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Abstract

The mammalian brain’s decision mechanism may utilise a distributed network

of positive feedback loops to integrate, over time, noisy sensory evidence for

and against a particular choice. Such loops would mitigate the effects of noise

and have the benefit of decoupling response size from the strength of evidence,

which could assist animals in acting early at the first signs of opportunity or

danger. This hypothesis is explored in the context of the sensorimotor con-

trol circuitry underlying eye movements, and in relation to the hypothesis that

the basal ganglia serve as a central switch acting to control the competitive

accumulation of sensory evidence in positive feedback loops representing al-

ternative actions. Results, in support of these proposals, are presented from

a systems-level computational model of the primate oculomotor control. This

model is able to reproduce behavioural data relating strength of sensory evi-

dence to response time and accuracy, while also demonstrating how the basal

ganglia and related oculomotor circuitry might work together to manage the

initiation, control and termination of the decision process over time.

0.1 Introduction

Whether it’s a cheetah deciding whether its prey is veering left or right, a

rabbit deciding whether that movement in the bushes is friend or foe, or a

poker player wondering if his opponent has a stronger hand, infinitesimally

small variations in sensory input can give rise to vastly different behavioural

outcomes: the cheetah veers left and not right; the rabbit flees or continues

grazing, the card player bets a month’s salary or folds. The outcome of such

decisions can be critical, even a matter of life or death, which is why there

will have been tremendous evolutionary pressure to develop decision-making

mechanisms that can extract maximal utility from limited sensory information.

In this article, using the oculomotor system as an exemplar, we argue that the

vertebrate basal ganglia are one of the results of that evolutionary pressure and

explore how these structures tame and exploit positive feedback loops (hence-

forth PFBLs) within the brain in order to make the most of limited information.

In humans, the usual behavioural outcome arising from a change in our

visual environment is that we reorient our gaze in order to investigate that

change. Indeed, we typically make rapid, ballistic eye movements, termed sac-

cades, two or three times per second. As one of the most frequent actions we

perform, deciding where to look next is therefore one of the most common

decisions we make.
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We are all familiar with the idea of “taking our time” in order to make the

right decision, but how long is long enough? Amid the convoluted anatomy of

the primate oculomotor system one can discern a relatively short pathway from

the retina to the superior colliculus (SC) and back to the extraocular muscles.

The SC responds to visual stimulation in approximately 40ms and electrical

stimulation of its deeper layers can trigger a saccade within 20ms (Wurtz and

Goldberg, 1989). Consequently, this pathway could, in principle, initiate a sac-

cade in response to a visual stimulus in 60 ms. However, in humans, visually

triggered saccades are typically elicited with a response time (RT) of 200ms

or more. It would seem then that the brain “takes its time” even when making

this most common of decisions.

Curiously, the amount of time an individual takes to decide where to look

next is highly variable. When a subject is asked to repeatedly saccade to a light

appearing unpredictably in their peripheral vision, the distribution of their RTs

is heavily skewed with the majority of responses beginning a few hundred

milliseconds after stimulus onset but with a long tail of responses with some

taking a second or more (Carpenter and Williams, 1995). Furthermore, the in-

structions given to a participant in such a study can dramatically affect this dis-

tribution. For instance, an emphasis on accuracy tends to shift the distribution

towards longer response times, while an emphasis on speed has the opposite

effect (Reddi and Carpenter, 2000). Not only are we able to adjust the length of

time we take to react to externally cued events, we are, of course, also able to

voluntarily move our eyes in order to achieve arbitrary goals, such as reading

the words of this article. It would seem, therefore, that deciding where to look

next is a non-trivial problem.

The diffusion model (Ratcliff, 1978) is an influential psychological model

of decision making that can account for the brain’s variable procrastination

in reaching decisions. The model assumes that sensory evidence in favour of

alternative responses is fundamentally noisy, whether due to the environment

(e.g. tall grass obscuring a cheetah’s prey), or due to random neural activity in

the brain. Key to the model is the idea that the brain accumulates, or integrates,

evidence over time in order to mitigate the effects of this noise, only making

a decision when the difference in evidence for and against an action reaches

a threshold level. The model is able to account for the skewed distribution of

RTs obtained in saccadic studies and also provides insight into how the trade-

off between speed and accuracy can be controlled by modifying the decision

threshold. With a low threshold the model is able to make fast selections but

is more likely to make errors due to noise. With a high threshold, the model

integrates the evidence for longer and makes fewer errors since there is more

time to average out the noise contribution.
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Remarkably, under laboratory conditions the integration of evidence has in-

deed been observed in the brain. The stochastic motion discrimination task

(Britten et al., 1993), presents a monkey with a situation not wholly dissim-

ilar to that faced by the hypothetical cheetah described above. The animal is

presented with a display containing moving dots, a proportion of which are

moving left on some trials and right on others, while the remaining dots move

randomly (thus providing environmental noise). The difficulty of the task can

be varied by adjusting the motion strength i.e. by changing the relative number

of dots moving coherently. The monkey is given a reward for correctly indicat-

ing in which direction the majority of dots are moving by making a saccade, in

the same direction, to one of two targets flanking the dot display.

The medial temporal (MT) area of visual cortex is stimulated by this task

as neurons in this area are highly sensitive to motion. More specifically, each

MT neuron is responsive to motion in a particular direction so that their firing

rate indicates the extent to which their preferred motion is present in the current

visual scene. Consequently, on a trial in which the net flow of dots is to the left,

MT neurons that are sensitive to leftward motion have an average firing rate

that is higher than that of neurons sensitive to rightward motion (Britten et al.,

1993). For the motion discrimination task, therefore, the noisy neural activity

in area MT can be thought of as the evidence that the brain has available in

order to decide where to look next.

The integration of area MT’s evidence appears to occur in downstream ocu-

lomotor structures that are implicated in the planning and execution of sac-

cades (Ditterich et al., 2003; Gold and Shadlen, 2007; Schall, 2001). For in-

stance, in the lateral intra-parietal (LIP) area neurons that are able to trigger

saccades to the left or right target exhibit a ramp-like build-up of activity as

the animal observes the moving dots (Roitman and Shadlen, 2002; Shadlen

and Newsome, 2001). Allowing the animal to respond at its own pace, Roit-

man and Shadlen (2002) demonstrated that both the accuracy and speed of de-

cisions increases with motion strength and that this corresponds with a steeper

rise of activity in those LIP neurons with motor fields centred on the target that

the animal ultimately saccades to. LIP neurons corresponding to the alternative

target also demonstrate an initial increase in firing rate but this is suppressed

below baseline rates prior to saccade generation. Taken together, these findings

support the idea that LIP neurons represent the accumulation of evidence for

and against a particular saccade. This, and the finding that the decision process

is completed when LIP neurons reach a threshold firing rate, suggests that the

brain utilises a decision algorithm similar to the diffusion model.
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Figure 0.1 Brain areas forming the reactive oculomotor system. SC - superior
colliculus; SG - saccadic generator; TH - thalamus; FEF - frontal eye fields;
BG - basal ganglia. Solid and dashed lines denote excitatory and inhibitory
projections respectively.

