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Abstract  

(umans are very adept at extracting the ǲgistǳ of a scene in a fraction of a secondǤ We have found 

that radiologists can discriminate normal from abnormal mammograms at above chance levels 
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after a half second viewing ȋdǯ̵͙Ȍ but are at chance in localizing the abnormalityǤ This pattern of 

results suggests that they are detecting a global signal of abnormality. What are the stimulus 

properties that might support this ability? 

We investigated the nature of the ǲgistǳ signal in four experiments by asking radiologists to make 

detection and localization responses about briefly presented mammograms in which the spatial 

frequency, symmetry and/or size of the images was manipulated. We show that the signal is 

stronger in the higher spatial frequencies. Performance does not depend on detection of breaks in 

the normal symmetry of left and right breasts. Moreover, above chance classification is possible 

using images from the normal breast of a patient with overt signs of cancer only in the other breast. 

Some signal is present in the portions of the parenchyma (breast tissue) that do not contain a lesion 

or that are in the contralateral breast. This signal does not appear to be a simple assessment of 

breast density but rather the detection of the abnormal gist may be based on a widely-distributed 

image statistic, learned by experts. The finding that a global signal, related to disease, can be 

detected in parenchyma that does not contain a lesion has implications for improving breast cancer 

detection. 

 
 
 
 
 
 
 
 

Significance Statement 

Discovering characteristics of a signal that indicates to medical experts the presence of cancer in a 

non-invasive screening technique in a blink of an eye has implications for improving cancer 

detection.  Here we report two surprising facts about this signal. First, it is much stronger in the high 

spatial frequencies (fine detail) than in the low frequencies. Second, it is widely distributed with 

signal being present well away from the actual visible locus of disease even in the breast 
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contralateral to visible signs of disease.  Though this signal is not, in itself, definitive, it has the 

potential to be used in automated aids to medical screening and incorporated into training 

protocols for medical experts, speeding up and improving cancer detection.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Rapid extraction of scene ǲgistǳ ȋ1-4) is a very useful aspect of routine visual perception that 

allows us to allocate our time and attention intelligently when confronted with new visual 

information (Can I find food here? Is there danger here?). The signals that we extract upon our first 

glimpse of a scene are imperfect but not random. Experts often anecdotally report gist-like 

experiences with complex images in their domain of expertise. For instance, we have shown that 

radiologists can distinguish normal from abnormal mammograms at above chance levels in as little 

as a quarter of a second while non-experts cannot (5). The gist of abnormality appears to be a global 
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signal. Radiologists can detect it but cannot even crudely localize the abnormality under these 

conditions. 

Detecting the gist of breast cancer might be more than a curiosity, if that signal could be 

used to improve performance in breast cancer screening. Screening mammography can reduce 

mortality through early diagnosis of disease (6). Breast cancer is the most prevalent cancer in 

women and is the second leading cause of cancer deaths in women (7). In North America, screening 

mammography has a false negative rate of 20-30% (8,9) and a recall rate of about 10% (10). With a 

disease prevalence of about 0.3% (11), the vast majority of those recalled will not have cancer. Thus, 

there is significant room for improvement.   

It has been argued for many years that an initial, global processing step is an important 

component in expert medical image perception that might constrain or filter subsequent search 

(12-15) with the two most prominent models (16,17) each placing great emphasis on expertsǯ ability 

to process and evaluate information from large regions of an image (18). These models are broadly 

consistent with two-stage models of visual search (19,20), developed in the basic vision literature 

that propose that there is a limited set of features that can be used to guide attention and 

subsequent serial stage that allows for Ǯbindingǯ of features to permit identification of objects. 

Global processing of scene gist is a component of a recent modification of this class of model (21). 

This formulation proposes there is a selective pathway that can be used to recognize one (or a very 

few) objects at a time. Access to this limited-capacity process is controlled by attention and the 

deployment of attention is guided by the basic features, mentioned above. There is also a non-

selective pathway, capable of rapid extraction of ǲglobal image statisticsǳ like the average 

orientation of a set of line segments or the average size of objects (22-24). Perhaps more 

interestinglyǡ the distribution of basic featuresǡ the ǲspatial envelopeǳ ȋ25,26), contains information 

that allows for semantic categorization of scenes (e.g. natural vs. urban) without the need to 

recognize specific objects in the scene.  
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It is important not to oversell the capabilities of the non-selective pathway. It is engaged in 

global processing and cannot reliably recognize specific objects. Moreover, the discriminations 

made on the basis of a first glimpse, while not random, are typically far from perfect. Returning to 

mammography, Evans et al. (5) found that, while experts could classify mammograms as normal or 

abnormal at above chance levels, they were at chance in their ability to localize abnormalities. 

