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Abstract—Software Defined Networking (SDN) has recently
emerged to become one of the promising solutions for the future
Internet. With the logical centralization of controllers and a
global network overview, SDN brings us a chance to strengthen
our network security. However, SDN also brings us a dangerous
increase in potential threats. In this paper, we apply a deep
learning approach for flow-based anomaly detection in an SDN
environment. We build a Deep Neural Network (DNN) model for
an intrusion detection system and train the model with the NSL-
KDD Dataset. In this work, we just use six basic features (that can
be easily obtained in an SDN environment) taken from the forty-
one features of NSL-KDD Dataset. Through experiments, we
confirm that the deep learning approach shows strong potential to
be used for flow-based anomaly detection in SDN environments.

Index Terms—software defined networking; SDN; intrusion
detection; deep learning; network security

I. INTRODUCTION

Traditional network architecture has remained mostly un-

changed over the past few decades and proved to be cumber-

some. Software Defined Networking (SDN) is an emerging

architecture that is dynamic, manageable, cost-effective, and

adaptable, making it ideal for the high-bandwidth, dynamic

nature of today’s applications. This architecture decouples

the network control and forwarding functions enabling the

network control to become directly programmable and the

underlying infrastructure to be abstracted for applications and

network services [1]. SDN and OpenFlow [2] are increasingly

attracting researchers from both academia and industry. The

advantages of SDN in various scenarios (e.g., the enterprise,

the datacenter, etc.) and across various backbone networks

have already been proven (e.g., Google B4 [3] and Huawei

carrier network [4]). Various SDN controller software have

been proposed by open source organizations or commercial

corporations, such as NOX [5], Ryu [6] and Floodlight [7].

There are various commercial vendors supporting OpenFlow

in their hardware switches (e.g., HP, Pronto, Cisco, Dell, Intel,

NEC and Juniper). OpenFlow protocol is the first standard

communication interface defined between the control and

forwarding layers of the SDN architecture. OpenFlow uses

the concept of flow to identify the network traffic and records

its information by counters. A flow is a group of IP packets,

with some common properties, passing a monitoring point in

a specified time interval.

Although the capabilities of SDN (e.g., software-based

traffic analysis, logical centralized control, global overview

of the network, and dynamic updating of forwarding rules)

make it easy to detect and to react to network attacks, the

separation of the control and data planes introduces new

attack opportunities and so SDN itself may be a target of

some attacks. According to Kreutz et al. [8], there are seven

threat vectors in SDN. Three of them are specific to SDN

and relate to the controller, the control-data interface, and

the control-application interface. Network Intrusion Detection

System (NIDS) protects a network from malicious software

attacks. Traditionally, there are two types of NIDS according

to strategies to detect network attacks. The first one, signature-

based detection, compares new data with a knowledge base of

known intrusions. Despite the fact that this approach cannot

recognize new attacks, this remains the most popular approach

in commercial intrusion detection systems. The second one,

anomaly-based detection, compares new data with a model of

normal user behavior and marks a significant deviation from

this model as an anomaly using machine learning. As a result,

this approach can detect zero-day attacks that have never been

seen before. The anomaly-based detection approach is usually

combined with flow-based traffic monitoring in NIDSs. Flow-

based monitoring is based on information in packet headers, so

flow-based NIDSs have to handle a considerably lower amount

of data compared to payload-based NIDSs. Machine learning

is successfully used in many areas of computer science like

face detection and speech recognition, but not in intrusion

detection. In [9], Robin Sommer and Vern Paxson mentioned

many factors that affect the use of machine learning in network

intrusion detection. Recently, deep learning has emerged and

achieved real successes. So far, deep learning has been used

extensively in computer science for voice, face and image

recognition. Deep learning is capable of automatically finding

correlation in the data, so it is a promising method for the next

generation of intrusion detection. Deep learning can be used

to efficiently detect zero-day attacks and so we can acquire a

high detection rate.

Based on the flow-based nature of SDN, we propose a flow-

based anomaly detection system using deep learning. In this

paper, we apply a Deep Neural Network (DNN) and use it for

the NIDS model in an SDN context. We train and evaluate

the model by using the NSL-KDD Dataset [10]. Through



experiments, we find an optimal hyper-parameter for DNN

and confirm the detection rate and false alarm rate. The model

gets the performance with accuracy of 75.75% which is quite

reasonable from just using six basic network features.

