their movements therefore requires specialised recording 

equipment (Dyck, 2005). Recent improvements in the spatial resolution of digital high 

speed video enabled us to film free moving, untrained rats exploring simple 

environments and to record the whisking strategies used under these ethologically 

relevant conditions; the observed contact-invoked modulations are very striking. With 

apparent great reliability, unilateral obstruction of the whiskers rapidly suppresses 

ipsilateral protraction, whilst exciting contralateral protraction in a pronounced way 

during subsequent whisks (Figure 1). To elucidate the timescale of the suppression, we 

examined multiple high-speed video clips of rats making contact with a vertical surface, 

on a forward whisker (column 3 or higher), whilst proceeding across a featureless floor 

(see Supplementary Video 1 for an example). For each clip, we tracked the movement 

of one rearward whisker (column 1 or 2) on each side of the snout so as to obtain times 

of whisker protraction onset and cessation, bilaterally, and relative to the initial contact. 

In each case, the tracked whiskers did not touch the contacted surface at any time so 

cessation of protraction was not due to physical obstruction of their movement. Results 

from an analysis of 22 clips are graphed in Figure 2 and indicate that ipsilateral 

protraction ceased quickly and reliably with a mean time lag of 13ms after contact (s.d. 

7ms). Contralateral protraction, by contrast, appeared to continue to a natural stopping 

point (mean lag 29ms, s.d. 20ms) that was independent of the ipsilateral contact event. 

This difference was demonstrated statistically by comparison of protraction onset and 
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cessation times. Specifically, protraction onset times were similar on the two sides of 

the snout (Wilcoxon signed ranks Z=1.38 , p=0.167, n=22) but cessation occurred 

earlier on the ipsilateral side than on the contralateral side (Z= 3.41, p=0.001, n=22). 

Note that cessation of protraction on the ipsilateral side was immediately followed by 

retraction (see e.g. Supplementary Video 1), indicating that the effect of object contact 

on whisker movement is not purely mechanical, but involves modulation of the whisker 

drive system. 

 

Wireless electromyogram (EMG) monitoring of whisking behaviour 

Whilst high-speed digital video is an effective tool for gathering detailed information 

over short time periods, we were inspired by the above results to quantify the effects of 

environmental contact on whisker control at longer time scales which required different 

techniques. Rat mystacial EMG has been shown to provide a useful proxy for whisker 

protraction (Berg & Kleinfeld, 2003a; Carvell, Simons, Lichtenstein, & Bryant, 1991; 

Cramer & Keller, 2006; Sachdev, Berg, Champney, Kleinfeld, & Ebner, 2003), 

however, accessing the recording electrodes using trailing wires can restrict the freedom 

of movement of the animal.  To overcome this limitation we have developed a purpose-

built telemetry system that allows wireless recording of whisker EMG in unrestrained 

animals. For the current study, three rats were implanted bilaterally and whisker 

tracking in high-speed video recordings used to confirm a positive correlation, on each 

side of the snout, between whisker protraction and EMG strength (Figure 3, and 

Supplementary Video 2). Each animal was then allowed, on four or five separate days, 

to roam freely in a featureless glass-lidded, rectangular arena until it lost interest in 

exploring. During each session, which lasted between 5 and 30 minutes, EMG was 

continuously recorded and used to compute a slow-varying approximation of left and 
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right whisking amplitudes. At the same time, automated tracking of normal digital video 

provided frame-by-frame estimates of the position and bearing of the rat relative to the 

arena walls (see Figure 4a and Supplementary Video 3). Video and EMG data from 

each session was further processed to obtain sequences of frames at a sample rate of 

8.33Hz which is towards the middle of the observed frequency range for rat exploratory 

whisking (5–15Hz, Berg & Kleinfeld, 2003a), thus each frame sampled approximately 

one whisk cycle.  From about three hours of recordings, taken over 13 sessions, we 

obtained 26040 such frames (~52 minutes) in which an animal was at an identifiable 

location and displaying robust whisking activity. Rat whiskers do not generally exceed 

100mm in length (Brecht, Preilowski, & Merzenich, 1997), accordingly we extracted 

two sub-sets of this data for further analysis—3965 frames (~8 minutes) in which the 

nose was within 25mm of one wall and at least 100mm from all other walls (the NEAR 

sub-set), and 5989 frames (~12 minutes) in which the nose was at least 100mm from all 

walls (the FAR sub-set). In the following we report analyses combined across all three 

animals, detailed results for individuals are given in the Supplementary Material.  