0.1.1 The oculomotor system

In order to explore how the circuitry of the brain implements a diffusion-

model-like decision mechanism we now consider the anatomy of the oculo-

motor system of which a simplified circuit diagram is illustrated in figure 0.1.

In particular, we focus on those areas that are known to be involved in the pro-

duction of visually-guided saccades, as the model of the oculomotor system

we present later is restricted to these areas.

The superior colliculus

Retinal ganglion cells project directly to the SC (Schiller and Malpeli, 1977),

a multi-layered, midbrain structure, that preserves the spatial organisation of

its retinal input. Figure 0.2 shows the basic connectivity of the SC as imple-

mented in the model of Arai et al. (1994) (hereafter referred to as the Arai

model) which we have incorporated into our own large-scale model (discussed

in the methods section). The superficial layer of the SC relays its phasic retinal

input to deeper motor layers, which in turn, send excitatory projections to a

set of brainstem nuclei, collectively known as the saccadic generator (SG) cir-

cuit, which provide closed-loop control of the eye muscles (Sparks, 2002). The
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Figure 0.2 A model of the SC based on Arai et al. (1994). Solid and dashed
lines denote excitatory and inhibitory projections respectively. Double-lines
denote topographic projections. See text for description.

deeper layers of the SC also receive excitatory input from several frontal, vi-

sual, auditory, and somatosensory areas of cortex, so that saccades can be trig-

gered voluntarily, or in response to processed visual features, localised noises,

or physical contact with the body (Stein, 1993).

The frontal eye field

Another important source of input to the SC comes from the frontal eye fields

(FEF), an area of the frontal lobes implicated in saccade generation. In addi-

tion to projecting to the SC, the FEF also project directly to the SG so that a

person or monkey with a SC lesion is still able to generate saccades. The FEF

has reciprocal connections with both prefrontal and posterior cortices consti-

tuting the “where pathway” of visual processing (Ungerleider and Mishkin,

1982). The input it receives from the dorsolateral prefrontal cortex (DLPFC)

is implicated in the generation of voluntary saccades, while that from posterior

cortices, including LIP, relays information concerning the location of salient
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visual targets. The nature of the processing that takes place in the “where path-

way” is not important for our purposes (indeed, in our depiction of this cir-

cuit in figure 0.1 we have greatly simplified it by showing a direct connection

between the retina and the FEF), other than to say that it preserves a retino-

topic organisation throughout. The reciprocal connectivity between FEF and

the posterior cortices suggests that FEF is both activated by the sensory infor-

mation fed forward, and able to feedback the results of any frontal processing

to those areas supplying the sensory information (see Cisek, this volume, for a

similar proposal relating to the reach system). The evolution of build-up activ-

ity in LIP observed during the motion discrimination task could, therefore, be

partially driven by the FEF.

The saccadic generator

The inner workings of the SG are beyond the scope of this article, however,

one important detail of its operation is key to understanding later discussions.

Models of the SG invariably incorporate a population of neurons found in the

nucleus raphe interpositus known as the omni-pause-neurons (OPNs) (Langer

and Kaneko, 1990). These neurons derive their name from the fact that they

exhibit a pause in baseline firing just prior to saccade generation. They are

thought to actively inhibit the brainstem neurons that drive changes in eye

position and as such OPNs represent the oculomotor system’s final gateway,

blocking saccades until they themselves are silenced. OPNs are indirectly in-

hibited by those areas of the SC and FEF which represent potential saccade tar-

gets, while they are excited by the foveal regions of these structures (Buttner-

Ennever et al., 1999; Gandhi and Keller, 1997, 1999; Stanton et al., 1988;

Segraves, 1992). The fixation and saccade regions of the SC and FEF therefore

provide the SG with conflicting commands, these being “maintain fixation”,

and “saccade to a new location” respectively. It is likely then that the rela-

tive level of activity in the fixation and saccade regions of the SC determines

which of these two behaviours is expressed. Correspondingly Munoz and Ist-

van (1998) have demonstrated that a decline in fixation activity is concomitant

with the build up of target related activity in the SC. This finding suggests that

competitive dynamics within the oculomotor system must suppress ongoing

fixation activity before a saccade can be generated.

The visuo-motor response

The visually-guided saccade task is one of the most common paradigms used

to probe activity within the oculomotor system. For this task the animal is

trained to maintain active fixation of a central stimulus and to then saccade
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to a suddenly-appearing target stimulus in peripheral vision. Electrophysio-

logical studies with primates have revealed that neurons in SC, FEF and LIP

display remarkably similar patterns of activity during this task (Ferraina et al.,

2002). Firstly, Neurons that represent the fovea show a tonic activation while

the animal is maintaining fixation, and this appears to be largely endogenous

in origin as it is not reliant on a fixation stimulus being present (Munoz and

Wurtz, 1993). Secondly, neurons representing target coordinates display in-

creases in activity that are time-locked to target stimulus onset, saccade onset

or both - response classes that are respectively referred to as visual, motor or

visuo-motor (Figure 0.3; Munoz and Wurtz, 1995).

When animals produce saccades with a short RT it is often hard to discern

separate visual and motor peaks although careful analysis of the data reveals

it to be present (Sparks et al., 2000). Experiments in which the animal must

delay its saccade make distinct peaks much more apparent. Under the delay

paradigm the motor component displays a steady build-up of activity not dis-

similar to that observed in the motion discrimination task described earlier

(Wurtz et al., 2001). Hanes and Schall (1996) demonstrated that the onset of

the saccade is time-locked to the instant at which the motor activity in FEF

reaches a threshold level, and similar thresholds have been found for LIP (Roit-

man and Shadlen, 2002) and SC (Pare and Hanes, 2003). Interestingly, as the

build-up of motor activity continues towards threshold, there is a concomitant

decrease in fixation activity. Recall that under the motion discrimination task

it appears that decisions are only completed when there is sufficient differ-

ence between the elevated activity of the LIP neurons representing the chosen

target and the suppressed activity of those representing the alternative target

(Roitman and Shadlen, 2002). Similarly, under the visually-guided saccade

paradigm where the animal is making a choice between maintaining fixation

and saccading to the target stimulus it would seem that, just as for the motion

discrimination task, there is a requirement for a sufficiently large difference in

the activity representing the competing alternatives i.e. between fixation- and

saccade-related activity. The oculomotor model we present later in this article

incorporates the idea that OPNs are responsible for delaying action until this

condition is met or, in other words, that the OPNs implement thresholding in

the brain’s evidence accumulation mechanism for saccadic eye movements.