Nevertheless, mammograms appear to contain a signal indicating abnormality. This profile of 

image statistics or global properties might guide attention or, at least, might alert the radiologist to 

the possible presence of an abnormality in a mammogram.  

In this paper, we investigate the nature of this global signal in the hope that the signal could 

be better exploited by radiologists or used by designers of computer-aided detection systems to 

improve breast cancer screening. Our results show that the signal is concentrated in the high spatial 

frequencies of the image. It is not based on symmetry between two breasts or density of the 

breasts. Finally, the signal is detectable in breast tissue away from the location of the actual 

abnormality, including in the contralateral breast. In each of four experiments, we presented 

experienced radiologists with unilateral or bilateral mammograms (craniocaudal (CC) or 

mediolateral oblique (MLO) views of both breasts) or sections of mammograms for 500 msec 

(allowing for, perhaps, 2 volitional fixations). The stimuli were followed by a mask (a white outline 

of the breasts). Observers rated each stimulus on a scale from 0 (certainly recall this patient) to 100 

(certainly normal) (Figure 1). If the stimulus was a full breast or pair of breast images, observers 

were asked to localize the abnormality on an outline of that breast image. We also obtained density 

ratings from other radiologists for the mammogram stimulus set used in the experiments (Full 

methods are presented following the Results and Discussion sections).   

 

Results 

Experiment 1 asked if the abnormality signal was based on a disruption in the usual bilateral 

symmetry of the breasts. Studies have noted that asymmetry can be a strong indicator for 
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developing breast cancer (27, 28). Indeed, research has suggested that bilateral mammographic 

density asymmetry could be a significantly stronger risk factor for breast cancer development in the 

near-term than either womanǯs age or mean mammographic density (29).  

We measured observersǯ ratings of abnormality to three types of images: 1) Baseline - both 

breasts from the same woman, 2) Asymmetry 1 Ȃ breast images from two different women. On 

positive/abnormal trials, one breast image was abnormal while the other was a normal image from 

another woman. 3) Asymmetry 2 - breasts are from two different women. On positive trials, one 

breast image was abnormal with a lesion while the other image came from the breast contralateral 

to a lesion in another woman (Figure 2). Dǯǡ the signal detection measure of performanceǡ is 

calculated by comparing ratings of the abnormal condition to the ratings of the otherwise 

equivalent normal condition. When both breasts came from the same woman, expert radiologists 

could reliably exceed chance performance ȋavgǤ dǯ γ ͙Ǥ͙͜ǡ tȋ͙͛Ȍ γ ͠Ǥ͞͡ǡ pζ ͘Ǥ͙͘͘͘ȌǤ When the two 

breast images came from two different womenǡ radiologists could still perform the task ȋavgǤ dǯγǤ͞͞ǡ 

t(13) = 6.28, p< 0.0001), though their performance was significantly worse than when both breasts 

were from the same woman (planned comparison, t(13) = 7.03, p=0.018). When the abnormal case 

consists of one breast with an abnormality and the other breast was the breast contralateral to the 

lesion from a different womanǡ againǡ radiologists could do the task ȋavgǤ dǯγǤ͘͜ǡ tȋ͙͛Ȍ γ ͛Ǥ͚͘ǡ 

p< .00097) but their performance was weaker than the performance in the condition where both 

breasts were from the same woman (p=0.054). Performance did not differ significantly between the 

two asymmetric conditions (p>0.05). We can conclude from these results that symmetry may be 

part of what allows an expert to distinguish a normal from abnormal case in a glance, but it is not 

required since there is above chance performance in the artificial, asymmetric conditions. 

Though participants could detect the presence of abnormality, they could not localize that 

abnormality when it was present (see Figure S1). Localization performance was not significantly 

different than chance. Localization was best for the baseline condition (21%), but still not above 

chance performance (t(13)=1.38, p=0.196). In addition, as shown in Evans et al. (5), localization 
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performance did not improve as the confidence rating increased. 

