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Abstract 

Supraglacial lakes and ponds can create hotspots of mass loss on debris-covered 

glaciers. While much research has been directed at understanding lateral lake 

expansion, little is known about the rates or processes governing lake deepening. To 

a large degree, this knowledge gap persists due to sparse observations of lake beds. 

Here we report on the novel use of ground penetrating radar (GPR) surveys to 

simultaneously collect supraglacial lake bathymetry and bottom composition data 

from Spillway Lake (surface area of 2.4 x 105 m2; volume of 9.5 x104 m3), which is 

located in the terminus region of the Ngozumpa Glacier in the Khumbu region of the 

Nepal Himalaya. We identified two GPR bottom signals corresponding to two 

sedimentary facies of (1) sub-horizontal layered fine sediment drape and (2) coarse 

blocky diamict. We provide an understanding of the changes in subaqueous debris 

distribution that occur through stages of lake expansion by combining the GPR 

results with in situ observations of shoreline deposits matching the interpreted facies. 

From this, we present an updated conceptual model of supraglacial lake evolution, 

with the addition of data on the evolving debris environment, showing how dominant 

depositional processes can change as lakes evolve from perched lakes to multi-

basin base-level lakes and finally onto large moraine-dammed lakes. Throughout 

lake evolution, processes such as shoreline steepening, lakebed collapse into voids 

and conduit interception, subaerial and subaqueous calving and rapid areal 

expansion alter the spatial distribution and makeup of lakebed debris and sediments 

forcing a number of positive and negative feedbacks on lake expansion. 
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Introduction 

Thick layers of debris on debris-covered glacier tongues have been found to insulate 

debris-covered glaciers from mass loss in response to climate warming by 

decreasing heat flux to the underlying ice surface (Østrem, 1959, Nakawo and Rana, 

1999, Nicholson and Benn, 2006, Reid and Brock, 2010, Reznichenko, et al., 2010, 

Shea and Immerzeel, 2016). However, mass loss on some debris-covered glaciers 

has been shown to be keeping pace with adjacent clean ice glaciers (Gardelle, et al., 

2012, Kääb, et al., 2012). This phenomenon may be attributed to irregular surface 

evolution due to uneven sub-debris melting leading to the presence of features such 

as supraglacial lakes and ice cliffs, which act as localized hotspots of melting. In 

some cases, these hotspots have been shown to contribute to mass loss 

significantly, though only making up a very small part of the glacier surface area 

(Sakai, et al., 2000b, Sakai, et al., 2002, Reid and Brock, 2014, Buri, et al., 2015, 

Miles, et al., 2016, Thompson, et al., 2016). Through time however, the growth of 

supraglacial lakes and the rapid backwasting of bordering ice cliffs, can eventually 

lead to coalescence with nearby lakes, and increased chances to form potentially 

dangerous moraine-dammed lakes (Sakai, et al., 2000a, Watanabe, et al., 2009). 

Supraglacial lakes contribute to glacier mass loss by driving melt in the tongues of 

stagnant, debris-covered glaciers where surface slopes are generally < 2° 

(Reynolds, 2000, Sakai, et al., 2002, Immerzeel, et al., 2014, Reid and Brock, 2014, 

Thompson, et al., 2016). With low glacier surface slopes, meltwater and rainfall 

accumulate in topographic depressions where they contribute to melt by absorbing 

and storing incoming radiation as heat (Kirkbride, 1993, Benn, et al., 2000, 

Reynolds, 2000, Sakai, et al., 2000b, Benn, et al., 2001, Röhl, 2008, Miles, et al., 

2016). Circulation of warm lake water increases melt around lake margins and stored 
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heat drives subaqueous melting, even when ambient temperatures have decreased 

below freezing (Sakai, et al., 2000a). In addition to melt within lake basins, 

interception with englacial conduits can transfer warm water to the interior of the 

glacier contributing to internal ablation (Kirkbride, 1993, Benn, et al., 2012, Miles, et 

al., 2016, Thompson, et al., 2016).  

Much of what is known about the evolution of supraglacial lakes concerns areal 

expansion and the rates and fundamental processes underpinning areal lake 

expansion are well established from remote sensing and surface surveys (Mool, 

1995, Quincey, et al., 2007, Komori, 2008, Fujita, et al., 2009, Watanabe, et al., 

2009, Bajracharya and Mool, 2010, Gardelle, et al., 2011, Sawagaki, et al., 2012, 

Thompson, et al., 2012, Liu, et al., 2015, Wang, et al., 2015, Thompson, et al., 

2016). Far less, however, is known about rates of, and processes controlling, lake 

deepening. To a large degree, this is because the remote sensing techniques used 

to measure lake depth on clean ice glaciers (Sneed and Hamilton, 2007, Fitzpatrick, 

et al., 2014), where lakes are clear, do not work in the turbid lakes that are 

characteristic of debris-covered glaciers. As a result, much of what is known about 

lake bathymetry has been determined from labor intensive field campaigns which 

have typically been conducted at irregular intervals. 