0.1.2 Accumulation by Positive Feedback

Given that the motor component of the visuo-motor response appears to rep-

resent the active process of decision making and that it is observed throughout

the oculomotor system, it is interesting to consider what neural circuitry un-
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Figure 0.3 Typical target- and fixation-related activity in the intermediate
layers of monkey SC recorded during a visually guided saccade. Top trace
shows a clear bimodal visuo-motor response in SC motor layer. Middle trace
shows fixation-related activity reducing as target-related activity builds-up.
Bottom trace shows approximation of eye position for the same period. Data
adapted from Munoz & Wurtz., 1995.

derlies it. Models seeking to address this question have largely concentrated

on the cortical microcircuitry (Usher and McClelland, 2001; Ditterich et al.,

2003; Wang, 2002). Of these, the model proposed by Wang (2002) provides

the most biologically plausible account of how populations of cortical neurons

might accurately integrate sensory evidence by exploiting recurrent excitatory

connections between neighbouring neurons. Arai et al. (1994) also offered lo-
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cal recurrent excitation as the most likely explanation for the build-up of motor

activity observed in SC prior to a saccade. However, inspection of figure 0.1 re-

veals that the oculomotor system contains at least two additional positive feed-

back loops: SC-TH-FEF-SC, and FEF-TH-FEF (TH = thalamus) (Sommer and

Wurtz, 2004; Haber and McFarland, 2001) formed between oculomotor areas.

Given this interconnectivity, it seems likely that the build-up of motor activity

observed throughout the oculomotor system arises through the combination of

PFBLs formed between neighbouring neurons within each oculomotor area,

and by PFBLs formed by the long-range projections between these areas.

To understand the way in which positive feedback can be used to perform

integration, consider the block diagram shown in figure 0.4a which shows a

simple rise-to-threshold mechanism with blocks f , b and m, representing neu-

ral populations, which for the purpose of this discussion can be thought of as

leaky integrators (Arbib, 2003), with an output limited to a minimum firing rate

of zero, and a maximum of ymax. A salience signal c representing the sensory

and/or motivational “evidence” supporting an action, is fed into a closed loop

formed by blocks f and b, the output of which is passed to block m, which

provides the motor signal ym, that drives the action. Block m also receives an

inhibitory signal θ (assumed constant), which acts as a threshold to ensure that

no action is produced until the output of the closed loop yf exceeds a critical

value. This architecture is loosely based on the oculomotor system (as shown in

figure 0.1), with the single loop formed by f and b representing the combined

effect of SC-SC, SC-TH-FEF-SC, and FEF-TH-FEF loops, and θ representing

the threshold effect of the omni-pause neurons in the saccadic generator cir-

cuit. Accordingly, the signal β represents the inhibitory influence of the BG on

these loops, the effect of which we shall consider shortly. We first consider the

effect of the gains wfb, and wbf , which represent the synaptic weights of the

projection from f to b and from b to f respectively. The closed loop gain G, of

the sub-system formed by f and b is given by

G = wfbwbf (0.1)

Figure 0.4b shows the response of the system in figure 0.4a, to a step change

in salience of ∆c, for different values of G. For G > 1, yf is unstable and

grows exponentially before saturating at ymax, so that action is guaranteed

provided the selection threshold θ is less than ymax. In this situation activity in

the loop is self-sustaining, so that even when the salience signal returns to zero,

the output of f remains saturated. For G < 1, yf is stable and has an equivalent

open-loop gain of 1/(1−G), so that the final value of ym is not guaranteed to

reach saturation, but instead depends on the size of the salience signal c. Under
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Figure 0.4 a) A simple behavioural control system incorporating positive
feedback. b) The effect of varying the closed loop gain G. dashed line: G=2;
solid line: G=1; dash-dot line: G=0.5; dotted line: G=0. c) The effect of vary-
ing the level of loop inhibition β. dashed line: β = 0; solid line: β ≪ ∆c;
dash-dot line: β < ∆c; dotted line: β ≥ ∆c. See text for details.
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this condition, the output of f tracks the salience signal, returning to zero when

the salience signal does so.

With G = 1 the model exhibits the interesting behaviour of marginal stabil-

ity, for which yf increases linearly 1 before reaching saturation. Recall that the

diffusion model requires the temporal integration of evidence. With G = 1 this

system approximates an ideal integrator and, as such, represents a way in which

a pair of neurons, whose membrane voltages decay on a millisecond timescale,

might accurately integrate information over the hundreds of milliseconds typ-

ically taken to make decisions. The circuit also makes clear another potential

benefit that positive feedback can add to a selection system, namely the ability

to raise weak sensory (and motivational) salience signals to the level required

to elicit action. Unchecked, this amplification will cause even the weakest of

salience signals to trigger its corresponding behaviour, so that a system like

this will seldom be at rest. This may upon first consideration sound rather in-

efficient, however, ethological models suggest such a scheme underlies animal

behaviour. As Roeder (1975) points out:

animals are usually ’doing something’ during most of their waking hours, especially

when in good health and under optimal conditions.

One potential benefit that arises from this tendency to act, is that problems

are dealt with before they become unmanageable. For instance, in the absence

of any other deficits, a mildly hungry animal will set about finding, and con-

suming food, thus ensuring that its hunger is sated before its energy levels

become dangerously low. Accordingly, McFarland (1971) has shown that a hy-

pothetical model of action selection incorporating positive feedback, is able to

account for animal feeding patterns. The oculomotor system could also be de-

scribed as being unnecessarily active, however, orienting towards even weakly

salient objects might provide an animal with an unexpected opportunity, or

give it sufficient forewarning to avoid impending danger. By guaranteeing that

motor signals reach saturation, positive feedback also acts to decouple the mag-

nitude of a response from the magnitude of the salience signal driving it so that,

for instance, a saccade’s metrics (e.g., speed, duration) are largely independent

from the properties of the stimulus that triggered it.

0.1.3 Competition in the oculomotor system

Much of the research into the neurobiology of decision making has focussed

on LIP and recent models of decision making are consistent with the idea that

this area is responsible for decision making. Under these proposals populations

1 after fast transients related to the neural time constant have settled
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of neurons representing alternative actions compete with each other through

mutual- (Usher and McClelland, 2001), feed-forward- (Ditterich et al., 2003)

or pooled-inhibition (Wang, 2002). Despite these architectural differences it

has been demonstrated empirically (Ratcliff and Smith, 2004) and analytically

(Bogacz et al., 2006) that all three architectures can implement the diffusion

process if appropriate parameters are selected.

Despite this, there is reason to suspect that LIP is not the sole seat of ocu-

lomotor decision making. As described in our review of the oculomotor sys-

tem above, the ramp-like rise to threshold of motor activity observed in LIP is

also observed within the FEF and SC, two areas that, like LIP, receive input

from areas of extrastriate cortex (including area MT), and are able to elicit sac-

cades. Lesions studies have revealed considerable redundancy amongst these

structures. LIP lesions having relatively little effect on oculomotor function (Li

et al., 1999). Lesions to either FEF or SC produce more profound deficits (Dias

and Segraves, 1999; Schiller and Chou, 1998) but only a dual lesions of both

FEF and SC can cause a permeant loss of function (Schiller et al., 1980).