Is the signal of abnormality simply breast density, with dense breasts rated as more 

abnormalǫ )n the baseline conditionǡ dǯ was significantly better ȋtȋ͙͛Ȍγ͞Ǥ͛͡ǡ pζ͘Ǥ͙͘͘͘Ȍ than the dǯ 

derived from density estimates made by other radiologists. In the Asymmetry conditions, the 

observed dǯ was not significantly better than dǯ derived from density rating ȋtȋ͙͛Ȍγ͙Ǥ͜͠ǡ pγ͘Ǥ͘͠͡Ǣ 

t(13)=0.48, p=0.647). However, if observers were basing their abnormality ratings on an assessment 

of density, one would expect that the gist and density ratings would be correlated, which they are 

not (r=0.02). One might also expect a difference in density ratings between normal and abnormal 

images. However, there is no reliable difference in this image set. A one-way ANOVA on density 

rating revealed no effect of image type  (F(4, 115) = 1.55, p = 0.19) while a one-way ANOVA revealed 

a large effect of image type on abnormality rating (F(4, 115) = 18.5, p< 0.0001). Thus while the 

magnitude of the effect in the asymmetrical cases is similar to what could be obtained from a quick 

assessment of density, there is no evidence that density is the signal that was being used by our 

observers. Absence of evidence is not proof and it might be that a more statistically powerful 

experiment might show a relationship of perceived density and the Ǯgistǯ of abnormality ȋeǤgǤ an 

experiment with density and abnormality ratings made by the same observers). A different, 

perhaps simpler, way to test the symmetry question and to revisit the density question is to present 

radiologists with only brief presentation of a single breast image at one time, rather than with a 

paired viewing of the left and right breasts. That is the purpose of Experiment 2.  

Experiment 2: Participants rated the appearance of single breast images. In addition to 

determining if observers can discriminate between normal and abnormal images in the absence of 

any possible symmetry signal, testing on single breast mammograms made it possible to assess 

whether the breast contralateral to an abnormal breast could be discriminated from breasts from 

negative cases. The left panel of Figure 3 shows that observers were able to distinguish between 

images of single normal and abnormal breasts ȋdǯγ͙Ǥ͙͞Ǣ ȋtȋ͙͜Ȍγ͠Ǥ͛͝ pζ͘Ǥ͙͘͘͘ȌǤ What is more, as 

shown in the right panel of Figure 3, their performance remained above chance when distinguishing 
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normal from an image contralateral to the breast with a lesion ȋdǯγ ͘Ǥ͝͡Ǣ ȋtȋ͙͜Ȍγ͠Ǥ͛͝ pζ͘Ǥ͙͘͘͘Ȍ 

though performance in that condition is significantly worse than performance with abnormal 

images (paired t(14)=5.8, p=0.00004). As in Experiment 1, the weaker performance, obtained with 

images contralateral to the lesion, was of a magnitude similar to what would be obtained if 

observers based their ratings on breast density. However, as in Experiment 1, there is no evidence 

that the radiologists were using that density signal. As before, the relationship of density ratings to 

abnormality ratings was weak or non-existent (r= 0.06 of ratings and density across images and r=-

0.02 for the contralateral images alone). Further, there was no effect of the objective type of image 

(normal vs. abnormal) on density ratings (F(4, 115) = 0.71, p= 0.49) but there was a large effect of 

image type on abnormality ratings (F (4, 115) = 46.06, p< 0.0001). As in Experiment 1, the average 

localization performance of observers for images with the abnormality in a single breast was not 

significantly above chance level (t(14)= .91, p=0.378). 

 

Experiment 3: Any texture can be decomposed into a set of sinusoidal gratings of different 

spatial frequencies, amplitudes, orientations, and phases. Experiment 3 examined the spatial 

frequency composition of the signal of abnormality. Radiologists viewed normal and abnormal, 

bilateral mammograms in each of three counterbalanced conditions: unfiltered full images 

equivalent to the baseline condition of Experiment 1, high-pass filtered images and low-pass 

filtered images shown as in Figure 4a. There was a significant difference between conditions 

(F(2,16)=52.35, p<0.0001). Specifically, the signal for interpreting mammography in 500 msec 

resides far more strongly in the high spatial frequencies, suggesting that the information is present 

in some aspect of the finer detail of the parenchymal texture (Figure 4b). High-pass performance 

was reliably greater than chance ȋdǯγ͘Ǥ͟͡Ǣ t(8) = 8.05, p <0.0001) and  better than performance on 

low-pass images (low-pass dǯγ͘Ǥ͚͞ǡ paired t-test t(8) = 5.30, p=0.002). High-pass performance did 

not differ from performance with unfiltered images ȋdǯǣ ͘Ǥ͟͡ vs. 1.06, t(8)=0.61, p = 0.56).  
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Againǡ the rated density of the images cannot explain radiologistsǯ performance in any of the three 

conditionsǤ The derived dǯ from the average density rating was dǯγ͘Ǥ͘͡ǡ and that is significantly 

lower than the performance for unfiltered images ȋdǯγ ͙Ǥ͘͞ǡ tȋ͠Ȍ γ ͠Ǥ͙͠ǡ p ζ͘Ǥ͙͘͘͘Ȍǡ high-pass 

images ȋdǯγǤ͟͡ǡ tȋ͠Ȍ γ ͟Ǥ͛͜ǡ p ζ͘Ǥ͙͘͘͘Ȍ or low-pass images ȋdǯγ 0.26 (t(8) = 6.00, p <0.0003). None of 

the correlations of image density and image abnormality rating were significant (all F(1,53) < 2.2, all 

p > 0.14). 