The rest of the paper is organized as follows. Related works

are introduced in section 2. In section 3, we give a brief

introduction to deep learning, our deep learning model and the

NSL-KDD Dataset. The performance of the model is analyzed

in section 4. Finally, we draw conclusions and propose some

future work in section 5.

II. PREVIOUS WORK

Flow-based intrusion detection is extensively researched

nowadays. In [11], the authors propose a flow-based anomaly

detection system based on a Multi-Layer Perceptron and Grav-

itational Search Algorithm. The system can classify benign and

malicious flows with a very high accuracy rate. In [12], the

authors proposed an NIDS using a one-class support vector

machine for their analysis and got a low false alarm rate. In

contrast to other work, the system is trained with malicious

rather than with a benign network dataset. Intrusion detection

mechanisms in traditional networks have been widely studied

and can be applied to SDN. To secure the OpenFlow network,

many anomaly detection algorithms also have been imple-

mented in the SDN environment. By using the programability

of SDN, the authors of [13] show that a programmable home

network router can provide the ideal platform and location

in the network for detecting security problems in a SOHO

(Small Office/Home Office) network. Four prominent traffic

anomaly detection algorithms (threshold random walk with

credit based rate limiting (TRW-CB algorithm), rate limiting,

maximum entropy detector and NETAD) are implemented in

an SDN context using OpenFlow compliant switches and a

NOX controller. Experiments indicate that these algorithms are

significantly more accurate in identifying malicious activities

in the SOHO network than the ISP (Internet Service Provider)

and the anomaly detector can work at line rates without

introducing any new performance overhead for the home

network traffic.

The SDN architecture is a target for many kinds of attacks

and potential Distributed Denial of Service (DDoS) attack vul-

nerabilities exist across the SDN platform. DDoS attacks are

an attempt to make a machine or network resource unavailable

to its intended users. DDoS attacks are sent by two or more

people or bots. For example, an attacker can take advantages of

the characteristic of SDN to launch DDoS attacks against the

control layer, the infrastructure layer plane and the application

layer of SDN. DDoS attacks are easy to launch, but difficult

to guard against. With the development of the Internet, DDoS

is growing substantially. One major reason is the emergence

and development of botnets which are networks formed by

bots or machines compromised by malware. According to a

Q1 2016 “State of the Internet Security” report by Akamai

[14], the number of DDoS attacks had increased 125.36% in

Q1 2016 compared to the number of attacks in Q1 2015.

A lightweight method for DDoS attack detection based on

traffic flow features is presented in [15] with extraction of 6-

tuple features: Average of Packets per flow (APf), Average of

Bytes per flow (ABf), Average of Duration per flow (ADf),

Percentage of Pair-flows (PPf), Growth of Single-flows (GSf),

and Growth of Different Ports (GDP). Self Organizing Maps

(SOMs) are used as the classification method. In order to

improve the scalability of native OpenFlow, a new method

combining OpenFlow and sFlow has been proposed in [16]

for an effective and scalable anomaly detection and mitigation

mechanism in an SDN environment. Trung et al. [17] combine

hard thresholds of detection and fuzzy inference system (FIS)

to detect risk of DDoS attacks based on the real traffic

characteristic under normal and attack states. Three features

are chosen for detecting the attack: Distribution of Inter-

arrival Time, Distribution of packet quantity per flow and Flow

quantity to a server. Other researchers also use many feature

selection algorithms to increase the detection accuracy.

In this paper, we use a Deep Neural Network (DNN) for

anomaly detection. Six basic features are chosen for detecting

attacks: duration, protocol_type, src_bytes, dst_bytes, count

and srv_count. So the key difference between our work and

other papers is that we use simplex preprocessing and features

extraction in the SDN context.

III. METHODOLOGY

A. Deep Learning Approach

In classical machine learning, important features of an input

are manually designed and the system automatically learns

to map the features to an output. In deep learning, there are

multiple levels of features. These features are automatically

discovered and they are composed together in various levels

to produce outputs. Each level represents abstract features that

are discovered from the features presented in the previous

level.

