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Abstract—In this paper, we develop a game theoretic for-
mulation for empowering cloud enabled HetNets with adaptive
Self Organizing Network (SON) capabilities. SON capabilities
for intelligent and efficient radio resource management is a
fundamental design pillar for the emerging 5G cellular networks.
The C-RAN system model investigated in this paper consists
of ultra-dense remote radio heads (RRH) overlaid by central
baseband units that can be collocated with much less densely
deployed overlaying macro base stations (BS). It has been
recently demonstrated that under a user centric scheduling
mechanism, C-RAN inherently manifests the trade-off between
Energy Efficiency (EE) and Spectral Efficiency (SE) in terms of
RRH density. The key objective of the game theoretic framework
developed in this paper is to dynamically optimize the trade-off
between the EE and the SE of the C-RAN. More specifically,
for an ultra-dense C-RAN based HetNet, the density of active
RRHs should be carefully dimensioned to maximize the SE.
However, the density of RRHs which maximizes the SE may
not necessarily be optimal in terms of the EE. In order to
strike a balance between these two performance determinants,
we develop a game theoretic formulation by employing a Nash
bargaining framework. The two metrics of interest, SE and EE,
are modeled as virtual players in a bargaining problem and the
Nash bargaining solution for RRH density is determined. In the
light of the optimization outcome we evaluate corresponding key
performance indicators through numerical results. These results
offer insights for a C-RAN designer on how to optimally design
a SON mechanism to achieve a desired trade-off level between
the SE and the EE in a dynamic fashion.

Index Terms—C-RAN, SON, Outage Capacity, Energy Effi-
ciency, RRH density, Game theory, Nash Bargaining Solution.

I. INTRODUCTION

By the year 2020, the growth in mobile data is expected to

increase by more than 1000 folds as compared to 2010 [1].

Consequently, the emerging 5G wireless networks should be

able to support this massive proliferation of mobile devices

and triggered exabyte flood. Therefore, 5G technology is

expected to: 1) be able to support 1000 times of traffic

density more than today’s networks; 2) be capable of serving

10 to 1000 times more terminals than today’s networks; 3)

achieve better network coverage. In order to make the capacity

demands required for the upcoming 5G technology possible,

networks densification will be an essential part of 5G [2]. It

is envisioned that such densification will be realized through

the ultra-dense deployment of small cells. Cloud-based Radio

Access Networks (C-RANs) are expected to facilitate the

densification of cellular networks through the deployment

of distributed Remote Radio Heads (RRHs) [3], [4]. The

main characteristic of C-RAN architecture is that the base-

band processing unit (BBU) is separate from the distributed

RRHs. Each RRH is connected with the cloud BBU pool

via a front-haul which is often a fiber optic cable. Such a

centralized RAN architecture enables the implementation of

complex coexistence and scheduling mechanisms. The net

overhead of implementing such mechanisms is less than what

would occur in traditional autonomous small cell networks.

Another benefit that C-RAN architecture provides is that it

enables significant energy savings. It is established that RRHs

do not require energy expenditure compared to traditional

macro-BSs where cooling and running of computing systems

results in significant energy consumption. This distributed

architecture carried by a central management unit enables the

implementation of advanced interference mitigation schemes,

such as interference alignment [5]. All of these features which

can be exploited from implementing C-RAN have triggered

intensive research in this area including [5]–[8]. Another new

cellular networks design philosophy in context of 5G is to

transform the clustering scheme from a base station centric

approach to be user-centric [9], [10]. Benefits of following

such an approach are dynamic coverage and higher link suc-

cess probability. Dynamic coverage is provisioned by turning

on only the RRHs which are needed to serve the desired user

at a certain quality of service (QoS). A higher link success

probability is achieved due to higher gain in the received signal

strength (RSS) at the mobile user (MU). This diversity enabled

gain is attained from having several active RRHs in the user-

centric cluster. This clustering scheme has been explored by

[10], [11]. There are several key performance indicators (KPI)

that can be used to quantify C-RAN performance. The most

important of these KPIs is the spectral efficiency (SE). A study

on the SE in terms of outage capacity (OC) was conducted by

[10], which shows how the OC relates to the density and to the

employed transmission power of RRHs in each tier. Another



important KPI that needs to be taken into consideration during

C-RAN’s design and deployment is the energy efficiency of

the network. Power consumption in C-RAN has been a subject

of intensive research. Such research attempted to characterize

and reduce the power needed to perform tasks such as joint

downlink and uplink user-AP association and beamforming

[12], decoding data [13], and resource allocation [14]. A study

on energy efficiency in dense small cells networks for different

on/off schemes has been studied in [15].