In the NEAR data-set, the difference (left – right) in whisking amplitude was 

found to be strongly inversely correlated (r= -0.64) with the bearing from the nose to the 

closest point on the nearby wall (+ve on the left, -ve on the right). In other words, and 

mirroring the briefer observations made with high-speed video, animals whisked more 

strongly on the right when a wall lay to the left and vice versa. Conversely, and as 

expected, in FAR the bearing to the nearest wall was a poor predictor of left-right 

asymmetry (r=0.01). This difference in correlation was a robust effect found in each 

animal and every recording session (repeated measures ANOVA: F1=175.14, p=0.006, 

power= 1.0). Based on the bearing to the nearest wall, the left and right amplitude data 

for all frames was then sorted into ipsilateral and contralateral classes. In NEAR, mean 

contralateral whisking amplitude was 110.8% (s.d. 22.1) of average whisk strength 

(mean amplitude across all data in both sub-sets), ipsilaterally 89.4% (s.d. 21.0)—a 
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difference or whisking bias of 21.5% (29.4) (see Figure 4b). Again, there was a 

significant and consistent contrast with FAR in all animals and sessions (F1=24.68, 

p=0.038, power= 0.72) with recordings in that sub-set showing no systematic deviation 

from symmetric whisking with respect to the nearest wall (contralateral 99.6% (19.3), 

ipsilateral 100.3% (19.8), bias -0.7% (24.4)). In NEAR, 38.1% percent of frames 

showed strong asymmetry equal to one-third or more of average whisk strength, almost 

all in the expected direction (contralateral stronger in 34.8%), in FAR this degree of 

asymmetry occurred in just 16.8% of frames.  

Further analysis of the NEAR sub-set is shown in Figure 4c and confirms the 

systematic nature of the environment-induced whisking asymmetry. This plot shows 

ipsilateral (shown left of the midline) and contralateral (right of midline) mean whisking 

amplitude binned according to both the distance and direction to the single nearby wall. 

The plot confirms that the presence of a nearby wall leads to reduced ipsilateral and 

increased contralateral whisking and further demonstrates that the ipsilateral reduction 

is most pronounced in the range 45–90° where the rat is more ‘side-on’ to the 

obstruction. Where the wall lies directly in front (0–15°), but at some distance 

(d>15mm), there is evidence of increased whisking bilaterally. Similar plots for 

individual animals are given in the Supplementary Material.  

Based on the insights gleaned from the above analysis we formed a final, and 

more constrained, data sub-set, SIDE-ON, using the 1009 frames (~2 minutes), sampled 

across all animals, in which the nose was within 10mm of one wall and at least 100mm 

from all other walls, and the bearing to the nearby wall was 30° or greater (i.e. the wall 

was very close by and more to one side than head-on). For this sub-set we found a mean 

bias of 36% and r=-0.79 (compared to 21.5% and r=-0.64 for the full NEAR sub-set). 

Under these circumstances, contralateral amplitude also exceeded ipsilateral by an 

average ratio of 3:2, and by 2:1 or greater in 15% of frames. A typical situation that 
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might generate such data is where the animal is moving slowly alongside a wall; in such 

circumstances we have frequently observed very pronounced whisking asymmetry in 

our high-speed video recordings. An example of this type of behavior is shown in 

Figure 5 and also illustrated in Supplementary Video 4. 

Discussion 

Our results constitute the first quantitative demonstration of modulation of whisking 

pattern generation resulting from whisker contact with environmental structure. Our 

EMG data further demonstrate that this modulation is an active process presumably 

driven by sensory feedback to the vibrissal motor neurons for which there are multiple 

possible neural substrates (see below). Functionally, we suggest that the ipsilateral 

suppression aspect of whisker control will tend to constrain the dynamic range of 

contact events. The advantages of this are as follows. First, all the sensory apparatus of 

the whisker is concentrated at the base, and deflections of the whisker from its unforced 

shape will introduce noise onto measurements made there. Second, under this 

suppression, the sensory apparatus serving the whisker will experience a smaller range 

of inputs, allowing the same encoding system to provide better resolution without 

overloading. Additionally, departures from the stereotypical contacts generated by this 

scheme, such as contacts with moving objects, should be all the more noticeable. To 

complement the modulations prompted by ipsilateral contacts, we propose that the 

functional role of the excitation of contralateral protraction is to elicit more frequent 