These findings are interesting for at least two reasons. First, if radiologists were simply using 

density as the signal, one might expect better performance from low spatial frequencies. Second, 

outside of radiology, the more typical finding in the appreciation of scene gist is that it is the low 

spatial frequency content that can be appreciated first in a brief flash; not the higher frequencies, 

though 500 msec would be long enough to appreciate both low and high frequencies in a typical 

scene gist experiment (30). Since localization performance remained poor across all conditions (best 

for high-pass filtered images but still not above chance, t(8)=0.86, p=0.414, Figure S2), we conclude 

that it is not a specific detail of the lesion that is supporting the decision but, rather, abnormality is 

judged based on some aspect of the overall texture that is best visualized in the higher spatial 

frequencies. Perhaps the signal is related to processes that create indications of disease like spicules 

that might be enhanced in a high-pass view, but a larger data set would be needed to test such a 

hypothesis. 

Experiment 4:If the signal of abnormality is present throughout the parenchyma as would 

be predicted if that signal is truly a global signal, then it follows that a signal should be found in 

isolated regions of the breast that deliberately exclude the lesion. Alternatively, even though 

radiologists cannot explicitly localize abnormalities after a 500 msec flash, the signal might still arise 

exclusively from some small portion of the breast rather than being distributed widely. To test that 

hypothesis, in Experiment 4, we presented 256 x 256 pixel patches of mammograms and asked 

radiologists to distinguish between normal and three types of potentially abnormal patches: 

patches containing the lesion, lesion-free patches from the abnormal breast, and lesion-free 
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patches from the breast contralateral to the lesionǤ Observerǯs performance differed significantly 

between the three types of samples (F(2, 20)=109.14, p<0.0001). However, all three types of 

patches from abnormal cases could be distinguished from normal at above chance levels. This can 

be seen by noting that virtually all of the individual observer data lies above the main diagonal, 

chance line in Figure 5. Performance on sections with the lesions was significantly better than 

patches without the lesion from either the ipsilateral (p<0.0001) or contralateral breast (p<0.0001). 

Performance on ipsilateral and contralateral patches without a visible lesion did not differ (p=0.473). 

The density estimates, made by other radiologists for these small patches, produce areas under the 

ROC curve (AUC) between 0.47 and 0.49, essentially at the 0.5, chance, level. Apparently, there is 

no signal in the density ratings for these small patches of breast parenchyma. There was no 

difference between the average density ratings for the different types of sections (F(3, 196) = 0.09, 

p= 0.97) and the density ratings were not significantly correlated with the abnormality ratings (all r2 

< 0.05, all p > 0.12). 

These results provide interesting insight into the signal supporting radiologistsǯ performance in 

these tasks. Unsurprisingly, when the section includes the lesion, attention will be directed to the 

lesion and performance is better than if the radiologist is looking at the entire breast with the lesion 

in an unknown location. Of more interest, there is some signal in sections of parenchyma ipsilateral 

and contralateral to the lesion. The signal is weak (Figure 5 conditions B&C), corresponding to dǯ 

values of only 0.33-0.40 in the sections that did not include the lesion. However, note that the 

patches show only about 1/8th of a single breast. If we model the whole breast as consisting of 8 

independent samples with dǯ ͘Ǥ͛͛ to ͘Ǥ͘͜ǡ performance for a presentation of the whole breast 

would yield dǯ between ͘Ǥ͡ and ͙Ǥ͚Ǥ This is comparable to or somewhat higher than the dǯ for whole 

breasts in Experiments 1-3. If results from the whole breast are actually worse than would be 

predicted from small patches, that suggests that the signals, combined across the whole breast are 

not entirely independent. In any case, the local signal is in principle, strong enough to support the 

results obtained with whole breasts, when combined across the whole breast.  
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Discussion 

Radiologists report anecdotally that some images seem to be Ǯbadǯ when they first appearǡ 

before any specific pathology is localized. No one would suggest that diagnosis should be based on 

these first glimpses. However, there is now a body of research, including the work reported here, 

that indicates that this sense of the gist of a medical image can be based on a measurable signal 