While many details of lake deepening remain unknown, two physical processes are 

thought to dominate: subaqueous calving (Röhl, 2008) and direct lakebed melting 

(Chikita, et al., 1999, Sakai, et al., 2000b, Chikita, et al., 2001). Subaqueous calving 

has been observed to remove large volumes of ice from lake beds at a number of 

glaciers in New Zealand (Kirkbride and Warren, 1997, Warren and Kirkbride, 2003, 

Röhl, 2008). However, the mechanism relies in part on the buoyancy of ice and 

doubt remains as to the impact of the subaqueous debris layer (Benn, et al., 2012). 
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Melt rates of lakebeds are critically dependent on water temperature as well as the 

presence or absence of lake bed debris. For example, on the Lirung Glacier, Nepal, 

low subaqueous melt rates of < 0.01 cm d-1 occurred in lake beds covered in 

sediments, but where lakes were floored with bare ice, subaqueous melt rates were 

2-4 cm d-1 (Miles, et al., 2016).  

Improved understanding of the rates and processes of lake deepening requires a 

detailed temporal and spatial record of lake bathymetric evolution, as well as an 

understanding of debris distribution and physical characteristics. Most bathymetric 

survey techniques rely on weighted lines or hand-held electronic sonar devices 

(Yamada and Sharma, 1993, Kadota, 1994, Benn, et al., 2001, Sakai, et al., 2003, 

Yamada, et al., 2004, Sakai, et al., 2005, Fujita, et al., 2009, Sawagaki, et al., 2012, 

Thompson, et al., 2012, Somos-Valenzuela, et al., 2014, Horodyskyj, 2015, 

Thompson, et al., 2016). These techniques are time consuming and labor intensive, 

lack fine spatial resolution and provide little to no information about bottom 

compositions. Improved spatial resolution was obtained from surveys conducted 

using remotely operated underwater vehicles (ROVs) outfitted with sonar 

transducers (Horodyskyj, 2015), and sonar data can be analyzed to provide some 

information about bottom hardness and texture (Kenny, et al., 2003) but most 

commercial sonar systems cannot provide information about debris thickness.  

Ground penetrating radar (GPR) is an underutilized tool for characterizing 

supraglacial lake bathymetry as well as bottom composition and thickness. While 

GPR has been used to measure glacier depths and ice volume for bathymetric and 

geological mapping of non-supraglacial lakes (Haeni, et al., 1987, Sellmann, et al., 

1992, Moorman and Michel, 1997, Schwamborn, et al., 2002, Arcone, et al., 2006, 
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Banks and Johnson, 2011, Sambuelli and Bava, 2012), few studies have used GPR 

to investigate lakes on debris-covered glaciers (Reynolds, 2011). 

In this paper we present the results of GPR surveys of Spillway Lake, Ngozumpa 

Glacier, Nepal to demonstrate the potential of GPR as an investigative tool for 

characterization of supraglacial lake bathymetry and lake bed characteristics. We 

then use a combination of GPR facies analysis (e.g.,Bristow, 1995, Ruffell, et al., 

2004) and field observations to characterize and interpret the subaqueous debris 

distribution. Finally, we present an updated conceptual model of debris-covered 

glacier supraglacial lake evolution that is based on the facies analysis and a review 

of published literature on supraglacial lakes.  

Study Site 

Ngozumpa Glacier (27.97°N; 86.69°E) is located in the Khumbu Himal, Nepal, ~25 

km west of Sagarmatha (Mt. Everest). The Ngozumpa Glacier flows down from 

Gyachung Kang (to the northeast) and Cho Oyu (to the northwest) (Fig 1). At ~20 km 

long, the glacier is one of the largest in Nepal, and the lower 15 km is extensively 

debris covered. Debris thickness is highly variable but generally increases from a 

thin, discontinuous cover just below the equilibrium line altitude (~5700 m) to the 

terminus, where it is continuous (excluding ice cliffs) and 1-3 m thick (Benn, et al., 

2012, Nicholson and Benn, 2012). This debris layer has affected the glacier mass 

balance and altered the distribution of ablation relative to a clean ice glacier; the 

maximum ablation now occurs up glacier from the terminus where the debris layer is 

thin, rather than at the terminus. This ablation pattern has caused a reduction in 

surface gradient and an associated decrease in the driving stresses (Bolch, et al., 

2008, Quincey, et al., 2009). In recent decades the glacier has experienced 



 


This article is protected by copyright. All rights reserved. 

substantial surface lowering, and, in the ablation area, the surface now lies >150 m 

below the Little Ice Age moraines (Sakai and Fujita, 2010). Decreases in surface 

gradient and driving stresses have ultimately led to a reduction in glacier velocity 

which has caused the lower ~7 km of the glacier to become stagnant (Quincey, et 

al., 2009, Thompson, et al., 2016). 