One possible interpretation of this apparent redundancy is that each of the

oculomotor areas has some intrinsic capacity for action selection. More specif-

ically, it may be the case that, as has been suggested for LIP, both FEF and SC

have a local micro-circuit capable of independently implementing the diffu-

sion process. If oculomotor decisions are computed in this distributed fashion

then it would suggest that participating structures must coordinate with each

other in order to ensure that conflicting motor commands are not issued to the

brainstem.

An alternative interpretation the oculomotor system’s redundancy is that de-

cisions are not computed in a distributed fashion but, rather, centrally by a

dedicated selection mechanism. Redgrave et al. (1999) have argued that a cen-

tralised architecture is superior to a distributed architecture in terms of connec-

tivity and metabolic efficiency.

To understand why this is the case consider, for instance, the mutual inhibi-

tion model of (Usher and McClelland, 2001). In this model, neurons represent-

ing saccades to alternative locations compete with each other via reciprocal in-

hibitory connections. While there is certainly evidence of reciprocal inhibition

within cortex (Windhorst, 1996), if neurons representing saccades to all visual

coordinates are to compete with each other, then neurons in every part of the

retinotopic map in LIP would have to be connected to those in every other part.

Evidence for sufficiently long-range inhibitory connectivity is lacking, and this

is perhaps unsurprising given that such many-to-many connectivity would be a

costly method of facilitating competition in terms of developmental overhead

and metabolic consumption. This cost is compounded if similar connectivity
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is also necessary within FEF and SC, as it would presumably have to be under

a distributed selection architecture. For these reasons we feel it is unlikely that

the brain implements selection in this distributed fashion.

Redgrave et al. (1999) suggested that the basal ganglia might constitute a

centralised selection mechanism that offers a more efficient method of select-

ing between alternative actions. Under this proposal, structures which gener-

ate potentially conflicting motor commands send “bids for action” to a central

arbitrator, which chooses amongst them and signals this choice back to the

bidding structures. The idea that the BG are involved in action selection is a

recurring theme in the literature (Mink, 1996; Kropotov and Etlinger, 1999)

and forms the basis of a unifying hypothesis of BG function that incorporates

known anatomy and physiology (Prescott et al., 1999; Redgrave et al., 1999).

Anatomical and functional evidence also support this role for the BG within

the oculomotor system. FEF and TH both project to the input nuclei of the

BG with retinotopic projections (Hikosaka et al., 2000; Harting et al., 2001),

so that the SC-SC, SC-TH-FEF-SC, and FEF-TH-FEF positive feedback loops

identified earlier can each provide either direct or indirect bids to the BG. Also,

the substantia nigra pars reticulata (SNr) - one of the output nuclei of the BG

- provides strong tonic inhibition to TH and SC so that the BG can impose

choices upon the same positive feedback loops. Indeed, this inhibitory output

is known to pause prior to saccade initiation (Hikosaka et al., 2000) suggesting

that the BG are acting to gate the build-up of saccade-related activity within

the oculomotor system.

Having established that connectivity between the BG and oculomotor struc-

tures conforms to the expectations of a centralised selection scheme, we now

consider the computation performed by the BG. Gurney et al. (2001) suggest

that the intrinsic connectivity of the BG implements a form of feed-forward

selection network. Figure 0.5 shows their computational model (hereafter re-

ferred to as the Gurney model), and provides a description of how intrinsic BG

processing achieves signal selection. A key assumption is that the topography

of BG inputs is preserved throughout the BG nuclei so that competing actions

are represented by activity in distinct channels. The extent to which a channel

is selected is determined by the difference between its input salience and the

sum of all other input saliences. The calculation takes place in SNr, where dif-

fuse excitatory input from the sub-thalamic nucleus (STN) effectively provides

the sum of channel activity, and focused inhibitory input from D1 striatal cells

provides a measure of individual channel activity. The diffuse STN projection

allows inter-channel communication, so that input to a given BG channel acts

to raise the level of inhibition outputted from all other channels. Thus, the

growth rate of motor activity in a BG controlled PFBL, will depend not only
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Figure 0.5 The intrinsic BG model of Gurney et al.[2001b], assumes that du-
plicate salience input is sent to the sub-thalamic nucleus (STN) and striatum,
which is further sub-divided in two groups of cells classified by the type of
dopamine (DA) receptor they express (D1 and D2). The globus pallidus inter-
nal segment (GPi) and substantia nigra pars reticulata (SNr) - which together
form the output nuclei of the BG - send inhibitory projections back to thala-
mus and to motor nuclei in the brainstem (e.g., the SC). Spontaneous, tonic
activity in the STN guarantees that this output is active by default, so that
all motor systems are blocked. Gurney et al., identify two separate functional
pathways within the BG. The selection pathway is responsible for disinhibit-
ing salient actions: salience input to a channel activates D1, which then in-
hibits GPi/SNr thus silencing inhibitory output in the channel. The diffuse
projection from STN to GPi/SNr means that all channels receive an increased
excitatory drive. This is offset in the most active channel by the inhibitory in-
put from D1, but goes unchecked in less active channels thus acting to block
unwanted actions. The control pathway defined by Gurney et al., incorporates
the globus pallidus external segment (GPe), and provides capacity-scaling by
ensuring that STN activity does not become excessively high when multiple
channels have non-zero salience, thus assuring full disinhibition of the win-
ning channel irrespective of the number of competing channels. Because the
striatal input to the control and selection pathways utilise different DA re-
ceptors, changes in tonic DA levels affect them differentially. Consequently,
when DA is reduced to PD-like levels, the balance between the two pathways
is disturbed resulting in residual inhibition on the selected channel (inset).
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on the sensory input driving it, but also on the activity in other BG controlled

loops. So that, for instance, in the visually-guided saccade paradigm, activity

in a loop corresponding to the fixation coordinate will affect activity in a loop

corresponding to the target coordinate.

Returning to the simple model shown in figure 0.4a, we now consider the

effect of the inhibitory input β, which represents the effect of SNr inhibition

upon oculomotor PFBLs. Figure 0.4c shows the response of the system to a

step change in salience of ∆c, for different values of β and with the loop

weights set to give ideal integration (G = 1). When the inhibitory input to

the loop is greater or equal to the salience signal i.e., β ≥ ∆c, the positive

feedback is effectively disabled because the input to b is zero or less. Conse-

quently, the system behaves like a first order system, with its output settling

at the level of its input. Under these circumstances, action is not guaranteed

and will depend upon the magnitude of the salience signal c. For β < ∆c the

feedback becomes active as soon as yf exceeds β, causing a linear increase

in yf with a rate determined by the difference ∆c − β, thus guaranteing that

ym reaches ymax, and overcomes the selection threshold. The inhibitory input

also provides a means of overcoming the self-sustaining property of the loop,

causing activity to decays linearly at a rate, again determined by ∆c−β, when

the salience signal returns to zero. From this it is clear that β acts as both a

threshold for activation of the PFBL, and a rate controller for the evolution

of activity in the loop. Or, in other words, β determines whether “evidence

accumulation” is initiated, is able to scale the rate of accumulation, and can

help passively terminate the accumulation process by removing accumulated

evidence.