II. CONTRIBUTIONS & ORGANIZATION

In this work, we study the inherent trade-off between the

SE and the energy efficiency (EE) in C-RAN where user-

centric clustering is performed. In particular, we examine how

the two KPIs, the SE and the EE, vary with the density of

active RRHs in a C-RAN network. Firstly, we summarize

a user-centric clustering scheme and present an analytical

framework that characterizes the SE in form of an OC formula.

Thus, we will use the terms SE and OC interchangeably

throughout this paper. The next step, is to characterize the cost

of implementing a user-centric clustering mechanism. This is

achieved by deducing a formula that quantifies the EE on the

holistic level of the network. Our formula quantifies the energy

that is needed for selecting the best RRH which will serve the

MU in each user-centric cluster. We demonstrate that there

exists a trade-off between the EE and the SE in terms of RRH

density. The key objective of this study is to provide a SON

capability for the selection of RRH density per tier that would

provide the best trade-off between the SE and the EE. To

achieve this goal, we utilize a game theocratic formulation

to find the RRH density value by modeling the problem as

a bargaining problem. We find the Nash bargaining solution

(NBS) which achieves the best balance between those two

KPIs.

As discussed in the introduction section, a number of prior

studies have explored the EE and the SE in context of macro

and small cell networks [5], [10]–[15]. However, to the best

of our knowledge, this paper presents the first study of its

kind that investigates the trade-off between the EE and the

SE in the context of C-RAN, where user centric clustering

is implemented, and utilizes a game theoretic framework to

optimize the solution. This paper builds on very recent results

presented in [5], [10]–[15].

The rest of the paper is organized as follows: In section III,

we describe the user-centric clustering scheme and character-

ize cell OC. In section IV, we quantify the effect of RRH

density on power consumption in the network. We examine

the trade-off between the two performance metrics in section

V. In section VI, we formulate the problem as a bargaining

game and validate the required axioms for it to have a Nash

bargaining solution. Numerical results of NBS and discussion

are presented in section VII. The paper is concluded in section

VIII.

III. OUTAGE CAPACITY UNDER USER-CENTRIC

CLUSTERING MECHANISM

In this paper, we consider the downlink operation of a large

scale cellular network provisioned by a dynamic user-centric

clustering scheme. Under such mechanism, the first tier is

constituted by macro BSs and the remaining (k − 1) tiers

correspond to small cells thats consist of RRHs. It is assumed

that dissimilar RRH densities and transmission powers are

employed per tier. Various user-centric clusters can be formed

within each tier. The total bandwidth is divided into sub-bands

where each sub-band is assigned to one cluster. Sub-bands are

allocated to clusters in a manner that cross-tier interference is

eliminated. The user-centric clustering mechanism is managed

by the C-RAN control center. For an arbitrary MU, the C-RAN

central controller locates the best tier that can serve the MU

under a specific QoS requirement. The QoS requirement is

captured by having the MU as a center of a cluster that does

not contain any other scheduled users except for the targeted

MU. Each cluster is represented by a circle with radius R and

is centered around the MU. The average number of RRHs

inside each cluster is assumed to be greater than unity. The

operation of forming a user-centric cluster proceeds as follows:

The macro BS that is closest to the MU transmits a pilot

signal to it. The MU, in return, retransmits the pilot signal

to all RRHs contained within it’s cluster. The corresponding

RRHs examine the received strength of the pilot signal. The

RRH selection mechanism chooses the RRH which will be

able to provide the targeted MU with the highest RSS among

the group of RRHs located within the cluster. It is worth noting

that none of the RRHs contained within the cluster are allowed

to concurrently serve any other MUs until the targeted MU

finishes its current activity. The benefits attained form applying

this mechanism can be summarized as:

1) RRH selection diversity enables a higher gain in the

received signal at the targeted MU.

2) Since each cluster uses its own sub-band and no overlap-

ping clusters are allowed, this permits an effective mit-

igation of both co-tier and cross-tier interference. Any

users who belong to overlapping clusters are scheduled

to be served later.