 

The glacier has highly variable surface topography, consisting of large hummocks, 

ridgelines, lakes and ice cliffs. The surface relief is approximately 10s of meters 

around larger hummocks and lake ice cliff contacts. The mean surface slope of the 

lowest 5km has been measured previously at ~2° (Hands, 2004). This slope is within 

the range cited as having potential for the formation of extensive supraglacial lakes 

(i.e. ≤2°) (Reynolds, 2000, Quincey, et al., 2007, Röhl, 2008) and in the lowest ~2km 

where our study focuses, the overall slope decreases to <1°.  

In the early 1990s a collection of lakes and ponds began to form at the hydrological 

base level of the Ngozumpa Glacier (Thompson, et al., 2012). Since this time, the 

lake basins have continued to grow and coalesce to cover an area of 2.4 x 105 m2 

with a volume of 9.5 x104 m3 in 2014 (Thompson, et al., 2016). This growing lake 

body is, informally, referred to as Spillway Lake. The site has been the focus of a 

series of studies using remote sensing, sonar measurements and extensive field 

mapping (Adhikary, et al., 2000, Benn, et al., 2001, Benn, et al., 2012, Thompson, et 

al., 2012, Horodyskyj, 2015, Thompson, et al., 2016). Our new surveys, presented 

here, focus on two connected basins within the Spillway Lake system, adjacent to 

the eastern lateral moraine and the central lake basin (Fig 2 A, B).  
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Methods 

During December 2014, five GPR transects were surveyed on the frozen surface of 

Spillway Lake, using a Malå ProEx Professional Explorer GPR system linked to an 

unshielded Rough Terrain Antenna (RTA) of 25 MHz center frequency. The RTA is 

roughly 13 m long and houses a single pair of transmitter/receiver antennas 

separated by 6 m in an inline configuration. During acquisition, the system was 

connected to a Leica Differential Global Positioning System (DGPS) rover, and set to 

record a trace every 0.3 s. The ProEX unit was placed inside an inflatable kayak 

behind which the RTA was towed. The system was towed on foot at an 

approximately constant speed of ~1 m s-1. The interval between recorded traces was 

0.26 ± 0.06 m, regularized (in Mathworks Matlab® software) to 0.2 m during 

processing. A bulk correction of 11 m (applied in the opposite direction to the profile 

heading) was applied to all positions to remove the offset between the DGPS 

antenna and the midpoint between the GPR antennas. Due to a battery failure in the 

Leica base station, GPS measurements cannot be post processed and corrected to 

centimeter accuracy. Therefore, to assure the most accurate transect positioning, we 

have used field video and photographic data to verify correct positioning of transect 

start-stop positions relative to high-resolution satellite imagery (~ 0.48 m pan-

sharpened GeoEye-1) where possible. Uncorrected DGPS data from sonar surveys, 

conducted prior to the GPR survey, show errors on the scale of ±1-2 m in the x-y 

plane.  

The effective depth of investigation of a GPR signal is substantially impeded in 

electrically conductive ground (e.g., high clay fraction and/or saline water content) as 

the electromagnetic energy of the GPR wavelet is more rapidly absorbed (Annan, 

2004). Groundwater is therefore often considered an impediment to GPR surveying. 
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Supraglacial lakes, however, can have very low electrical conductivities, with 

conductivities of ~2.3 mS m-1 to ~12 mS m-1 being reported from supraglacial lakes 

on debris-covered glaciers (Watanabe, et al., 1995, Sambuelli and Bava, 2012). 

These conductivities are close to pure water and lakes should thus be transparent to 

radar.  

The RTA used to conduct our GPR surveys allows for rapid data acquisition, but it 

does not allow common midpoint (CMP) surveys to be conducted for velocity 

analysis. As a result, GPR surveys reported here do not provide information about 

lakebed debris thickness. They can, however, provide information about bottom 

composition and water depth based on the first arrival of the GPR signal and its 

character immediately thereafter. In the absence of CMP-derived velocities, we 

assume a relative dielectric permittivity, İr, for water of 80 (Annan, 1992). Surface ice 

cover is ~0.2 m thick; therefore, our time-to-depth conversions assume a GPR 

velocity of 3.3 x 10-2 mns-1 throughout. While İr can vary with temperature (e.g. 

Malmberg and Maryott (1956) measured İr ≈ 88 at 0°C), the uncertainty in depth 

estimates is expected to be small and the difference in derived velocity, and 

therefore depth estimates, between İr values of 80 and 88 is < 5%. Hence, in the 

absence of lake water temperature measurements, we use İr = 80. We estimate the 

wavelength of the 25 MHz RTA wavelet to be 1.3 m; the ¼-wavelength criterion for 

vertical and (following migration) lateral resolution suggests that our limit of 

resolution is 0.3 m. Data processing steps, implemented in Sandmeier ReflexW© 7.5 

software, are listed in Table 1. The data generally respond well to the imposed 

processing flow, although artefacts of normal moveout correction remain at early 

travel-times where the propagation path of GPR energy is comparable in length to 

the 6 m offset between the two antennas. Very few artefacts of migration remain; 
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those that do are presumably caused by off-line scatter, and cannot be correctly 

migrated given the 2D acquisition. 