Having explored the properties of a single PFBL under inhibitory control,

the remainder of this chapter examines the behaviour of multiple PFBLs in the

context of a computational model of the primate oculomotor system. As pic-

tured in figure 0.1, this system can be thought of as a set of parallel loops, like

those in figure 0.4, each one corresponding to a different spatial coordinate. A

key difference, according to the approach taken here, is that each loop’s β in-

put is determined by the competitive dynamics of the BG. The model described

below is a revised version of the oculomotor system model proposed by Cham-

bers (2007) and hereafter referred to as the Chambers model. This model was

previously shown to be able to reproduce data from several visually-guided

experimental paradigms. Here we will demonstrate that a simplified version

of the model can also reproduce data from a “noisy” two-alternative, forced-

choice task similar to the motion discrimination task reviewed earlier. Specif-

ically, we will demonstrate that the model is able to reproduce appropriate RT

distributions and error rates, and demonstrate a relationship between RT and



18

the strength of sensory evidence relative to noise levels. We will also show

that plasticity within the BG could provide a means of adaptively controlling

the accumulation process. Before presenting these results we provide a brief

overview of the original model (see Chambers, 2007, for a full description)

together with details of the modifications made for the purposes of the current

study.

0.2 Methods

The Chambers model simulates, from perception to action, the full sensori-

motor competency of visually guided saccade generation. More specifically,

the model simulates an experimental display, the retina, the SC (based on the

model of Arai et al., 1994) (figure 0.2), FEF, TH, the BG (based on the model

of Gurney et al., 2001)(figure 0.5), the SG (based on the model of Gancarz and

Grossberg, 1998), and the eyeball and its musculature.

The model explicitly tests the “central switch” hypothesis of Redgrave et al.

(1999) as the BG is the only structure in the model able to inhibit the build-

up of motor activity i.e. reciprocal inhibition within cortex and the SC is not

modelled. The BG is modelled using a 2-dimensional version of the Gurney

et al. model (described in the preceding section), which receives one-to-one

excitatory projections from FEF and TH and sends a one-to-one inhibitory

projection to SC and back to TH.

The model also tests the hypothesis that a distributed network of PFBLs

acts in concert to integrate evidence for and against specific saccades. Local

positive feedback is modelled within SC via reciprocal excitatory connectivity

between neighbouring neurons (with weights reducing with distance as mod-

elled by Arai et al., 1994; Arai and Keller, 2005), long-range positive feedback

loops are modelled by one-to-one projections between SC, TH, and FEF.

The Chambers model also tests the idea that the SG is involved in managing

the accumulation process. The model incorporates the biologically-plausible

model of the SG proposed by Gancarz and Grossberg (1998), which converts

the spatially distributed representation of a saccade target, as found in SC and

FEF, into the appropriate temporal signals necessary to drive the extra-ocular

musculature. In the Chambers model the activity of the OPNs is determined by

activity in the FEF and SC: foveal activity acts to increase OPN output, thus

preventing saccades, while activity in the periphery inhibits the OPNs thus

facilitating saccade generation. Under this interpretation of the anatomy, the

OPNs are therefore ultimately responsible for setting the threshold for action

within the oculomotor system.
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Finally, the Chambers model also incorporates evidence suggesting that the

SG provides negative feedback to the SC as a saccade is generated (Soetedjo

et al., 2002; Goossens and Van Opstal, 2000). It is suggested that this inhibitory

signal provides a means of actively resetting the decision mechanism by re-

moving previously accumulated evidence.

For the current study, several changes were made to the Chambers model

in order to simplify its interpretation and speed its execution time. First, the

original model reproduced the log-polar representation of visual space found

throughout the oculomotor system. Here we have removed this and simply

represent visual space linearly in order to simplify the interpretation of results.

Second, the Gancarz and Grossberg (1998) model of the SG was not included.

Instead, we approximate the behaviour of this model by taking the centroid of

combined SC and FEF activity just prior to saccade generation. Furthermore,

we assume that saccades are made instantaneously, thus removing the need to

simulate the dynamics of the eyeball. One aspect of the Gancarz model that

is retained, however, is the inclusion of OPNs. These are modelled as a single

leaky integrator excited and inhibited respectively by the foveal, and periph-

eral representations of FEF and SC. The centroid of saccade-related activity is

sampled, and a saccade generated, when OPN activity reaches zero, and is not

sampled again for a simulated refractory period of 100 ms (this prevents the

eye from being continually repositioned despite the OPN remaining at zero for

a short duration). At the same time that the centroid is taken, an inhibitory sig-

nal is injected into the build-up layer of the SC, simulating the feedback from

the SG to the SC.

It has previously been demonstrated that the Chambers model can repro-

duce behavioural data from several visually-guided experimental paradigms

(Chambers, 2007). In this chapter we seek to demonstrate that the model can

also reproduce data from a “noisy” two-alternative, forced-choice task similar

to the motion discrimination task reviewed earlier. It was not possible to test

the oculomotor model with the motion discrimination task as it lacks a repre-

sentation of area MT and is, as a consequence, unable to simulate tasks that

require the subject to make a discrimination based on stimulus motion.

We instead simulate an alternative paradigm which requires the subject to

make a discrimination based on stimulus luminance. Under this paradigm,

which has been utilised by Ludwig et al. (2005), the subject is first presented

with a central fixation stimulus, which is abruptly extinguished and replaced

with two spatially separated target stimuli. The subject is required to saccade

to the brighter of the two targets. The luminance of the targets varies randomly

over the course of the trial, with values being drawn from a normal distribu-

tion. The distributions used for each target have the same variance but different
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means. Task difficulty can be adjusted by altering the difference in mean lu-

minance relative to the power of the noise or, in other words, by adjusting the

signal to noise ratio.

In order to explore the selection capabilities of this system and its similarity

to the diffusion model, we investigate its behaviour under 4 conditions:

• the control condition: the dimmer target has a mean luminance that is 95%

that of the brighter target

• a high luminance condition: the luminance of both targets is increased from

the control value by 10%

• a high contrast condition: the luminance of the brighter target is increased

from the control value so that the dimmer target has a luminance that is 90%

that of the brighter target

• a low weight condition: the targets have the same mean luminance as the

control condition, but the model’s cortico- and thalamo-striatal weights are

reduced to 90% of their control value

We simulate the luminance discrimination task by generating a 2-dimensional

array that represents the world, a sub-region of which is inputted into a reti-

nal model. The sub-region that is sampled depends on the current simulated

eye position, which is initially set to be at the centre of the world-array where

the fixation stimulus is also located. The retinal model is a two layer network,

with one layer that responds phasically to luminance increases and one which

produces a tonic output proportional to luminance level. Both retinal layers

project to the FEF layer, while only the phasic layer projects to the superficial

layer of SC (which in turn relays that input to the deep layer of SC). These pro-

jections both introduce a 50ms delay to simulate delays introduced by retinal

processing and axonal propagation.