(5,12,15). Our goal, in the present paper, has been to investigate the nature of the signal that allows 

expert observers to classify mammograms as normal or abnormal at above chance levels after a 

brief exposure. Experiments 1 and 2 undermined the hypothesis that observers were responding to 

a break in the normal rough symmetry between left and right breasts. In Experiment 1 the 

symmetry was disrupted and in Experiment 2, observers only viewed a single breast image. In both 

cases comparing normal and abnormal images, it remains possible to perform the classification task 

with a dǯ a bit better than ͙Ǥ͘. While radiologists may use symmetry between two breasts as an 

important sign in normal mammography, it is not the signal that allows for classification of 

mammograms after a half second of exposure.  

Localization performance was consistently poor, suggesting that classification is based on a 

global signal, spread across the breast. The first novel finding in this paper is the evidence in 

Experiment 2 that this signal is present in the breast contralateral to the breast containing the 

abnormality. Experiment 4 found evidence for the signal in sections of parenchyma that did not 

contain an abnormality, regardless of whether they came from the ipsilateral or contralateral 

breast. Performance with these small sections is about what one would expect if the signal were 

being pooled across the entire image when the entire image is present. This finding may have 

clinical significance in the light of recent evidence that women with false positive screening 

mammograms were at an increased risk of developing breast cancer compared to those with true 

negatives (31). Perhaps, even if localized signs of cancer were not unambiguously visible at the 

initial screening, radiologists still may have been influenced by the global signal of abnormality that 

we are studying here. 
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Experiment 3 provides another interesting finding; that the signal for abnormality is far 

stronger in a high-pass filtered mammogram than in a low-pass filtered image. Given prior results 

on recognition of briefly presented images (e.g. the global-local effect: 32, 33), one might have 

expected some sort of advantage for the coarser information in the low-pass image. Instead, we 

found the information about abnormality resides in the higher frequencies.  

It is worth noting that the ability to detect abnormality at above chance levels is a learned 

skill of expert radiologists. In previous work (5), we had non-experts attempt the task. They 

performed at chance levels. It would be interesting to know if general radiologists who read fewer 

mammograms are able to detect this global signal of abnormality. 

A distributed global signal of abnormality in breast cancer might be a useful component in a 

Computer-Aided Detection (CAD) system (34). The normal goal of a CAD system is to direct the 

radiologistǯs attention to specificǡ suspicious locations. Though these systems perform at a level 

comparable to that of an expert radiologist, they have not been hugely successful in clinical practice 

(35), in part because the positive predictive value of any given CAD mark is very low in a 

mammography screening situation where the prevalence of disease is low. As a result, radiologists 

tend to dismiss the correct CAD marks when they occur (36). It is possible that the signal that 

supports classification in the experiments reported here, could be used as an additional piece of 

information for a CAD system. A CAD mark in the presence of a global abnormality signal might be 

a more suspicious mark than one in the absence of the signal. The presence of the signal in the 

breast contralateral to the abnormality also raises an interesting clinical possibility. It may be that 

the signal is present before the actual lesion appears. If so, it could be used as a warning sign, 

suggesting greater vigilance much as breast density is used as risk factor today (37). In thinking 

about any of these possibilitiesǡ it is critical to remember that radiologistsǯ ability to detect 

abnormality in half a second is probabilistic. They perform above chance but far from perfect and 

far from their performance under normal conditions of reading mammograms. The gist signal 

might be useful but, by itself, it is nowhere near definitive. In conclusion, there is a global signal that 
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can be measured by asking radiologists to classify mammograms in a fraction of a second. That 

signal is probably the basis of the initial ǲholisticǳ impression of an image that is thought to guide 

radiologists when they view images in a normal, clinical setting (12, 38). If properly quantified, it 

could also be a component of automated aids to mammography. 

 

Methods 

Participants 

All study participants were attending radiologists specializing in breast imaging. Across the 

four studies we tested 49 radiologists: Experiment 1 - fourteen radiologists (11 female, 3 male; 

average age 53), average 19 years in practice (range 4 to 34 years) reading, on average, 7,650 cases 

in the last year (range 6,000 to 10,000).  Experiment 2 - Fifteen radiologists (12 female, 3 male; 

average age 49), average 19 years in practice (range 10 to 35 years), reading on average 7280 cases 

in the last year (range 3,000 to 15,000). Experiment 3 - nine radiologists (5 female, 4 male, average 

age 50) average 15 years in practice (range 7 to 39), reading on average 7100 cases in the last year 