By picking the first-break of lakebed reflections, we calculated bathymetry for each 

trace of the GPR dataset. This operation was straightforward in the deepest sections 

of the lake but was subject to greater uncertainty in shallower sections where the 

bed reflection was generally more complex. Bed reflection characteristics are 

discussed in the Results section under “GPR Facies Classification”. In addition, the 

shallower areas are subject to distortions in our normal moveout correction (e.g. Fig 

3, beginning of transect 1, A). Given the finite lateral resolution of the GPR wavelet, 

we picked bathymetry to be deliberately smooth, and estimate that the uncertainty in 

the calculation of lake depth to be at maximum ±1 m.  

The performance of the GPR depth conversion is assessed against the results of a 

separate sonar bathymetry point survey performed in December 2014 using a 

Hummingbird 385ci DualBeam™ sonar (Thompson, et al., 2016). The grid spacing of 

sonar survey was ~20 m along track and 6-40 m between tracks (Fig 2), and results 

were spline interpolated with a shoreline polygon barrier in ESRI ArcMap to provide 

a map of lake bathymetry. However, because the sonar bathymetry survey was not 

conducted specifically for comparison with the GPR survey, the GPR survey lines do 

not directly overlap the sonar points. Thus, we expect there to be variability in the 

comparison and use this as a broad assessment of the GPR depth conversion, 

rather than an assessment of the superiority of methods. Sonar points located closer 

to the GPR profiles are likely to provide a better corroboration of the GPR data than 

those located at a greater distance. The source pulse of the echo-sounder blends 

frequencies of 85 and 200 kHz, which gives vertical and lateral resolution 

comparable to the GPR, assuming a sonic velocity of 1500 m s-1 in water. We 
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therefore extracted interpolated sonar depth estimates along the radar transects to 

provide the necessary comparison between the two platforms.  

Finally, we used GPR facies analysis to classify the lakebed from the processed 

GPR data. Facies analysis (Bristow, 1995, Ruffell, et al., 2004) is a qualitative means 

of characterizing styles of reflectivity, thereby allowing the mapping of consistent 

features, which have similar reflection geometry. We applied this qualitative 

approach to classification, as a more quantitative analysis is not possible in the 

absence of CMP data. 

Results 

GPR bathymetry 

In GPR transects from basin A (Fig 3; transects 1-4) and basin B (Fig 4), we interpret 

the first arrival after a transparent section of data to be the reflection from the 

lakebed. The maximum two-way travel-time of the lakebed reflection is ~ 1300 ns, 

corresponding to a maximum lake depth of ~ 21 m (Fig 3, transect 1). In Basin A, the 

lakebed geometry appears generally bowl-shaped, relatively flat in the deeper areas, 

sloping up to the shoreline at an angle of 20-30° relative to the lake surface. A 

prominent hummock occurs in the center of the basin in transects 1 and 3 (Fig 3). 

The hummock is inferred to be ~60 m wide at its base, with a topographic high point 

at a depth of ~ 9 m, ~ 16 m shallower than the surrounding lakebed. Transect 2 (Fig 

3) also shows evidence of the hummock, but the shoreward slope is not well defined. 

In Basin B, lakebed geometry shows a gradual deepening from 1 m in the south to 6 

m in the north over a distance of ~120 m, followed by rapid deepening to 15 m (Fig 

4). The lake shallows again to depths of 3-7 m between distance of 220 m and 260 
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m along track. This section of the lake appears to have a more undulating 

bathymetry.  

Comparison with sonar data 

Only six of the sonar survey points are located within a distance of ≤1 m from the 

GPR transects. The mean difference between these sonar point depth 

measurements and the closest measured GPR depths was 1.4m (Fig 5a). 

Differences between the GPR depths and the interpolated sonar depths were 

generally larger, with positive differences ranging from 2.3 to 7.7 m and negative 

differences ranging from -1.1 to -6.0 m (Fig 5b). Transects 2A, 4A and 1B, which 

roughly follow grid lines of the sonar measurements, all have differences less than 

±5m with mean differences and standard deviation of 1.2±1.2 m, -0.7±1.7 m and -

0.8±1.4 m respectively (Fig 5b). Conversely, transects 1A and 3A, running oblique to 

sonar measurement grid, all have differences greater than 5 m and less than -4.3 m 

with means and standard deviations of -0.4±3.0 m and 1.2±3.8 m respectively (Fig 

5b). The mean difference of all transects is 0.1 m, with a standard deviation of ±2.5 

m. 