A random number generator provides input into the FEF layer of the model

in order to simulate the combined effects of environmental and neural noise.

This noise source is temporally filtered using a low pass Butterworth filter in

order to decouple the power spectrum of the noise from the simulation fre-

quency of the model.

Each experimental condition is simulated for 400 trials with a sampling fre-

quency of 400 Hz. A trial consists of 2 seconds of simulated activity. The

fixation stimulus is presented from 50ms to 600ms, and is then exchanged for

the target stimuli which remains on for the remainder of the trial (figure 0.6a).

In each trial, if the endpoint of a generated saccade is within +/- 2o of the

target with the higher mean luminance it is considered to be a correct response.

Trials producing saccades that land elsewhere, or that fail to produce a saccade

at all, are considered to have produced incorrect responses.



0.3 Results 21

0.3 Results

0.3.1 Accumulation dynamics in the oculomotor model

We first review the operation of the model during a single trial of the lumi-

nance discrimination task in order to highlight what each part of the modelled

anatomy contributes to the decision process. Figure 0.6 shows typical model

activity during a trial conducted under the control condition. This trial high-

lights the effect of noise on the decision process as the model erroneously

selects the target with the lower mean luminance.

Initiation

Figure 0.6 shows activity in a sub-set of model layers from 200ms prior to

target onset. There are a number of things to note about this period, and that

immediately following target onset. First, as can be seen from figures 0.6b

and c, noise in the target channels prior to target onset is not integrated thus

ensuring that the system does not make spontaneous saccades in response to

noise. This resistance to noise is due to the inhibitory output from SNr acting

upon TH and SC, which ensures that the net input to these structures is neg-

ative thus preventing positive feedback dynamics from being initiated by the

SC-SC, FEF-TH-FEF and SC-TH-FEF-SC PFBLs upon which the model’s ac-

cumulation dynamics rely.

Recall that the Gurney et al. (2001) BG model generates a baseline in-

hibitory output in the absence of salient input so that, in effect, downstream

structures have a brake applied by default. Also recall that, when the BG model

does have salient input, the level of SNr output is increased in losing channels

(figure 0.5). Prior to the target onset the BG selects the fixation channel (as

this is the only channel with external input) and, as a consequence, all other

channels, including the target channels, receive above baseline inhibition. This

selection is evident from the slight reduction in SNr activity in the fixation

channel (figure 0.6d) relative to that in the target channels (figures 0.6b and c).

The reduction in fixation channel SNr activity is relatively small owing to a

manipulation we made to simulate the influence of prefrontal cortex upon the

oculomotor BG. We explain this in the following section.

At 650ms into the trial, retinal input corresponding to target onset reaches

the FEF layer (figures 0.6b and c) injecting a “pulse-step” waveform of in-

put into FEF and thus the model’s system of PFBLs. The initial phasic burst

is sufficiently large to overcome the effect of SNr inhibition on TH and SC,

thus allowing the accumulation dynamic to be initiated. The “pulse” also acts

to rapidly establish a “beach-head” of accumulated evidence in the system’s
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Figure 0.6 Model activity for a trial resulting in the selection of the incorrect
target under the control condition. a) Experimental timing; fixation onset oc-
curred 350ms prior to the period shown; fixation offset and dual target onset
was simultaneous; b) output of neurons within the channel corresponding to
the correct target - that is neurons with a receptive field centred on the correct
target; for this and the following 2 panels, the solid and broken black lines
correspond to output from FEF, and SNr respectively; the grey line corre-
sponds to sensory input supplied to FEF i.e. the combination of retinal input
and the noise source; c) neural output from the incorrect target channel; d)
neural output from fixation channel; e) output from the OPNs. The vertical
dropline denotes the instant at which a saccade to the incorrect target was
initiated.



0.3 Results 23

PFBLs which subsequently feeds into the BG and causes a corresponding re-

duction in SNr activity thus enabling the integration of the “step” over time.

One interpretation of this scheme, is that the burst of activity generated by

stimulus onset is a form of interrupt signal, signalling that there is a stimulus

that may warrant breaking from ongoing fixation. With this interpretation in

mind, it is interesting to note that when a predictable stimulus onset acts to

distract an animal from obtaining reward on a saccadic task, the corresponding

phasic burst of activity (as observed in superficial SC) becomes attenuated

over the course of several trials (Goldberg and Wurtz, 1972). It is likely that

this attenuation prevents the accumulation of sensory evidence corresponding

to the distracter, thus diminishing its ability to trigger a saccade. Later we will

propose that the BG, in conjunction with prefrontal cortex, may be involved in

this pre-attentive habituation.

Competitive accumulation

Under the control condition, the contrast between targets is low compared to

the level of noise. As a result of this the accumulated activity in each target’s

channel is very similar post target onset (figures 0.6b and c). Correspondingly,

the level of SNr activity applied to each channel is also similar, so that the BG

grant neither channel a significant advantage over the other. Initially then, the

rate of accumulation is mainly dependent on the strength of evidence for each

target, as provided by tonic retinal input. However, as a result of the noise in the

system, accumulated evidence in favour of the incorrect target takes an early

lead in the particular trial shown in the figure. The BG circuitry responds to

this increase in the incorrect target’s channel activity by reducing SNr activity

further for this channel, while increasing that to all other channels.

As a result of the change in relative SNr activity the BG imposes a bias

on the accumulation process that favours evidence in the leading channel over

that of losing channels. In other words, the system shows a primacy effect,

favouring early evidence over that which comes later. In the trial shown, the

accumulated evidence in the correct target’s channel, despite having the higher

mean input, is not able to overtake that in the incorrect target’s channel which

leads to an increase in this BG mediated bias. At approximately 950ms the SNr

input to the correct target’s channel increases to such a level that the net input

to that channel’s accumulator circuit is negative, thus causing activity therein

to decline. Conversely, SNr input to the incorrect target’s channel continues to

decrease, accelerating the rate of evidence accumulation in favour of making

an erroneous saccade. This separation of signals is consistent with the findings

of Roitman and Shadlen (2002) using the motion discrimination task. In the

following sections we suggest that the increase in decision signal contrast that
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results from this separation is key to both the correct programming of saccadic

movements and to facilitating rapid learning within the BG.

The BG mediated competition between channels is also able to account for

the mutual exclusivity between target and fixation activity reported by Roit-

man and Shadlen (2002). Prior to target onset, the fixation channel is the most

active channel although, as fig 0.6d shows, the accumulation dynamic has not

significantly amplified the input signal in this channel. The model was manip-

ulated in order to prevent accumulation in the fixation channel, as early exper-

iments, in which buildup was permitted, produced unrealistically prolonged

RTs because residual fixation activity competed strongly with burgeoning tar-

get activity. Accumulation was prevented by providing additional drive to the

fixation channel’s D2 pathway in BG, which has the effect of increasing SNr

output for that channel. This is consistent with earlier work (Chambers and

Gurney, 2008) which demonstrated a mechanism via which associative areas

of PFC might manipulate the behaviour of motor systems by top-down inputs

to motor striatum. Our manipulation therefore represents the effect of frontal

associative systems having learnt to restrict the effective salience of fixation

stimuli relative to novel peripheral onsets.