3) The dynamic scheduling employed in this scheme en-

ables energy savings. Only the best RRH is activated,

while the rest of RRHs are put in sleep mode.

We characterize the relationship between RRH density and

the cell outage capacity in a k-tier C-RAN, where the propaga-

tion channel suffers from Rayleigh fading complemented with

large scale power-law path-loss, by the following proposition:

Proposition 1. For a desired reliability constraint ρ, the

outage capacity is defined as the maximum downlink through-

put which can be obtained in the network such that the

outage probability for the MU remains below a per-designated

reliability threshold ρ. The upper-bound on the outage capacity



under ρ is given as

Cρ ≤ log2
⎛
⎝1 +

(πδΓ(δ)∑k
i=1 λiP

δ
i )δ

−1

σ2 ln(1/ρ)δ−1
⎞
⎠ , (1)

where the noise at the receiver is assumed to be additive white

Gaussian noise (AWGN) represented by a random variable

with Gaussian distribution of N (0, σ2); δ is a path loss

dependent constant given as δ = 2/α for path loss exponent

α > 2. k is the number of tiers in the C-RAN. We assume

that the RRH density in each subsequent tier is denser than

its antecedent tier. Thus, we denote λi as the RRH density for

tier i ∈ k. This can be stated in terms of the baseline density

λl, where λi = η
iλl for η ≥ 1. Pi is the transmitted power per

tier i ∈ k which can be calculated by Pi = β
iPl, where β ≤ 1

and Pl is the baseline power employed at the parent tier. It is

assumed that RRHs in each tier consumes less power than its

parent tier.

Proof: Please refer to [10] ∎

IV. POWER CONSUMPTION IN C-RAN

It is important to quantify the cost of implementing the

user-centric clustering scheme in terms of power expenditure.

This allows us to compare the attained diversity gain with

the consumed power in the network. One penalty for having

diversity gain is that all RRHs in the cluster have to be active

during the RRHs selection phase. The more active RRHs are

available to choose from, the higher is the achieved diversity

gain, but the more total power is consumed per cluster. This

process creates a trade-off between the EE and the SE of

the user-centric clustering mechanism. The EE of the network

can be quantified as the cost function of implementing the

clustering mechanism. In order for our evaluation to be valid,

we only focus on the energy consumed during RRH selection

phase, as it represents the overhead caused by the user-centric

clustering scheme.

A. Power consumption model

Power consumption of various types of wireless networks

has been investigated in [16]. The authors in [17] focus on

power consumption for multi-input multi-output discontinuous

transmission in C-RAN. We extend the formula described in

[17] in order to quantify power consumed in the network

during the discovery process of the RRH, which can be

quantified as:

PCRAN = ξCRAN +∆µPµ + P0µ, (2)

where Pµ is the transmit power employed by the MU. ∆µ is a

parameter that relates power consumption with the employed

radio frequency. P0µ is the fixed power consumed by the

hardware of the MU. ξCRAN is the C-RAN coefficient, which

represents the total consumed power by every active RRH in

all k-tiers of the network. It shows the proportional relation

between power consumption on the wide network level and the

density of RRHs and their employed transmission power per

tier. The C-RAN coefficient is also proportionally related to θ,

which represents the efficiency of the implementation. Hence,

the C-RAN coefficient ξCRAN is expressed by the following

equation:

ξCRAN = θ
k

∑
i=1

λiPi, 0 ≤ θ ≤ 1, (3)

where θ = 0 represents the most energy efficient implementa-

tion.

B. Energy Efficiency

The energy efficiency measures the number of bits trans-

mitted per unit of bandwidth at the expense of one Joule

during one second. We quantify EE according to the following

proposition:

Proposition 2. We can express the energy efficiency at the

network level by the following analytical expression:

ωEE =
BCρ

θ∑k
i=1 λiPi +∆µPµ + P0µ

, (4)

where the transmission bandwidth B is normalized to unity.