contact between the whiskers and the environment. During unilateral contact, for 

instance, positive feedback will bring the contralateral whisker field to the front of the 

animal and towards the most likely location of environmental features already 

encountered ipsilaterally, maximizing the rate of collection of information. 
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Given the above functional interpretation, we might also expect to see bilateral 

excitation of protraction given prior knowledge of items of interest forward of the 

animal. This idea is supported by the analysis given in figure 4c which shows increased 

protraction on both sides of the snout in the presence of walls 15mm or more in front of 

the animal and perpendicular to its current bearing (i.e. head-on). This hypothesis is also 

consistent with data from Carvell and Simons (1990) who observed increased bilateral 

protraction towards an expected stimulus associated with reward, and from Sachdev, 

Berg, Champney, Kleinfeld, and Ebner (2003) who observed increased ipsilateral 

protraction towards a similarly expected unilateral contact. Overall, our results indicate 

that asymmetry in whisking behavior is more pronounced near walls, however, we did 

measure some asymmetry away from walls which may have been due to anticipation of 

head movements, as proposed by Towal and Hartmann (2006), or to unmeasured 

contacts with the floor or ceiling. 

The above results can be summarized by saying that rat whisking utilizes two 

active control strategies. The first, which we term “minimal impingement”, seeks to 

limit the amount of bending that occurs in the whisker shaft on surface contact and thus 

the extent to which the whisker “impinge” upon the environment. The second, which we 

term “maximal contact”, tries to orient the two halves of the whisker field so as to bring 

as many whiskers as possible to bear on surfaces or objects of interest.  This active 

control of whisker actuation thus allows the rat to ‘home-in’ on interesting environment 

structure whilst ensuring that the resulting contacts are made using a gentle touch.  

Humans similarly use active control strategies to control the position of the tactile 

sensory surfaces on the fingertips (Chapman, 1994) and also regulate the pressure with 

which contacts are made according to the task in hand (Smith, Gosselin, & Houde, 
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2002). Therefore our findings may be relevant to the wider understanding of feedback 

control in the mammalian sense of touch. 

Whilst the control strategies described here can account for much of the variance 

in whisking bias in our behavioral data, it is worth noting that we have seen a number of 

departures from these principles in our high speed video recordings. Specifically, when 

the rat is directing its snout towards an object that lies in front, an obstruction to one 

side does not appear to elicit the usual level of ipsilateral suppression. Likewise, 

contralateral excitation appears to be elicited less strongly, or not at all, on those 

occasions where the animal indicates disinterest by failing to orient to an encountered 

obstruction. A parsimonious explanation of these observations would be that both 

feedback control strategies occur primarily in relation to objects towards which the rat is 

directing its attention, which would imply a neural capacity to modulate or override 

mechanisms implementing the proposed feedback loops. It is important to note that our 

untrained animals were expressing a particular class of exploratory behaviour – albeit 

one that we hold to have particular ethological relevance – and that animals trained to 

perform some other task (texture discrimination, for example) might exhibit a modified 

control strategy. 

Our analysis further indicates that the ipsilateral suppression has a relatively short 

timescale (~13ms). Given that time is required for the musculature and mechanics to 

respond to motor neuron suppression we suspect that the feedback responsible must be 

fairly direct. There is currently no evidence suggesting the presence of spindle fibers in 

the facial musculature (Fundin, Rice, Pfaller & Arvidsson, 1994) but Szwed et al. 

(2003) recently observed that amongst the sensory afferents serving each follicle is a 

class that appears to encode whisker position. However, interestingly, the feedback 

effects observed herein are triggered by contact of the whisker with the environment 

(rather than whisker motion per se), and so could be serviced, rather, by the responses of 
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the class of follicle afferents that respond to such contact events. Bilateral projections 

from the trigeminal sensory complex (whisker-sensitive brainstem area) to the facial 

motor nuclei that drive the intrinsic (protraction) muscles (lateral VII) have been 

identified (Dauvergne, Zerari-Mailly, Buisseret, Buisseret-Delmas, & Pinganaud, 2002), 

including inputs arising from inhibitory cells (Li, Takada, Kaneko, & Mizuno, 1997), 

however, a recent report suggests that ipsilateral whisker-sensory feedback in this loop 

is largely excitatory (Nguyen & Kleinfeld, 2005). In light of this, and the involvement 

of higher centers implied by motivational effects, it seems likely that the neural 

substrate for whisking modulation due to environmental contact will involve 

sensorimotor loops at several anatomical levels (Kleinfeld, Berg, & O'Connor, 1999; 

Prescott, Redgrave, & Gurney, 1999) including, potentially, those involving the basal 

ganglia (McHaffie, Stanford, Stein, Coizet, & Redgrave, 2005) and the motor cortex 

(Kleinfeld, Ahissar, & Diamond, 2006).  