(range 4,000 to 10,000). In Experiment 4 Ȃ eleven radiologists (10 female, 1 male; average age 52), 

average 20 years in practice (range 4 to 34 years) reading on average 7,800 cases in the last year 

(range 6,000 to 10,000). The radiologists who participated in Experiment 1, 2 & 4 were recruited 

from five NHS hospital Trusts in Yorkshire and Cambria, United Kingdom. In Experiment 3 

radiologists were recruited from U. T. MD Anderson Cancer Center, Houston, Texas, USA. All the 

participants had normal or corrected-to-normal vision and gave informed consent. The experiments 

had institutional review board approval from University of York, U. T. MD Anderson Cancer Center 

and the NHS Hospital Trusts. 

 

Stimuli and Materials 

The stimuli used in the four experiments were derived from 120 bilateral full-field digital 

mammograms. The starting resolution of the two mammograms side by side was 1,980 x 2,294 
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pixels, These were then downsized to fit on a monitor with a resolution of 1,920 x 1,080. 

Mammograms were acquired from anonymized cases from Brigham and Womenǯs (ospitalǡ 

Boston, United States. All the cases included at least 4 images (left and right breast mediolateral 

oblique (MLO) views and craniocaudal (CC) views. Half of the cases showed cancerous 

abnormalities while the rest were normal. Abnormal cases were either screen-detected cancers, 

histologically verified, or mammograms that had been done 1 to 2 years prior to a screen-detected 

cancer and that had been interpreted as negative but later retroactively determined by a study 

radiologist to have contained visible abnormalities. The abnormalities demonstrated on 

mammograms were ǲsubtleǳ masses and architectural distortionsǤ Lesion subtlety was determined 

by the study radiologists based on their experience. We did not include calcifications or more 

obvious cancers as it is of less interest to show that a stimulus like a bright white spot can be 

detected in less than a second. The average size of the lesions in the test set mammograms was 18 

millimeters (range 10 - 48 mm). 

Experiments 1 & 3 used all of the 120 bilateral mammograms. For Experiment 3, these 

original images were Fourier-transformed and two types of filtered images were computed. A low-

pass image was created by removing all the information above 2 cycles per degree (at a 57 cm 

viewing distance) leaving only the low spatial frequencies of the original image. A high-pass imaged 

was created by removing information that was below 6 cycles per degree leaving only the high 

spatial frequency information of the original images. This resulted in three sets of images: original 

intact images, the same images but with only low spatial frequency information present and images 

with only the high spatial frequency information present. 

In Experiment 2, we used 120 unilateral breasts, taken from the bilateral full-field digital 

mammograms used in Experiment 1. A third of the single mammograms had a confirmed yet subtle 

abnormality (e.g. mass or architectural distortion), another third were taken from completely 

normal cases, and the last third were mammograms of breasts that contained no abnormality but 

that were the breast contralateral to a breast containing an abnormality.  
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The stimuli used in Experiment 4 consisted of 200 sections taken from the original full-field 

digital mammograms (including both CC and MLO views). Mammogram sections were cropped to 

256 x 256 pixels using Photoshop CS6. A quarter of the sections included a lesion, centered in the 

patch. There were three types of no lesion sections: a) section taken from the image of an abnormal 

breast but not containing the lesion, b) section taken from the breast contralateral to a breast 

containing a lesion and c) section taken from a completely normal case. 

Two of the authors (TMH, JC) who are practicing radiologists provided density ratings for 

each left and right mammographic image for all the images in the stimulus set on a four-point scale 

(1-fatty, 2-scattered fibroglandular, 3-heterogeneously dense, 4-extremely dense). The density 

ratings of the two radiologists were significantly correlated for both breasts (Left breast r=0.56, p< 

.00001; Right breast r= 0.43, p< .00001). Rated density of abnormal cases was slightly higher than 

for normal  (2.80 vs. 2.65, but not significantly, one-tailed t-test t(188)=1.64, p=0.101). If 

classification of normal vs. abnormal was based on the average density ratings given by the two 

radiologistsǡ the predicted dǯ would be ͘Ǥ͚͞Ǥ The density ratings of the two radiologists for the 

single breast subset of stimuli used in Experiment 2 were also significantly correlated (r=0.36, 

p<0.0001). The density raters also gave a density rating for the four types of section we used in 

Experiment 4. A one-way independent ANOVA on the average density rating revealed no 

significant main effect of type of section (F(1,199)=0.86, p=0.968).  Thus there was no significant 

difference in the density rating of the four types of small section.   