Proof: Proof of this proposition directly stems from the

definition of EE at the network holistic level, thats is: The

ratio of sustainable throughput for each scheduled user to the

power consumed at the user mobile device and the RRHs

during the RRH selection phase. In other words EE is the

ratio of [bits/s/Hz] over consumed units of [Joule]. ∎

V. TRADE-OFF BETWEEN OUTAGE CAPACITY AND ENERGY

EFFICIENCY

To examine the effect of RRH density in each tier, we start

by examining the effect of baseline RRH density λl on the

OC and EE. We analyze OC as expressed in (1) and the

EE as expressed in (4) for various values of baseline RRH

density λl. We perform the analysis using the parameters

from Table I with different variations of η and β. Figure 1a

depicts the impact of RRH density per tier on OC. It can be

concluded from the corresponding graphs that OC increases as

RRHs become denser. Figure 1a consolidates the observation

that after certain RRH density, the corresponding OC plot

becomes saturated and no significant gain can be obtained

from increasing RRH density any further. The optimal RRH

density for maximum OC and the corresponding peak OC

values are shown in the second and third columns of Table

II. Figure 1b shows the changes in EE with an increase in

RRH baseline density. It can be observed from figure 1b that

EE increases with RRH density up to a certain RRH density

threshold. Intuitively, for a large increment rate η in RRH

density, EE drops significantly. Columns 2 and 3 from Table

III show the optimal RRH density values which result in peak

EE values. By examining the second column from Tables II

and III for each case study, we notice a major difference in the

optimal RRH density values. This simple comparison clearly

demonstrates that there exists an inherent trade-off between

the two performance determinants, EE and OC in C-RAN

under user centric clustering. A self-organizing capability is

essential here to guarantee that the best throughput and energy

efficiency are achieved and maintained in the C-RAN. This



self-organizing feature should be able to dynamically select

the most appropriate number of RRHs that should be active in

each tier to achieve the desired level of balance between OC

and EE, while taking into account spatio-temporally changing

channel and user distributions. In the next section we will

employ a game theoretic framework to solve this dilemma.

VI. GAME THEORY FRAMEWORK

In the previous section, we concluded that selecting the best

baseline RRH density would require a trade-off between the

OC and the EE. Therefore, a SON mechanism for Cloud BBU

pool must be devised such that the baseline RRH density

strikes a desired balance between those two performance

determinants. As we will see, a game theoretic approach can

provide a solution to this dilemma. We propose modeling the

two performance metrics as virtual game players. Cell OC is

modeled as the first player with (1) as its utility function, and

the EE is modeled as the second player with (4) as its utility

function.

A. Game Formulation

Each player’s payoff is affected by the selection of baseline

RRH density λl made by the other player. Benefiting from

the centralized management in C-RAN, we can define the

problem as a cooperative game. The two players will have

to negotiate for the value of λl. Both players mutually benefit

from reaching an agreement over the optimal baseline RRH

density. Thus, both cell OC and EE can reach an optimal trade-

off. We prove that this negotiation process can be modeled as

two-player Nash Equilibrium bargaining game.

B. The Bargaining problem

Let N = {1,2} be the set of the players, where player i = 1

denotes OC and player i = 2 denotes EE, and Si denotes the

set of all feasible payoffs to a user i, as:

Si = {Ui∣Ui = Ui(λl), λl ∈ R ∶ λl > 0}. (5)

Let’s define the space S as the set of all feasible payoffs that

player i ∈ N can achieve when they work together is:

S = {U = (u1, u2)∣u1 ∈ S1, u2 ∈ S2}, (6)

where u1 is the utility of the first player and u2 is the utility

of the second player where

s1 = u1 = Cρ(λl), (7)

s2 = u2 = ωEE(λl), (8)

and λl ∈ R ∶ λl > 0. We also define the disagreement space

(D ∈ S) as the set of the two disagreement points d = (d1, d2),
where d1 = u1(D) and d2 = u2(D) represent the payoff for

each player if the bargaining process failed and no outcome is

reached. For our game we set d = (0,0). Therefore, we give

both players the same bargaining power in the game.

Proposition 3. The problem described by (18) and (19) is

a two-player bargaining problem defined by the pair (S,D)
where S ⊂R2 and D ∈ S.

Proof: For a bargaining problem to be defined, S should be

a convex and a compact set [18]. Since it is clear that S is

compact, we only need to prove that it is a convex set:

∀ǫ ∶ 0 ≤ ǫ ≤ 1 and if Ua = (ua
1 , u

a
2) ∈ S and U b = (ub

1, u
b
2) ∈ S,

then ǫUa
+ (1 − ǫ)U b ∈ S.