In our experiment, we constructed a simple deep neural

network with an input layer, three hidden layers and an output

layer as described in Figure 1. The input dimension is six

and the output dimension is two. The hidden layers contain

twelve, six and three neurons respectively. Our model initiation

parameters are setup with 10 for the batch size and 100 for the

epoch. The learning rate will be decided in the experiment.

B. Dataset

The KDD Cup is the leading data mining competition in

the world. The NSL-KDD Dataset was proposed to solve

some inherent problems of the KDD Cup 1999 Dataset [18].

Although it is quite old and not a perfect representative of

existing real networks, it is still a good reference to compare

the NIDS models. It has been used in the past to evaluate

the performance of NIDS by many researchers, so there are

significant performance measurement results for comparison.

There are 125,973 network traffic samples in the KDDTrain+

Dataset and 22,554 network traffic samples in the KDDTest+

Dataset. Each traffic sample has forty one features that are

categorized into three types of features: basic features, content-

based features, traffic-based features. Attacks in the dataset are



Fig. 1. Deep Learning Network Model

categorized into four categories according to their character-

istics. The details of each category are described in Table I.

Some specific attack types (written in bold) in the testing set

do not appear in the training set. That makes the detection

task more realistic.

TABLE I
ATTACKS IN THE NSL-KDD DATASET

Category Training Set Testing Set

DoS back, land,
neptune, pod,

smurf, teardrop

back, land, neptune, pod, smurf,
teardrop, mailbomb,

processtable, udpstorm,

apache2, worm

R2L fpt-write,
guess-passwd,

imap, multihop,
phf, spy,

warezclient,
warezmaster

fpt-write, guess-passwd, imap,
multihop, phf, spy, warezmaster,

xlock, xsnoop, snmpguess,

snmpgetattack, httptunnel,

sendmail, named

U2R buffer-overflow,
loadmodule, perl,

rootkit

buffer-overflow, loadmodule, perl,
rootkit, sqlattack, xterm, ps

Probe ipsweep, nmap,
portsweep, satan

ipsweep, nmap, portsweep, satan,
mscan, saint

In our experiment, a subset of six features is chosen from

the NSL-KDD Dataset having forty one features for training

and testing. These six features are duration, protocol_type,

src_bytes, dst_bytes, count and srv_count. Details of each

feature can be found in Table II. These features are basic

features and traffic-based features that can easily be obtained

in SDN environments.

C. The SDN-based IDS Architecture

We propose an SDN-based NIDS architecture as depicted in

Figure 2. In this architecture, the NIDS module is implemented

in the controller. The SDN controller can monitor all the Open-

Flow switches and request all network statistic when needed,

so the NIDS module can take advantage of this global network

overview for detecting intrusion. An ofp_flow_stats_request

message will be sent from the controller to all the OpenFlow

TABLE II
FEATURE DESCRIPTION

Feature Name Description

duration length (number of seconds) of the connection

protocol_type type of the protocol, e.g. tcp, udp, etc.

src_bytes number of data bytes from source to destination

dst_bytes number of data bytes from destination to source

count number of connections to the same host as the
current connection in the past two seconds

srv_count number of connections to the same service as the
current connection in the past two seconds

switches after a fixed time-window to request the network

statistic. OpenFlow switches send back to the controller an

ofp_flow_stats_reply message with all the statistics. The cen-

tralized controller can take advantages of the complete network

overview supported by the SDN to analyze and correlate this

feedback from the network. All network statistics will then be

sent to the NIDS module for analysing and detecting any real

time network intrusion. Once a network anomaly is detected

and identified, the OF protocol can effectively mitigate it

via flow table modification. New security policies can be

propagated to switches in order to prevent attacks.

Fig. 2. Proposed SDN Security Architecture

IV. PERFORMANCE ANALYSIS

A. Evaluation Metrics

In general, the performance of NIDS is evaluated in terms

of accuracy (AC), precision (P), recall (R) and F-measure (F).