Selection, enaction and accumulator reset

In our interpretation of the oculomotor anatomy, the OPNs represent the final

barrier to action and, thus, indirectly determine when the decision process is

over. Figure 0.6e shows the activity in the OPNs over the course of the trial.

Recall that fixation activity in FEF and SC excites the OPNs while target-

related activity inhibits them. At 1150ms the sum of target-related activity is

sufficiently large compared to fixation activity that the OPNs are silenced and

the saccade generation process is commenced.

The SG model generates a saccade to the centroid of summated FEF and

SC activity (approximating the behaviour of the more biologically plausible

Gancarz model) and so it is critical to accurate target acquisition that the BG

competitive dynamics produce a clear peak of accumulator activity centred on

the chosen target, while suppressing activity elsewhere as seen in figures 0.6b

and c. We model saccades as an instantaneous shift in eye position. The visual

consequence of this shift is that the target stimuli move to different locations

on the retina. For the trial shown, the saccade was accurate and so the incorrect

target is now at the centre of the retina.

Post-selection it is critical that accumulated evidence is removed otherwise

the system will continue to generate a staircase of saccades with the same rel-

ative displacement as the first (an effect that is observed when SC is driven

continuously by micro-stimulation; Breznen et al., 1996). As fig 0.6c shows,
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activity in the selected channel does indeed begin to decay after saccade gen-

eration. The model discards accumulated evidence both passively and actively.

As the simple system shown in figure 0.4c shows, removal of excitatory in-

put can lead to passive decay of activity. An eye movement moves the target

stimuli to a different part of the retina which, owing to the zero-luminance

background used in the featured experiment, causes the target channels to lose

their excitatory input. This reduction can be seen in the input trace in figures

0.6b and c, and the increase in fixation channel activity resulting from target

acquisition can be seen in figures 0.6d.

In a natural scene there is every possibility that during, and immediately af-

ter, a saccade there will be salient input at the retinal coordinate the saccade

target previously occupied. Consequently, active suppression of accumulated

evidence is required in order to guarantee that accumulated evidence will be

removed. One approach the oculomotor system appears to utilise is the active

blocking of visual input whilst the eye is moving, a phenomenon known as

“saccadic suppression” (Thiele et al., 2002). Another active method is the ro-

bust negative feedback from the SG to the SC which effectively eliminates the

SC-TH-FEF-SC and SC-SC feedback loops. The current model is tuned so that

the combined effect of its distributed positive feedback loops approximates a

single loop with a closed loop gain of unity (as shown in figure 0.4c). Con-

sequently, active suppression of two of these loops reduces the effective gain

below unity so that the system loses its ideal integrator properties. We mod-

elled both of forms of active suppression as a brief burst of inhibition applied

to the retina and the SC at the instant that a saccade is triggered.

Summary

The preceding sections have shown that the model is able to cleanly select be-

tween multiple options (albeit incorrectly in the given example) when provided

with physiologically plausible inputs. Furthermore, the model illustrates that

the accumulation dynamic observed throughout the oculomotor system can be

reproduced through the inhibitory control of a distributed positive feedback

network. Also, although not modelled, feedback to LIP, from FEF, could in

principle induce a similar pattern of activity in that area, consistent with ob-

servations. Key control issues not addressed by abstract mathematical models

such as initiation thresholds, and reset mechanisms, have been shown to have

physiological correlates in the guise of baseline SNr output and brainstem feed-

back respectively. We now consider the affect of sensory evidence and internal

processing on the decision process.
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Figure 0.7 Percentage of trials that produced a saccade to the correct target
for each of the experimental conditions.

0.3.2 Accuracy, response time and the effect of learning

Figure 0.7 shows how successful the model was in selecting the brightest tar-

get under the 4 experimental conditions. These results demonstrate that while

increases in absolute target luminance do nothing to increase the model’s ac-

curacy, increases in the contrast between stimuli does. This is consistent with

findings from the motion discrimination task in which increased motion con-

trast gives rise to increased response accuracy (Roitman and Shadlen, 2002).

That increased stimulus contrast improves accuracy is perhaps unsurprising

as it arises as a natural consequence of competitive dynamics. A less intu-

itive finding is that lowering cortico- and thalamo-striatal weights can produce

a similar accuracy improvement to that achieved by increased contrast. This

manipulation reduces the efficacy with which accumulated evidence within

a given channel is able to request a reduction in the SNr activity applied to

it. Because SNr levels are higher for a given level of accumulated evidence,
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Figure 0.8 Median response time for correct and incorrect trials for each of
the experimental conditions.

under this condition, the accumulation dynamic progresses more slowly (as

illustrated in figure 0.4c). By being forced to “take its time” in this way, the

accumulation process is better able to average out the effects of noise and in

so doing reduces the error rate. This result highlights the potential role that

striatal plasticity may play in modulating the dynamics of decision making.

Figure 0.8 shows how the median RT of correct and incorrect trials varies

between experimental conditions. These results highlight that, while lowering

cortico- and thalamo-striatal weights produced a similar increase in accuracy

to increased target contrast, it comes at the cost of prolonged RT, the same

trade-off observed when subjects voluntarily elect to increase their response

accuracy in a saccadic task. The results in figure 0.8 also reveal that, under all

experimental conditions, the RT of incorrect trials is longer than that of correct

trials, which is consistent with findings from the motion discrimination task

(Roitman and Shadlen, 2002). This property of the model arises from the fact



28

Figure 0.9 Response time distributions for correct trials under each experi-
mental condition a) histograms of RT distribution for each condition; b) re-
ciprobit plots of RT distribution for each condition. See text for explanation.
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that on error trials (such as that shown in figure 0.6) the losing channel actually

has the higher mean input. This means that, despite having a greater SNr input,

the accumulated evidence in the losing channel can grow at a similar rate to that

in the lead channel. This increased level of competition prolongs the selection

process as it restricts the ability of the BG to further increase the contrast in

SNr output.

Figure 0.9 shows the distribution of RTs achieved under each experimental

condition for correct trials only. Figure 0.9a represents the RT data as his-

tograms and clearly shows that the distributions of RT under each condition

each exhibit a rightward skew as discussed in section 0.1. It is also clear that

the distribution for the lower weight condition is significantly more skewed

than that of any other condition.

Although intuitive to understand, it is hard to compare distributions repre-

sented as histograms. In Figure 0.9b we therefore show the RT distributions as

a reciprobit plot. This type of plot is most commonly used to compare RT data

with the assumptions of the LATER model of Carpenter (1981) which models

decisions making as a race to threshold between evidence accumulators that

do not inhibit each other. Although our model differs considerably from the

LATER model, it is useful to try and characterise the RT distribution produced

by our model using the relatively simple LATER framework.