 The Experiments 1, 2 & 4 were conducted on a Macintosh, MacBook Pro using MATLAB 

R2012b. All observers viewed the experiment on a 27.5 inch, liquid-crystal color screen with a 1920 x 

1080 resolution, a usable intensity range of 2Ȃ260 candelas per square meter, a contrast ratio of 

188:1 and refresh rate of 144Hz at a viewing distance of 57 cm. Experiment 3 was conducted on a 

Dell Precision̿ M͘͘͞͝ laptop using MATLAB R͚͙͚͘bǤ The experiment was displayed on a ͙͟ǳ 

screen at a viewing distance of 57 cm. The display monitor had a resolution of 1920 x 1200 (Dell, 

Round Rock, Texas.) and a refresh rate of 85Hz.  
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Procedure 

Across the study all four experiments used the same experimental paradigm of brief stimuli 

presentation. All observers in each experiment viewed the same images with the order randomized 

across trials. After 3-6 practice trials, depending on the experiment, each trial consisted of the 

following sequence of events. First, a fixation cross appeared in the center of the screen for 500 

msec. This was followed by the brief, 500 msec presentation of a pair of mammograms (Experiment 

1 & 3), side by side, a single mammogram (Experiment 2) or a single section (Experiment 4). After 

the brief presentation, observers saw a white outline of the previously presented breasts 

(Experiment 1-3) or a white noise mask for another 500 msec (Experiment 4). In Experiments 1-3, 

even if they did not think the case was abnormal, radiologists were asked to indicate the most likely 

location of an abnormality with a mouse click on the display screen. Following this, observers were 

asked to provide a 0-100 rating  (where 0 stands for clearly abnormal) scale how likely it was that 

there was an abnormality. Feedback was provided only for the initial practice trials. All the 

observers were alone when performing the experiment.  

In Experiment 1 participants completed 120 trials across five possible trial types: a) The two breasts 

were from the same woman: one breast with an abnormality, one normal (20 trials), b) The two 

breasts were from two different women: one breast with an abnormality, the other normal and 

from a completely normal case (20 trials), c) The two breasts were from different women; one with 

an abnormality, the other normal but from an abnormal case  (20 trials), d) The two breasts were 

from the same woman: both breasts normal (30 trials), e) Finally, the two breasts were from 

different women: both breasts and both cases completely normal (30 trials). Thus, overall, half of 

the cases were normal, half abnormal. These five types of presentation were used to create the 

three comparisons described in the results. A comparison of conditions (a) and (d) replicates the 

previous work on detection of the gist of abnormality (Baseline). Comparisons of conditions (b) and 
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(c) with condition (e) (Asymmetry 1 & 2) test for the presence of a non-selective, gist signal when a 

symmetry cue cannot be used. 

In Experiment 2, participants completed 120 trials evenly divided between images of three types of 

breast: Normal, Abnormal, and Contralateral (being the normal breast contralateral to an abnormal 

breast). 

In Experiment 3, participants completed 3 blocks of 120 trials, for a total of 360 experimental trials in 

which they viewed CC or MLO views of mammograms.  In each block, the observers saw only one 

set of images: the original intact image set, the low spatial frequency image set or the high spatial 

frequency image set. The viewing order of the blocks was counterbalanced across observers. 

In Experiment 4, observers completed 2 blocks of 100 experimental trials each in which they viewed 

sections of mammograms evenly divided between the four types described above. 

 

Data Analysis 

 

Assessing Detection Performance. The observers in all four experiments gave confidence ratings on a 

scale from 0 (clearly abnormal) to 100 (clearly normal). For a given rating threshold, scores above 

that rating can be considered ǲtrue negativesǳǡ if the stimulus is normal and ǲmissǳ or ǲfalse 

negativeǳ errorsǡ if the stimulus is abnormalǤ Scores bellow the level are deemed ǲhitsǳ or ǲtrue 

positivesǳǡ if the case is abnormal and ǲfalse alarmǳ or ǲfalse positiveǳ errors if the case is normalǤ 

Categorizing responses in this manner for a range of values sweeps out a receiver operating 

characteristic ȋROCȌ curveǤ Thusǡ signal detection measures of dǯǡ criterionǡ and area under the ROC 

curve (AUC) can be derived. For purposes of calculating dǯǡ we used a rating threshold of ͘͝Ǥ 

The analysis of Experiment 1 is somewhat complicated because there are three types of abnormal 

case (Trial Types a, b & c) and two types of normal case (Trial Types d & e). For each of the three 

critical comparisons of normal and abnormal, the hit rate is derived from one of the three abnormal 

conditions and the false alarm rate is derived from one of the two normal conditions. When the 

abnormal cases are those in which left and right images were from the same woman (Trial Type a), 
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the false alarm rate is derived from the normal cases in which left and right images are also from 

one woman (Trial Type d). When the abnormal cases are those in which the left and right images 

are taken from the mammograms of different women (Trial Types b & c), the normal cases are, 

likewise, taken from cases in which the left and right images come from different women (Trial 

Type e).  