 

GPR facies classification 

Sediment appears to cover the entire surveyed parts of the lakebeds. Two facies can 

be distinguished based on the characteristics of the lakebed reflectors (Fig 6). Facies 

1 shows coherent, sub horizontal reflectivity, with parallel events either side of 

incoherent responses (Fig 6a). Facies 1 is present in the deeper areas of both lake 

basins and around the lake flanks (Fig 3 and 4). Facies 2 shows low-amplitude, 
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chaotic reflectivity, characteristic of structural complexity (Fig 6b). Facies 2 is present 

mostly around the submerged hummocks in basin A as well as the eastern shallows 

of transect 4 A (Fig 3).  

 

Interpretation and discussion 

GPR analysis and interpretation 

Differences in point depth measurements made using GPR and sonar are smallest 

where distances between the measurements were smallest (Fig 5a). Similarity of 

depth measurements results from the GPR and sonar having similar un-migrated 

horizontal resolutions, with a mean difference of 0.52 m over the depth ranges in our 

study. Differences between GPR depths and interpolated sonar depths are likewise 

smallest along transects that have the largest number of proximate sonar point 

measurements, as well as where lake bathymetry is relatively flat. For example, 

transects 2A, 4A and 1B appear very similar to the interpolated sonar depths (Fig 7). 

All three transects have a gradually changing bathymetry, with only a few regions of 

rapid change. GPR traces for these transects are located a mean distance of 8.4±2.8 

m, 5.3±1.7 m and 7.2±3.5 m away from their nearest sonar point measurements 

respectively (Fig 8). The maximum and minimum distances for transects 2A and 4A 

are 12.9 – 2.6 m and 8.9 – 1.6 m respectively. Transect 1B, however, has a much 

larger range of distances with a maximum and minimum of 17.1 – 0.9 m. The mean 

distance to sonar measurements along Transects 1A and 3A is similar to that for 

Transect 2A, but the variability along these two transects is greater than for 2A, with 

maximum distances at 20.4 m and 20 m respectively (Fig 8).  
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The two sets of depth measurements become more divergent where lake bathymetry 

is more complex (e.g. Figure 7, transect 3A, 50-150 m) likely as the result of sparse 

point data to constrain interpolation. For example, the greatest differences between 

depth measurements occur in transects 1A and 3A, where point data are spaced 

further than 13 m apart (e.g. Fig 2 red ellipse) and interpolation errors are likely to be 

the greatest. Similarly, transect 1B shows small variation in differences, yet has 

numerous outliers (Fig 5b) that correspond to large distances from sonar point 

measurements (Fig 8). These locations of larger difference are easily identifiable in 

Figure 7 and seen as the central area of basin B where data are again sparse. Small 

differences in depth measurements using the two techniques indicate GPR provides 

depth information that is roughly equivalent to sonar, but GPR has the added 

advantages of rapid data acquisition when collected on frozen lake surfaces and 

provides information about lakebed composition and structure.  

Facies 

Facies 1 is consistent with a more uniform scattering in which discontinuities are 

much smaller than the radar wavelength (i.e. 1.3 m). We interpret these sub-parallel 

sequences of reflectivity as layers of fine sediment, similar to the bedded sand 

deposits exposed around some lake margins (Fig. 9, 1&2 (right)). By contrast, Facies 

2 is consistent with a chaotically scattering lakebed where discontinuities are on a 

spatial scale comparable with the radar wavelength (i.e., 1.3 m). We interpret Facies 

2 as areas of the lakebed covered with coarse debris, including boulders and large 

clasts, similar to the widespread blocky diamict debris cover exposed on the glacier 

surface (Fig. 9, 1&4). Our facies classifications and identification agree well with the 

mapped distribution of bottom surface types found by Horodyskyj (2015), and are 
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also consistent with the observation that bathymetry associated with Facies 1 is 

likely to have less abrupt changes than in areas where Facies 2 is found.  

The lack of exposed ice in our lakebed surveys suggests that any bare ice in lake 

basins is rapidly covered by sediments. Facies sequences, however, suggest that 

bare ice is exposed at lakebeds at least transiently. For example, if Facies 2 is in 

contact with ice on the lakebed, it cannot be known if the sediments were deposited 

as part of a mass wasting event onto a bare ice bed following lake formation or if 

they reflect an original debris-covered ice surface that was submerged following 

surface downwasting. In contrast, because Facies 1 suggests deposition by settling 

of finer grained materials, the superposition of Facies 1 with glacier ice at the lake 

bed strongly suggests the lake bed consisted of bare ice likely present prior to 

Facies 1 deposition (Figs 9, 3&4; Fig 10). Facies relationships suggest that up 20% 

of our survey lines were initially composed of bare ice, but were later covered by 

Facies 1 sediments.  