We believe that feedback control of whisking pattern generation, on the time-

scales observed here, will strongly influence the signals arising in the whisker pathway 

of the naturally behaving animal. For instance, within a typical whisk involving 

environmental contact on several whiskers, we would expect the upstream signals to be 

composed of a battery of temporally inter-related, relatively brief, and fairly 

stereotypical bursts of activity, rather than the more protracted signal streams that have 

been shown to arise during unmodulated whisking (Arabzadeh, Zorzin, & Diamond, 

2005; Szwed, Bagdasarian, & Ahissar, 2003; Yu, Derdikman, Haidarliu, & Ahissar, 

2006). Our results therefore have implications for the design of appropriate stimuli for 

use in future studies of the whisker processing pathways as well as for divining the 

functions of the vibrissal somatosensory system. We are currently developing 

simulation and robotic models of the neural processing of whisking signals (Mitchinson 

et al., 2004; Pearson et al., 2005) and of whisking control (Mitchinson, Pearson, 

Melhuish, & Prescott, 2006) designed to test the efficacy of the rat’s active whisking 
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control strategies in relation to information gain, and to evaluate their likely effects on 

upstream neural systems.   

 

Materials and Methods 

Adult male dystrophic Royal College of Surgeons rats were used in all experiments. 

These animals display normal whisker function but also a genetically-induced retinal 

degeneration (dystrophy) such that they had minimal visual capacity at the time of 

testing (Hetherington, Benn, Coffey, & Lund, 2000). Three animals were bilaterally 

implanted with subcutaneous EMG electrodes in the intrinsic muscle of each mystacial 

pad following a method similar to that described by Berg and Kleinfeld (2003b). These 

electrodes ran to a connector fixed to the top of the head, where a small telemetry 

transmitter could be attached during testing. For the high-speed video experiments 

multiple, 4s recordings of rats exploring a purpose-built arena were taken 

opportunistically using a Photron Fastcam PCI at 250 frames per second (fps). 

Movements of selected vibrissae were manually tracked at full resolution by multiple 

judges using a custom-built software tool (see, e.g., Supplementary Video 1), and this 

data used to compute estimates of protraction onset and cessation (Figure 2), or of the 

full whisking cycle (Figure 3). Time of initial contact with an obstacle was identified by 

inspection of relevant frames. For the paired normal-speed video/EMG recordings, 

animals were placed in a rectangular arena (400×380×80mm) with a glass lid and floor. 

A domestic DV camera (25fps) mounted above the arena allowed automated tracking of 

the location, bearing and pitch of the rat’s head relative to the positions of the arena 

walls (see Supplementary Video 3). Recorded EMG signals were digitised and 
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processed to extract activity in the appropriate frequency band for whisking. Two 

signals were obtained, one fast-varying (filtered in the range 2-20Hz) and used to verify 

the correlation with whisker protraction in high-speed video (Figure 3 and 

Supplementary Video 2), the other slow-varying (filtered at 2Hz to remove phase 

information) and used as the whisking amplitude measure for all further statistical 

analyses. Review of paired video/EMG recordings allowed the elimination of periods of 

experimental noise, ambiguous tracking, irrelevant behaviour (e.g. grooming), extreme 

head pitch, and weak or absent whisking. Two in every three video frames were then 

discarded to give the desired sample rate of 8.33Hz. Since the whisking amplitude 

measures were strongly auto-correlated within sessions, statistical tests used repeated 

measures ANOVA computed over per-session values with sub-set (NEAR/FAR) and 

session as within-subject factors. α was 0.05 and, for the ANOVA tests, was partial 

Bonferroni-corrected to 0.048. Reported p-values are two-tailed. All procedures were 

carried out with local ethics committee and UK Home Office approval under the terms 

of the Animals (Scientific Procedures) Act 1986. A more detailed description of these 

methods is presented in the Supplementary Material. 
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FIGURE CAPTIONS 

 

Figure 1: High speed video frames showing the effect of unilateral object contact 

(at t=0) on bilateral whisker protraction.  From the top down: (t=-64ms) Protraction 

commences approximately synchronously on both sides of the snout, the filled white 

squares show the tracked rear column whiskers. (t=0ms) A deflection occurs on a 

forward whisker, the filled white circle indicates the point of contact with the vertical 

surface. (t=+32ms) Protraction ends on the side contralateral to the contact, whiskers on 

the ipsilateral side are already partially retracted having ceased protraction at t= +12ms. 