For Experiment ͚ and ͜ǡ the average dǯ and ROC curves were created by taking the false alarm rates 

from the single breast or sections taken from normal breasts and pairing them with the hit rate 

from each of the two potentially abnormal conditions in Experiment 2 or three potentially abnormal 

conditions in Experiment 4. 

 

Calculating Density dǯ. A value of dǯ can also be calculated from the average density ratings using the 

same method as described above for the abnormality rating. Breast density was rated on a 4 point 

scale from 1= fatty and 4 = extremely dense. For normal images, using a threshold of 2.5, if the 

density rating was above thresholdǡ that rating would be categorized as a ǲfalse positiveǳǤ )f it was 

below, it was deemed to be a ǲtrue negativeǳǤ For abnormal mammogramsǡ if the density rating 

was above the 2.5 cut off then it was categorized as a ǲhitǳǢ if belowǡ it was a ǲmissǳǤ We used values 

above threshold as the analog of target present (abnormal) response because previous research has 

found that increased density is associated with higher likelihood of cancer (29). 

 

Assessing Localization Performance. To assess localization performance the observers were asked to 

click on an outline mask of the breast to indicate where they thought an abnormality was most 

likely to have been located. Localization performance was measured by determining what 

percentage of observersǯ clicks fell into the predetermined regions of interest (ROI) centered on 

abnormalities. We then calculated the percentage of correctly localized abnormalities in respect to 

the overall number of abnormalities. Chance levels for localization performance were determined 

as average percentage of the breast encompassed by the ROI (abnormal region). Different 
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abnormal cases would have larger or smaller ROIs. Averaged across cases with lesions, the ROI area 

was 18% in Experiment 1; Experiment 2= 6%; Experiment 3=16%. These values, then, represent the 

chance of hitting an ROI by placing a random mark on the breast outline.  
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Figure Legends 

 

Figure 1 

Experimental procedure for Experiments 1-4. Experiment 2 just showed a unilateral breast image 

and Experiment 4 used only a piece of the breast image. 

 

 

Figure 2 

ROCs for the three conditions of Experiment 1. Solid colored line Ȃ average ROC, light dotted lines Ȃ 

individual observers. Dark dotted line, hypothetical ROC if judgments were based on density 

ratings. A) Images of two breasts from the same woman. One breast abnormal on the positive 

trialsǤ dǯγ ͙Ǥ͙͜ compared to dǯγ͘Ǥ͙͠ derived from the density ratings BȌ )mages from two different 

women, one image abnormal on the positive trials; the other, always drawn from a negative case. 

dǯγ ͘Ǥ͞͞ compared to dǯγ ͘Ǥ͜͟ derived from the density ratingsǤ CȌ )mages from two different 

women, one image abnormal on the positive trials; the other image was the breast contralateral to 

a lesion in another womanǤ dǯγ ͘Ǥ͘͜ compared to dǯγ0.34 derived from the density ratings. 

 

Figure 3 

ROC curves for single breast image data. Light dashed lines are individual observer data. 

The solid line shows the average data and the dark dashed line shows the ROC that can be 

derived from the density data. 
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Figure 4 

a) Example images used in Experiment 3: A) High-pass filtered, B) low-pass filtered, and C) 

unfiltered views of a breast stimulus. 

b) ROCs for the three conditions of Experiment 3. Solid colored lines Ȃ average ROCs, dashed 

lines Ȃ individual observers. A) Baseline, unfiltered/intact images, B) Low pass filtered images, 

C) Ȃ High pass filtered images. 

 

Figure 5 

ROCs for the three conditions of Experiment 4. Solid colored lines Ȃ average ROCs, dashed lines Ȃ 

individual observersǤ AȌ Abnormal section contains lesionǡ dǯγ͙Ǥ47 (99.9% CI 1.20 - 2.12) B) 

Abnormal section ipsilateral to lesionǡ dǯγ 0.33 (99.9% CI 0.17 - 0.49).  C) Abnormal section 

contralateral to lesionǡ dǯγ0.40 (99.9% CI  0.21 - 0.58). In all cases, the hit rate is derived from 

sections taken from a normal case. 
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