Overlapping facies relationships demonstrate that the dominant sediment/debris 

delivery mechanisms to lakes can switch from mass wasting, toppling from ice cliffs 

and/or sliding from moraine ridges to settling of suspended fines, creating a 

transition from Facies 2 to Facies 1. For example, the upward transition from Facies 

2 to Facies 1 (Fig 3) between 130 and 160 m in transect 3A, and between 120 to 160 

m in transect 2A, indicate that the dominant sediment delivery mechanism switched 

from mass wasting to deposition of fines. Such a transition would be expected to 

occur as lakes expanded. Sediments would initially be deposited via mass wasting 

occurring as ice cliffs retreated around the lakeshore, causing small landslides of 

sediments into lakes. As lake area expanded, and sources of sliding debris move 

further away, sedimentation changes to settling of fines. 
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Transitions from Facies 1 to Facies 2 require a different explanation. We did not find 

distinct evidence for this transition in our GPR data, but it was observed in sediment 

packages associated with a drained lake basin ~60 m north of lake basin A (Fig 2, 

white hexagon 3; Fig 9, 3). Based on freely available declassified KH-9 and Landsat 

imagery of the AOI, it can be seen that between 1964 and 1967 a perched lake and 

backwasting ice cliff located ~60-70 m north in 1964 was expanding and most likely 

intercepted this location. Throughout the mid-late 1970s the area appears to be 

submerged but towards the beginning of the early 1980s it is once again exposed. 

As Spillway Lake began to form and expand, this location was once again 

submerged, sometime in 2005-2006, and subsequently was re-exposed in the 

10/15/2009 Landsat image. A stratigraphic sequence of fine-grained sediments 

deposited near- parallel with a bare ice surface was exposed over an ice cliff at the 

lakeshore, indicating deposition onto submerged bare glacier ice. There is an abrupt 

change from fine sediment to a coarse-grained diamict wedge 1.5 m thick, which 

extends part way across the underlying fines. Fine-grained material has also been 

deposited on top of the diamict, supporting the characterization of this sequence in 

the lake environment, and was the result of a subaqueous debris slumping event 

(Fig 10). 

A conceptual model of supraglacial lake evolution for debris-covered glaciers 

Here we present a conceptual model of supraglacial lake evolution, the basis of 

which is a consolidation of the literature investigating lake formation and expansion, 

with the addition of the facies relationships observed in our study. Facies transitions 

suggest that the spatial distribution of debris and depositional processes change as 

supraglacial lakes grow. These changes reflect varying environmental factors such 

as proximity to ice cliffs and debris-covered slopes, initiation of calving, interception 
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with englacial conduits or voids, and subaqueous and subaerial mass movement 

events. These relationships provide the addition of the evolving debris environment 

to the model of an expanding supraglacial lake, highlighting the changing debris-

related constraints and feedbacks as a supraglacial lake evolves. 

During early stages of lake growth, water accumulates in small, isolated lake basins 

that are perched above base level and not connected to supraglacial streams or 

englacial conduits (Benn, et al., 2001) (Fig 11, A). The surrounding shoreline likely 

consists primarily of low gradient, stable debris-covered slopes. Prior to infilling, the 

lakebed is likely composed of similar diamict as is found above the lake surface 

(Facies 2). During lake infilling, sedimentation rates in the lake would be low, 

because sediments would be sourced primarily from windblown dusts or fine-grained 

materials leached from the surrounding diamict by percolating meltwaters (Facies 1). 

Consequently, Facies 1 is deposited over Facies 2.  

Expansion of small, perched lake basins occurs by slow melting of subaqueous ice 

around the lake margins, or possibly collapse into englacial voids, which steepens 

the lakebed slopes, eventually forming steep bare ice faces or ice cliffs (Benn, et al., 

2001, Röhl, 2008, Thompson, et al., 2012) (Fig 11, B). Bare ice faces and ice cliffs 

increase rates of lake expansion and trigger a change in deposition. Bare ice faces 

often have a thin coating of dark, wet mud which reduces the surface albedo and 

increases absorption of solar radiation, creating localized hot spots of enhanced 

melting (Benn, et al., 2001). Ice cliffs can lead to rapid lake expansion through 

calving, as thermo-erosional notching at the waterline leads to fracturing (Benn, et 

al., 2001, Röhl, 2008, Miles, et al., 2016). Lake expansion by melt retreat of steep, 

bare ice faces and calving would cause Facies 2 type sediments to be deposited by 
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slumping around the expanding lake margin, with deposition of fine-grained Facies 1 

sediments in the central deeper areas of the lake.  

Sediment deposition can force a positive feedback on lake expansion. Slumping 

provides a constant influx of diamict, which helps keep turbidity high. This increase in 

turbidity can decrease lake surface albedo, thereby increasing absorbed solar 

radiation, which keeps surface temperatures high. Conversely, a negative feedback 

results from deposited fine sediments (Facies 1) on the lakebed insulating underlying 

ice from melt, decreasing bottom water cooling. These effects combine to promote 

melting along lake perimeters, thereby enhancing areal expansion.  