Firstly, the fact that each condition’s plotted results form straight lines (for

the inner quartiles at least) indicates that the reciprocal of RT has a normal

distribution, indicating that the RT skew exhibited under each condition is

consistent with a linear rise to threshold. Secondly, the distributions for the

higher luminance and higher contrast conditions appear to be leftwards shifted

versions of that for the control condition indicating that the mean rate of evi-

dence accumulation is increased under these conditions. Finally, the fact that

the distribution for the lower weight condition is both rightwards shifted and

of reduced gradient, indicates that the mean rate of evidence accumulation is

lower under this condition, but also that the total amount of evidence to be ac-

cumulated is increased i.e. the distance between the initial evidence level and

the threshold for action is increased.

0.4 Discussion

In this chapter we have demonstrated that the oculomotor anatomy, when viewed

as a parallel array of, largely-independent, BG-controlled PFBLs, appears to

implement a decision mechanism with properties similar to the diffusion model.

Further, we have shown that the BG (as conceptualised by Gurney et al., 2001)
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are able to arbitrate between alternative actions represented by accumulated

sensory evidence, whilst also providing a threshold for the initiation of the

accumulation process and a means of resetting accumulated evidence once an

action has been initiated. Finally, we have demonstrated that changes in synap-

tic weights within the striatum (the BG input nucleus) are able to adjust the

system’s RT/accuracy tradeoff.

As described in section 0.1 there are several computational models that as-

cribe observed accumulation dynamics to the cortical microcircuitry (Usher

and McClelland, 2001; Ditterich et al., 2003; Wang, 2002). The evidence we

have presented in this article does not rule out the possibility that cortical cir-

cuitry fulfils an arbitration role, but does serve to highlight the possibility that

this function might be performed centrally, by the BG. This view is consistent

with other models that highlight the role of BG in controlling the build-up of

motor activity in PFBLs (Arai et al., 1994; Grossberg and Pilly, 2008). We now

seek to highlight two key advantages that the BG may offer as a centralised se-

lection architecture.

0.4.1 Potential advantages of centralised selection by the basal

ganglia

Algorithm refinement

As described above, the oculomotor model presented in this article has prop-

erties in common with the diffusion model. It can be demonstrated that, for

two-alternative forced-choice tasks, that the diffusion model is mathematically

equivalent to an optimal statistical test known as sequential probability ratio

test (SPRT) (Wald, 1947). The equivalent optimal statistical test for decisions

involving more than two alternatives is called the multihypothesis sequential

probability ratio test (MSPRT) (Baum and Veeravalli, 1994). Bogacz and Gur-

ney have demonstrated that the intrinsic connections of the BG can be inter-

preted as a minimal neural implementation of the MSPRT algorithm (Bogacz

and Gurney, 2007, and Bogacz, this volume). Thus, while it may, in princi-

ple, be possible to optimally select between two alternatives using the cortical

micro-circuit, there is evidence that the specialised architecture of the BG may

be best suited to resolving such competitions where there are more than two

alternatives. One advantage of separating out this specialised selection func-

tion from cortex, may be that cortical specialisations are able to evolve without

affecting the optimality of decision making while, at the same time, all modali-

ties requiring decision making, benefit from evolutionary improvements to the

BG.

In their model of BG, Bogacz and Gurney (2007) made the simplifying as-



0.4 Discussion 31

sumption that evidence accumulation occurred independently from the BG i.e.

accumulators feed integrated evidence into the BG but are not, in turn, af-

fected by it. The model we present here therefore differs from that of Bogacz

and Gurney in that the output of the BG inhibits the PFBLs that feed into it.

This change affects the relative importance of sensory evidence supplied over

the course of the decision making process.

The diffusion model (and MSPRT) treats all evidence equally throughout

the decision process so that evidence arriving just prior to action selection has

the same influence on the decision process as the earliest evidence. Our model,

in contrast, does not treat all evidence equally because losing accumulators

are inhibited (by BG output) to a greater extent than the lead channel, so that

as evidence accumulation in the lead channel approaches the selection thresh-

old, losing channels must supply evidence at an every increasing rate if they

are to reverse the decision. In other words, whereas the diffusion model (and

MSPRT) chooses between actions based on the quantity of evidence alone, the

oculomotor system, as we have interpreted it, chooses based upon evidence

and ongoing commitment to an action i.e. as accumulated evidence increases,

commitment to the leading decision starts to dominate with evidence from los-

ing channels having a reduced influence. The policy implemented by the model

therefore values conviction over accuracy.

It may be that our model has more in common with a variant of the diffusion

process proposed by Busemeyer and Townsend (1993), which includes a term

that is related to the current value of accumulated evidence. Support for an

evidence inequality in decision making comes from the work of Ludwig et al.

(2005) who tested human subjects using the same luminance discrimination

paradigm used in this article. These authors found that the initial 100ms of

stimulus presentation had the greatest influence upon the participants ultimate

decision with later information having little or no effect.

Adaptive learning

In addition to their candidate role as the vertebrate brain’s “central switch”

(Redgrave et al., 1999), there is good evidence to suggest that the basal gan-

glia play a critical role in reward-based learning (Hollerman et al., 2000) so that

they are perhaps better thought of as an “adaptive central switch”. In this article

we have demonstrated that striatal efficacy can affect accumulation dynamics

and hence the RT/accuracy trade-off implemented. Consistent with this role is

the fact that striatum receives convergent input from both sensory cortex and

most areas of the pre-frontal cortex (PFC), suggesting that the “context-aware”

PFC is able to directly influence action selection. This begs the question: what

constitutes evidence? In the oculomotor system, for instance, dorsolateral pre-
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frontal cortex (DLPFC) provides excitatory input to FEF and oculomotor BG

(see Johnston and Everling, 2008, for review), suggesting that “endogenous

evidence” in DLPFC could augment, or even act as a substitute for “exoge-

nous evidence” from sensory cortices. This might lead to faster selection times

for visible targets or the generation of purely voluntary eye movements to lo-

cations for which there is no sensory evidence.

In addition to being involved in decisions to act, it may be that PFC, through

its influence on BG, is able to control decisions not to act. Certain tasks re-

quire that the subject withhold a response that they would ordinarily elicit, and

it would appear that the BG provide a means of blocking habitual behaviour

when necessary. Using a model derived from the architecture presented in this

article, we have recently explored the role of the “indirect pathway” (involving

D2-type medium spiny neurons) in inaction selection (Chambers and Gurney,

2008). This work sought to demonstrate how PFC can, via a cortico-striatal

projection, learn to either selectively facilitate or block the accumulation of

sensory evidence by exploiting PFC neurons that have an asymmetrical influ-

ence on the D1- and D2-type neurons present in a given channel. The model is

able to successfully reproduce results from the non-match to sample task used

by Hasegawa et al. (2004) for which success relies on the participant overriding

the “habitual” tendency to attend to a primed location.
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