Since u1 = log2(1 + (πδΓ(δ)∑
k

i=1
λiP

δ

i
)δ
−1

σ2 ln(1/ρ)δ−1
), we denote the SIR

as γ and re-write it as: u1 = log2(1+γ) where γ ≤ ρ. Without

loss of generality we can apply the condition of convexity on

1+γ. Since taking the logarithmic values of a convex set will

not change its convexity property:

ǫua
1 + (1 − ǫ)ub

1 = 1 + γ̄, (9)

where 1+γ̄ = 1+
(πδΓ(δ)∑

k

i=1
(ǫλa

i
+(1−ǫ)λb

i
)P δ

i
)δ
−1

σ2 ln(1/ρ)δ−1
), where 0 < λa

i

and 0 < λb
i , thus it can be easily concluded that values of 1+ γ̄

form a convex set and that the same applies to the values of

log2(1 + γ̄). Hence, we prove that:

ǫua
1 + (1 − ǫ)ub

1 ∈ S1. (10)

As for the utility of the second player, we use the same

aforementioned definition for γ and γ̄ from above. Similarly

we find:

u2 =
B log2(1 + γ)

θ∑k
i=1 λiPi +∆µPµ + P0µ

. (11)

we already proved that the outcome of the numerator is convex

set, as for denominator:

θ
k

∑
i=1

λ̄iPi +∆µPµ + P0µ, (12)

where ∑k
i=1 λ̄iPi = (∑k

i=1 ǫλ
a
i +∑

k
i=1(1 − ǫ)λb

i)Pi

thus, we write

ǫua
2 + (1 − ǫ)ub

2 =
B log2(1 + γ̄)

θ∑k
i=1 λ̄iPi +∆µPµ + P0µ

, (13)

Since 0 < λa
i and 0 < λb

i , we find that the denominator is also

convex. Thus, we conclude that:

ǫua
2 + (1 − ǫ)ub

2 ∈ S2, (14)

from (10) and (14) we conclude that the ǫUa
+ (1 − ǫ)U b ∈ S

and the set S is convex. ∎

C. Nash Bargaining Solution

In order for a bargaining problem to have a solution U∗ =

(u∗1, u∗2) for the disagreement space D = (d1, d2), Nash has

specified four axioms that the bargaining outcome must satisfy

[18]:

1) Pareto Efficiency: The Nash bargaining solution must

be Pareto-optimal. This means that there cannot be a

solution where utilities of both players can be improved

in the same time. This concept can be mathematically

expressed as:

(U1, U2) > U∗ ⇒ (U1, U2) ∉ S. (15)

2) Symmetry: The solution of the bargaining problem

should remain the same if the roles of the two players
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Fig.1:TheeffectofvaryingRRHbaselinedensityonOCandEEforvariouscasestudies.ThepeakandNBSvaluesforeach
graphareconsecutivelydenotedby’∎’and’’ofthesamecorrespondingcolor

weretobeswitched.Inother words,thebargaining
solutiondoesnotdiscriminatebetweentheplayersif
theywereindistinguishable.

3)Invariancetoequivalentutilityrepresentation:TheNash
bargainingsolutionmustsatisfythefollowingcondition
foranystrictlyincreasinglinearfunctionF

U∗[F(S),F(D)]=F[U∗(S,D)]. (16)

4)Independenceofirrelevantalternatives:Let’sconsider
ŚasmallersetofSwhereU∗isstillpartof́SthenU∗

willnotchange:

U∗(S,D)∈́S⊆S⇒ U∗(́S,D)=U∗(S,D). (17)

WenowsearchfortheuniqueNashBargainingSolutionthat
satisfiestheaxiomsabove. Westartbydefiningthe Nash
product[18]whichisexpressedas:

max
(s1,s2)

(s1−d1)(s2−d2),s.t.(s1,s2)∈S≥(d1,d2). (18)

Weselectthedisagreementpointsas (d1,d2)=(0,0).By
substitution,weget:

max(Cρ(λl))×(ωEE(λl)). (19)

Equation(19)representsthefinalNashproductwhichwewant
tomaximizeforλl∈R∶R>0

VII. RESULTS&DISCUSSION

Nashproductdefinedin(19)andisplottedinfigure2.The
NBSvaluethatwearelookingforisRRHbaselinedensity
λl, which maximizesthe Nashproduct. Usingthenetwork
parameters’valuesfromTableI,wecreatefourcasestudies
tobeexamined.Eachcasestudyrepresentsadifferentsetof
valuesofηandβ.Theobtained NBSvalueofλlandits
correspondingoutagecapacityvaluesareshownincolumns4
and5ofTableII.TheNBSvalueofλlanditscorresponding
energyefficiencyvaluesareshownincolumns4and5of