Perched lake expansion and sedimentation is halted when lakes intercept englacial 

conduits or sediment filled crevasse traces and rapidly drain (Fig 11, C) (Benn, et al., 

2001, Wessels, et al., 2002, Gulley and Benn, 2007, Röhl, 2008, Benn, et al., 2009, 

Benn, et al., 2012, Thompson, et al., 2012). While conduits temporarily drain small 

perched lakes, they play an important role in glacier surface lowering and the 

development of larger lakes (Kirkbride, 1993, Immerzeel, et al., 2014, Thompson, et 

al., 2016). Conduit collapse creates new depressions with new bare ice faces where 

enhanced melting can continue and lakes may eventually be recharged with water 

from up glacier. In addition, water transported from a lake drainage event loses heat 

to conduit walls, thereby adding to mass loss through internal ablation (Kirkbride, 

1993, Benn, et al., 2012, Miles, et al., 2016, Thompson, et al., 2016) and promotes 

future collapse by widening conduits (Gulley and Benn, 2007). The presence of 

Facies 1 in direct contact with glacier ice may be due to a collapse and drainage 

event that flushed lakebed sediments out of the lake basin, leaving a bare ice 

surface exposed to melt and sedimentation.  
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Cycles of lake expansion, drainage by conduits and collapse, and refilling allow 

smaller, isolated lakes to coalesce behind the terminal moraine to form a large, 

moraine dammed lake; examples include Imja Tsho, or Tsho Rolpa (Nepal 

Himalaya) (Fig 11, D-F). While the physical processes driving the change from a 

series of perched lakes, like Spillway Lake reported here, to a large moraine 

dammed lake remain poorly understood, it is thought that coalescence of small lakes 

into a larger one triggers rapid lake expansion through subaerial slab calving, and 

increased subaqueous waterline melting (Kirkbride, 1993, Sakai, et al., 2009) (Fig. 

11, E). While slab calving of exposed ice cliffs can cause rapid lake expansion, 

deposition of subaerial debris located along the top of ice cliffs onto the lakebed can 

force a negative feedback on lake expansion (Fig. 11, E). Accumulation of debris at 

the base of ice cliffs has been observed to separate the ice cliff from the lake, halting 

calving and lake expansion at that location (Thompson, et al., 2016).  

Lake-bed disintegration has been proposed as a key trigger to initiation of full front 

calving and rapid retreat (Kirkbride, 1993). However, more recent work suggests 

rapid lake expansion by calving does not require the lake to deepen to the glacier 

bed (Fig. 11, F). Robertson et al. (2012) observed subaqueous debris layers 

between 5-10 m in thickness at the calving margins of Mueller, Hooker and Tasman 

glaciers. Using a CHIRP sonar, they were able to visualize the calving margin where 

they found a debris-covered sloping ice foot projecting into the lake at an angle of 

about 40º, indicating the calving front did not reach to the glacier bed (Robertson, et 

al., 2012). Similarly, a GPR study at Imja Tsho, found glacier ice just up-glacier from 

the calving front was ~80 m deeper than the deepest point in the lake, indicating that 

glacier ice was present below the lake bed (Somos-Valenzuela, et al., 2014). Despite 

debris cover, data from Imja Tsho indicates that some lakebed deepening still 
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occurs. Taking into consideration that the lake level has been stable for the past 

decade, at roughly 5010 m a.s.l., the mean rate of deepening at Imja Tsho (2002-

2012) was roughly 0.86 my-1, with maximum depths increasing from 98 m to 116 m 

(Somos-Valenzuela, et al., 2014). Deepening was faster near the calving front and 

slower nearer the terminus. Some of this deepening may be due to sub-debris 

melting, but some is due to subaqueous calving (Somos-Valenzuela, et al., 2013, 

Somos-Valenzuela, et al., 2014). 

In summary, using the GPR facies relationships identified in our surveys with field 

observations, we were able to infer feedbacks between processes controlling 

supraglacial lake growth and sediment deposition. We have developed a conceptual 

model of how dominant depositional processes can change as lakes evolve from 

perched lakes to multi-basin base-level lakes and finally onto large moraine-dammed 

lakes. Throughout lake evolution, processes such as shoreline steepening, lakebed 

collapse into voids and conduit interception, subaerial and subaqueous calving and 

rapid areal expansion alter the spatial distribution and makeup of lakebed debris and 

sediments which, in turn, can control rates of deepening by enhancing or diminishing 

heat conduction to the underlying ice.  

Conclusion 

The results of our GPR surveys not only provide high resolution bathymetric 

information (beneath the survey lines) allowing us to map the morphology of the lake 

bed but the additional facies interpretation provided a detailed lakebed debris 

characterization. This work demonstrates the applicability of GPR as a tool for 

supraglacial lake investigation and monitoring. We found that lake depth surveys can 

be completed rapidly with GPR when lake surfaces are frozen. While studies of 
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supraglacial lakes have traditionally relied primarily on sonar, we showed that GPR 

provides depth information that is equivalent to sonar, with added information about 

sediment types on lakebeds. Facies analysis highlights the additional information 

that can be derived from lakebed surveys using GPR. Sonar data can provide some 

information about bottom composition, such as surface hardness and texture 

(Horodyskyj, 2015) but cannot provide the facies information as reported here. 