A NIDS requires high accuracy, high detection rate and low

false alarm rate. A confusion matrix is used to calculate these

parameters. In the confusion matrix, True Positive (TP) is the

number of attack records correctly classified. True Negative

(TN) is the number of normal records correctly classified.

False Positive (FP) is the number of normal records incorrectly

classified. False Negative (FN) is the number of attack records

incorrectly classified. Then we can say:

• Accuracy (AC): shows the percentage of true detection

over total traffic trace:

AC =
TP + TN

TP + TN + FP + FN
(1)



• Precision (P): shows how many intrusions predicted by

an NIDS are actual intrusions. The higher P is, the lower

false alarm is:

P =
TP

TP + FP
(2)

• Recall (R): shows the percentage of predicted intrusions

versus all intrusion presented. We want a high R value:

R =
TP

TP + FN
(3)

• F-measure (F): gives a better measure of the accuracy of

an NIDS by considering both the precision (P) and the

recal (R). We also aim for a high F value:

F =
2

1

P
+

1

R

(4)

B. Experimental Results

Initially, we implemented the NIDS for 2-class classification

(normal and anomaly class). The performance of the model

depends on the value of the hype-parameter initiated. Firstly,

the model was optimized by finding the hyper-parameter

which leads to optimal classification results. Thus, we tried

to optimize the model by varying the value of learning rate in

the range {0.1, 0.01, 0.001, 0.0001}. When training a model,

we tried to minimize the loss and maximize the accuracy. By

comparing loss and accuracy of the training phase (see Table

III), we can see that along with the decrease of the learning

rate, the loss will decrease and the accuracy will increase.

However, in the testing phase, when we decreased the learning

rate to 0.0001, the results are not as good as the learning rate

of 0.001. This is because if the learning rate is too small,

the NIDS model will be trained too accurately. That is the

reason for the best results in the training phase of the learning

rate of 0.0001. Because of this too accurate training phase,

the model cannot generalize the characteristic of the training

samples well. So while the model can easily catch the intrusion

instances in the training set, it cannot catch the new intrusion

instances in the test set. As a result, the NIDS performance

decreases in the testing phase.

TABLE III
LOSS AND ACCURACY EVALUATION FOR DIFFERENT LEARNING RATES

Learning Rate
Train Set Test Set

Loss
(%)

Accuracy (%) Loss
(%)

Accuracy (%)

0.1 11.49 88.04 31.26 72.05

0.01 8.41 90.9 20.15 73.03

0.001 8.26 91.62 19.51 75.75

0.0001 7.45 91.7 20.3 74.67

Secondly, we evaluated the precision, recall, and f-measure

of the model for more details. The performance of the DNN

algorithm was evaluated using the test data provided. The

performance of the model with each learning rate is shown

in Table IV. As we can see, the learning rate of 0.001 gives

us the best results among four learning rates in all evaluation

metrics. All evaluation metrics are in a growing trend when we

decrease the learning rate from 0.1 to 0.001, but the metrics

suddenly decrease at a learning rate of 0.0001. From evaluating

the accuracy metrics, loss and accuracy, we can see that the

performance of the NIDS model decreases when the learning

rate is decreased to 0.0001.

TABLE IV
ACCURACY METRICS FOR DIFFERENT LEARNING RATES

Learning Rate Precision (%) Recall (%) F1-score (%)

0.1 79 72 72

0.01 82 73 72

0.001 83 76 75

0.0001 83 75 74

In the following, Receiver Operating Characteristic (ROC)

curves are presented, with respect to true positive rate and false

positive rate, for each of the learning rates. The area under

the ROC Curve (AUC) is a standard measure for classifier

comparison. The AUC is calculated via the “trapezoidal” rule,

where a trapezoid is constructed from the lines drawn for

each two consecutive points on the curve. The higher the

ROC curve’s area, the better the system. Figure 3 shows the

ROC curves for four different learning rates. As expected, the

learning rate of 0.001 performs better than others with the

highest AUC. As we can see, the learning rate of 0.0001 has

a slightly poorer performance than that of the learning rate of

0.001. However, the learning rate of 0.0001 has a lower false

positive rate than the learning rate of 0.001. This is because

the model was trained quite accurately with a low learning

rate. For overall evaluation, the learning rate of 0.001 has the

best performance, so it is chosen for further evaluations.