(t=+136ms) Contralateral whiskers reach maximum protraction in the whisk cycle 

subsequent to the initial contact (interposed retraction not shown). Protraction amplitude 

in this whisk is notably increased contralaterally, compared to whisks preceding contact, 

and reduced ipsilaterally such that the whiskers on that side are only gently deflected by 

the surface contact. Supplementary Video 2 shows the full whisk cycle bracketing the 

initial deflection. 

 

Figure 2: Ipsilateral (top) and contralateral (bottom) whisker protraction onset 

(unfilled) and cessation (filled) relative to time of contact (t=0) of a forward 

whisker with an obstacle. Protraction onset times are similar on the two sides of the 

snout but cessation occurs earlier on the ipsilateral side than on the contralateral side 

and appears more closely tied to the time of contact (note the pronounced peak 

ipsilaterally ~13ms after contact). Data is from 22 high speed video clips recorded with 

9 different animals. 
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Figure 3: Confirming the usefulness of mystacial EMG as a proxy measure of 

whisking, example in one animal. Black trace is whisker angle (θ), determined by high 

speed video tracking, of the left/right (top/bottom) whisker field (column 1); note 

separate y-axis origins for each trace. Grey trace (θ
*
) is an estimate of θ derived from 

left/right whisking EMG data. Increasing θ corresponds to whisker protraction for all 

traces. 

 

Figure 4: Proximity to a wall induces a systematic bias in whisking asymmetry. a) 

Distance (d) and bearing (φ) to a single nearby wall was determined by automated 

tracking of normal speed video, allowing the data to be partitioned into NEAR 

(d≤25mm) and FAR (d≥100mm) sub-sets, and for left and right whisking amplitudes to 

be classified as ipsilateral or contralateral. b) Normalized frequency histograms of 

NEAR (green, n= 3965) and FAR (purple, n=5989) whisking bias (contralateral – 

ipsilateral amplitude) as a percentage of average whisk strength. The distributions show 

a strong bias (mean 21.5%) in favor of contralateral whisking for NEAR only. Plots for 

individual animals are given in the Supplemental Data. c) Polar plot of ipsilateral 

(shown left of the midline) and contralateral (shown right of midline) mean whisking 

amplitude binned, for NEAR frames only, according to d, φ. For the purpose of this 

display, the nearby wall is always to the left with its bearing and distance mirrored 

across the midline (frames in which the wall was originally to the right have therefore 

been reflected in the midline). The color scale (red–white–blue) shows increasing 

percentage of average whisk strength. Bins with a count of less than five frames are 

omitted (3955 frames displayed); included bins represent 5–541 frames each (median 

92). The presence of a nearby wall leads to reduced ipsilateral and increased 
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contralateral whisking. Ipsilateral reduction is most pronounced in the range 45–90° 

where the rat is more ‘side-on’ to the obstruction. Where the wall lies directly in front 

(0–15°), but at some distance (d>15mm), there is evidence of increased whisking 

bilaterally. Data for individual animals are given in the Supplemental Material. 

 

Figure 5: High speed video frame showing asymmetric whisking against a wall. 

The upper half of the frame shows the image of the animal in the vertical plane obtained 

using a front-silvered mirror, positioned behind a glass wall, and slanted at an oblique 

angle with respect to the camera. The lower half of the frame shows the view in 

horizontal plane, with the viewpoint of the camera aligned with the vertical surface of 

the wall. (Note that the dark strip across the centre of the frame therefore corresponds to 

the floor of the arena for the upper half of the frame, and the wall for the lower half.) 

The snapshot shows the moment of maximum protraction for a single whisk. Protraction 

is strongly asymmetric in a manner that appears to reduce bending of the whiskers on 

the side of the snout closest to the wall, while increasing the likelihood of surface 

contact by whiskers on the opposite side. An extract from the video clip from which this 

frame was taken is provided in Supplementary Video 4. 