Selecting GPR units with CMP survey capability would further expand the utility of 

GPR, as CMP surveys can provide measurement of the velocity through the debris, 

allowing the calculation of sediment layer thicknesses, an important parameter for 

modelling subaqueous heat flux and lake deepening. Further, conducting paired 

CMP surveys would allow for debris thicknesses to be mapped by determining the 

material velocity of different facies types, ultimately leading to a much more complete 

understanding of the spatial distribution, quantity and makeup of lakebed debris.  

Future investigations should aim to perform repeat 3-D GPR surveys, which will 

allow not only detailed changes in lake bathymetry and bed morphology to be 

measured but also changes in debris distribution. Knowledge such as this is of 

paramount importance for modelling potential subaqueous lake expansion and 

understanding the specific thresholds that trigger rapid growth from supraglacial 

lakes to moraine-dammed lake. 
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Tables 

 Table 1. Processing operations and parameters applied sequentially to profiles of 

GPR data. 

Operation Parameters 

Dewow filter 

(removal of low-frequency component of 
trace) 

Window length = 80 ns 

Static correction 

(alignment of time-zero in traces) 

All first-breaks synchronized to 20.6 ns 

(= 0.3 m/ns x 6.2 m) 

Regularization of trace interval Trace interpolation to 0.2 m 

Normal moveout correction Assumed velocity = 0.033 m/ns 

Ormsby bandpass filter Corner frequencies = 4-8-50-100 MHz 

Constant velocity Kirchhoff migration Migration aperture = 40 m 

Velocity = 0.033 m/ns 

Median filter Window = 3 traces x 3 samples 

Amplitude gain Gain function based on constant velocity 
geometrical spreading correction 

Depth conversion Constant velocity = 0.033 m/ns 
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Figure 1: Overview Geoeye satellite image of Ngozumpa Glacier with Spillway Lake complex indicated in 
black rectangle. 



 


This article is protected by copyright. All rights reserved. 

 
 

Figure 2: Spillway Lake (basins A & B) area of interest shown with interpolated depth map and overlay 
of sonar point depth locations and GPR transects. Red ellipse indicates area of sparse sonar point 
measurements along transect 3, A. White hexagons around numbers indicate locations of sediment 
samples seen near shoreline in Figures 9&10. 
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Figure 3: GPR transects 1-4, (basin A), post processed with dashed black line indicating lakebed and 
labeled multiples and locations of inferred facies. Vertical dotted line indicates crossing point of transects 
1 and 3. Vertical exaggeration is roughly 5x. Direction of travel is from left to right. 
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Figure 4: GPR Transect 1, (basin B), post processed with dashed black line indicating lakebed and 
labeled multiples and locations of inferred facies. Vertical exaggeration is roughly 5x. Direction of travel 
is from left to right. 
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Figure 5: GPR depths compared to sonar point depths and interpolated sonar depth (A). Boxplot of 
differences between GPR depths and interpolated sonar depth (B). Transects 2A, 4A and 1B display a 
much smaller interquartile range indicating better agreement between depths, with averages from 1.3 - 
-1.4m (x). 
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Figure 6: Subsets of distinct radar facies. (A) Coherent, sub-horizontal reflectivity, often comprising 
subparallel sets of reflections. (B) Typical low-amplitude and chaotic reflectivity, prone to migration 
noise suggesting structural complexity. Both facies plotted with equivalent amplitude scales. 
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Figure 7: Comparison of GPR depths (gray dashed) and interpolated sonar depths (solid black), with 
differences (top dash-dot-dot). Note the areas of large difference in transects 1A and 3A, corresponding 
to areas where there is little overlap between the methods. 
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Figure 8: Boxplot of distance from GPR trace to nearest sonar point measurement. 
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Figure 9: Examples of exposed shoreline facies marked in Figure 2 as white hexagons. 
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Figure 10: Overview of exposed large diamict wedge deposited between layered fines indicating debris 

redistribution onto relatively flat, sediment covered lakebed, followed by more fine deposition (Fig 2&9 
example 3). 
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Figure 11: A conceptual model of supraglacial lake evolution on debris covered glaciers with additional 
changes in sediment depositional processes affecting lakebed spatial debris distribution. (A) Isolated 
perched lakes, not connected to supraglacial streams or englacial conduits. (B) As perched lakes expand, 

debris slumping becomes more likely. (C) Some perched lakes may drain due to intersection with 
englacial conduits, potentially evacuating some lakebed sediment. (D) Ice cliff expansion and lake bed 
deepening lead to the intersection of the largest lake with a base level conduit. (E) Continued expansion 
of lakes in the area cause all to connect either through surface drainage networks or near surface 

conduits. (F) Lake expansion and coalescing leads to the formation of a single base-level moraine 
dammed lake. 