Fig. 3. ROC Curve Comparison for Different Learning Rates

We also evaluated our work by comparing the results with

that of other works and other machine learning algorithms. In

[15], the authors use 6-tuple features: APf, ABf, ADf, PPf,

GSf and GDP for DDoS detection. Their result is good with a

detection rate of 99.11% and a false alarm rate of 0.46%. Our

results are quite low compared to their results. The main reason

may be our feature selection for training and testing. Their six

features are mainly specified for detecting DDoS attacks. In



our case, we just chose the six most basic features and we

did not focus on any kind of attacks. In our future research,

we will try to apply their 6-tuple features to our model for

further evaluation. We compared our results with the result in

[10] from different machine learning algorithms. In [10], the

authors train and test different algorithms with a full training

and testing set of forty one features. From these experiments,

the authors can evaluate the performance of these algorithms in

their dataset. From Table V, we can see that our DNN approach

is quite low compared with other algorithms with 75.75%

accuracy. The most accurate machine learning algorithm is

the random tree with 81.59%. This is the accuracy obtained

from full feature training set, and so the random tree algorithm

can generalize the characteristics of the normal and anomaly

traffic very well. In our simulation, it must be noted that only

the six basic features which are mentioned in Table I are used

for training and testing. This sub-feature set cannot provide

enough information for our DNN algorithm to generalize the

characteristics of some sophisticated or new attacks. However,

it can be seen that algorithm performs reasonably compared

with other algorithms.

TABLE V
ACCURACY COMPARISON OF DIFFERENT ALGORITHMS

Algorithm Accuracy (%)

J48 81.05

Naive Bayes (NB) 76.56

NB Tree 82.02

Random Forest 80.67

Random Tree 81.59

Multi-layer Perceptron 77.41

Support Vector Machine (SVM) 69.52

Our DNN 75.75

For further evaluation, we just use the sub-feature set for

training and testing. In the next experiment, the proposed DNN

algorithm in this study was compared with other machine

learning algorithms: NB, SVM and Decision Tree. Table

VI gives us an overview about the performance of each

machine learning algorithm using sub-feature dataset. The

proposed DNN algorithm gives us the best results amongst

all algorithms. The other machine learning algorithms cannot

generalize the characteristic of training samples well with just

six features, so they achieve quite poor performance.

TABLE VI
ACCURACY COMPARISON FOR SUB-FEATURE DATASET

Algorithm Accuracy (%)

Naive Bayes 45

SVM 70.9

Decision Tree 74

Our DNN 75.75

Finally, the ROC curves of these four algorithms are pre-

sented in Figure 4. As expected, deep learning algorithm

performances are better than others with the highest AUC.

Our DNN algorithm achieves a higher accuracy rate with a

lower false positive rate compared to others.

Fig. 4. ROC Curve Comparison for Different Algorithms

From all the above, we demonstrated that our proposed

DNN approach can generalize and abstract the characteristics

of the normal and anomaly traffic with a small number of

features and gives us a promising accuracy.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have implemented a deep learning algo-

rithm for detecting network intrusion and evaluated our NIDS

model. Although our results are not yet good enough to be

adopted in any commercial product or an alternative solution

for signature-based IDS, our approach still has significant po-

tential and advantages for further development. By comparing

the results with those of other classifiers, we have shown the

potential of using deep learning for the flow-based anomaly

detection system. In the context of the SDN environment, the

deep learning approach also has potential. This is attributed

to the centralized nature of the controller and the flexible

structure of SDN. The basic information about network traffic

can be extracted easily by the controller an evaluated by

the deep learning intrusion detection module. To improve the

accuracy, we will analyze the traffic and propose other types

of features. With the flexibility of the SDN structure, we can

extract many features that contain more valuable information

or focus on one specific type of attack, like DDoS, to increase

the accuracy of the NIDS. We will also try to adjust our DNN

model for better performance (e.g., varying the number of

hidden layers and hidden neurons). In the near future, we will

also try to implement this approach in a real SDN environment

with real network traffic and evaluate the performance of the

whole network in terms of latency and throughput.
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