TABLEI:Listofparametersusedintheanalysis

Parameter Value

k 3

α 4

σ2 10−5

η {3.5,5}

β {0.45,0.7}

ρ 0.2

Pl 1Watts

Pµ 1Watts

∆µ 4

P0µ 4.3Watts

θ 0.5

TABLEII:Peakand NBSoutagecapacityvaluesandtheir
correspondingRRHdensityvalues

Case λopt
l

Cpeak
ρ λNBS

l CNBS
ρ %Loss

η=3.5&β=0.45 0.5 25.71 0.23 23.48 8.67%

η=5&β=0.45 0.5 28.80 0.07 23.47 18.5%

η=3.5&β=0.7 0.5 27.62 0.06 21.87 20.81%

η=5&β=0.7 0.5 30.71 0.02 21.83 28.91%

TABLEIII:PeakandNBSenergyefficiencyvaluesandtheir
correspondingRRHdensityvalues

Case λopt
l

ωpeak
EE λNBS

l ωNBS
EE %Loss

η=3.5&β=0.45 0.11 2.22 0.23 2.13 4.05%

η=5&β=0.45 0.03 2.22 0.07 2.13 4.05%

η=3.5&β=0.7 0.03 2.02 0.06 1.93 4.45%

η=5&β=0.7 0.01 2.02 0.02 1.93 4.45%

TableIII.Bycomparingfourthandfifthcolumnsbetweenthe
TablesIIandIII,wefindthat,bothOCandEEhavedropped



byasomeamountfromitspeakvalue.Thelosspercentage
ineachKPIhasbeencalculatedforeachstudycaseandis
showninthesixthcolumninTableIIandTableIII.Asimple
comparisonbetweenthelosspercentagesinOCandEEshow
thattheimpactofthebargainingprocessonoutagecapacity
ismorepronouncedascomparedtoitsimpactonEE.Ifitis
desiredtocreateabiasintheoutcometowardsoneoftheKPIs,
athresholdonacceptable-losspercentagecanbedefined.Such
thresholdisreflectedbyanewsetofdisagreementpoints.
Eachofd1 andd2 canbegivenavalue 0≤d1 ≤Cpeak

ρ

and 0≤d2≤ωpeak
EE consecutively.Theprocessthencanbe

repeatedbyusingthisnewdisagreementspaceD.However,it
isintuitivelyobviousthatanyimprovementintheutilityofone
playerwillcauseadeteriorationintheutilityofthesecond
player. Hence,suchthresholdsshouldbecarefullydesigned
whenintegratingthisdynamictradingmechanismbetweenEE
andSEasaself-organizingcapabilityoftheC-RANbased
deploymentof5G.

VIII. CONCLUSION

Inthiswork,wehavedevelopedananalyticalframework
forcharacterizingEnergyEfficiency(EE)andOutageCapacity
(OC)usinggametheoryincloudradioaccessnetwork(C-
RAN).C-RANmodelconsideredinthispaperexploitsultra-
denseRemoteRadioRead(RRH)deploymentstodynamically
performuser-centricclusteringmechanismforradioresource
schedulingandEnergyEfficiency(EE). Ouranalysisshows
thatthereexistsvaluesofactiveRRHsdensities whichcan
maximizeEEandOC.However,aninherenttrade-offbetween
maximizing OCandEEneedstobeaddressed. Wesolve
thisdilemmaofoptimizingtwoconflictingobjectives,i.e.,
EEandOC,bymodelingtheproblemasabargaininggame.
Thetwoperformanceindicators,EEand OC were modeled
asvirtualgameplayersinabargaininggame. Ouranalysis
showsthataNashbargainingsolutionexistsinsuchagame.
Severalscenariosforthegamehavebeenexamined. Weuse
thelosspercentagebetweenpeakand NBSvaluesineach
player’sutilityasacomparison metric.Thus, weevaluate
theresultsandconcludethat RRHsdensityobtainedfrom
the NBSprovidesareasonabletrade-off. Weshowthatthe
bargaininggamemodelalsoenablesthepossibilityofshifting
thesolutiontoa morepreferabletrade-offleveldictatedby
networksperformancerequirements.
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