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Parametric instabilities of circularly polarized
small-amplitude Alfvén waves in Hall plasmas
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(m.s.ruderman@sheffield.ac.uk)

(Received 23 May 2007)

Abstract. We study the stability of circularly polarized Alfvén waves (pump waves)

in Hall plasmas. First we re-derive the dispersion equation governing the pump

wave stability without making an ad hoc assumption about the dependences of

perturbations on time and the spatial variable. Then we study the stability of pump

waves with small non-dimensional amplitude a (a � 1) analytically, restricting our
analysis to b < 1, where b is the ratio of the sound and Alfvén speed. Our main
results are the following. The stability properties of right-hand polarized waves are

qualitatively the same as in ideal MHD. For any values of b and the dispersion
parameter τ they are subject to decay instability that occurs for wave numbers
from a band with width of order a. The instability increment is also of order
a. The left-hand polarized waves can be subject, in general, to three different
types of instabilities. The first type is the modulational instability. It only occurs

when b is smaller than a limiting value that depends on τ . Only perturbations
with wave numbers smaller than a limiting value of order a are unstable. The
instability increment is proportional to a2 . The second type is the decay instability.

It has the same properties as in the case of right-hand polarized waves; however, it

occurs only when b < 1/τ . The third type is the beat instability. It occurs for any
values of b and τ , and only perturbations with the wave numbers from a narrow

band with the width of order a2 are unstable. The increment of this instability is

proportional to a2 , except for τ close to τc when it is proportional to a, where τc is
a function of b.

1. Introduction

Parametric instabilities of finite-amplitude circularly polarized Alfvén waves have

been studied for more than four decades. Galeev and Oraevskii (1963) were the

first who studied the parametric instability of a circularly polarized Alfvén wave

(pump wave in what follows) with a small amplitude in a low-β plasma using the
ideal MHD approximation (see also Sagdeev and Galeev 1969). Derby (1978) and

Goldstein (1978) derived the dispersion equation determining the stability of pump

waves with arbitrary amplitudes and in finite β plasmas once again using the ideal
MHD approximation. Sakai and Sonnerup (1983) and Longtin and Sonnerup (1986)

studied the stability of pump waves using the two-fluid plasma description, which

takes both ion and electron inertia into account (see also Brodin and Stenflo 1988).

Wong and Goldstein (1986) investigated the pump wave stability in Hall plasmas.
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Including the Hall term in Ohm’s equation is equivalent to taking into account the

ion inertia. Hence, the equations used by Wong and Goldstein (1986) are obtained

from equations used by Sakai and Sonnerup (1983) and Longtin and Sonnerup

(1986) in the limit k0ℓe � 1, where k0 is the wave number of a pump wave and ℓe is
the electron inertia length. Brodin and Stenflo (1990) suggested a new approach to

studying the stability of MHD waves in Hall plasmas. These authors considered the

resonant interaction of three waves and calculated the coupling coefficients of this

interaction. Using this result they studied the decay and modulational instabilities

of a large-amplitude pump wave.

The stability analysis of circularly polarized Alfvén waves was then extended in

different directions. Stenflo (1976) considered relativistic multi-component plasmas

and described the general method for deriving the dispersion relation determining

the pump wave stability. Then he studied in detail the case of electronic plasmas

with immovable ions. Lashmore-Davies and Stenflo (1979) studied the stability of

a helical magnetic field similar to the one in an Alfvén wave, but created by an

external current. Shukla and Stenflo (1985) considered the nonlinear behaviour of

ion-cyclotron Alfvén waves. Brodin and Lundberg (1990) analyzed the stability of

an electromagnetic circularly polarized wave in a plasma with anisotropic pressure.

Viñas and Goldstein (1991) investigated the linear stability of pump waves with

respect to obliquely propagating perturbations. Ghosh et al. (1993, 1994) and

Ghosh and Goldstein (1994) analysed the linear stability and nonlinear evolution

of circularly polarized Alfvén waves in two dimensions numerically. Hollweg et al.

(1993) and Jayanti and Hollweg (1994) studied the stability of circularly polarized

Alfvén waves in a plasma with streaming He++ ions. Ling and Abraham-Shrauner

(1979), Spangler (1989, 1990) and Inhester (1990) used the kinetic description. A

comparison of theory and observations near the Earth’s bow shock was given by

Spangler (1997).

Among recent publications, it is worth noting the following. Del Zanna et al.

(2001) and Del Zanna and Velli (2002) studied the stability and nonlinear evolution

of pump waves in three dimensions numerically. Hertzberg et al. (2003, 2004a,b)

and Cramer et al. (2003) investigated the parametric instabilities of pump waves in

multi-component and dusty plasmas. Matsukiyo and Hada (2003) considered the

instabilities of pump waves in a relativistic electron–positron plasma. Ruderman

and Simpson (2004b, 2005), Simpson and Ruderman (2005) and Simpson et al.

(2006) investigated absolute and convective instabilities of pump waves in the ideal

MHD approximation.

Sakai and Sonnerup (1983) and Longtin and Sonnerup (1986) restricted their

analysis to the case where the perturbation wave number is much smaller than the

wave number of a pump wave, and studied only the modulational instability. Wong

and Goldstein (1986) did not impose any restriction either on the pump wave or

on perturbations. As a result, they had to deal with such a complicated dispersion

equation determining the stability that only numerical analysis was possible. To

derive the dispersion equation, Sakai and Sonnerup (1983), Longtin and Sonnerup

(1986) and Wong and Goldstein (1986) prescribed the dependence of the density

perturbation on the spatial variable and time. So, from their analysis it was not clear

if they studied the stability with respect to arbitrary perturbation, or only with

respect to perturbations of a particular form. Jayanti and Hollweg (1993a) used

Floquet’s theorem to derive the dispersion equation without any ad hoc assumptions

about the density perturbation. In this paper we also derive the dispersion equation
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without any ad hoc assumptions using a much simpler technique than that used

by Jayanti and Hollweg (1993a). Then we use this dispersion equation to study

the pump wave stability analytically assuming that the pump wave amplitude is

small.

The paper is organized as follows. In the next section we write down the system of

equations of Hall MHD and discuss its relevance for applications to space plasmas.

In Sec. 3 we derive the dispersion equation determining the stability of pump waves.

In Sec. 4 we study the stability of a pumpwave with small amplitude. Sec. 5 contains

a summary of the obtained results and our conclusions.

2. Equations of Hall MHD

We consider an ideal (i.e. non-dissipative) plasma with isotropic electron and ion

pressure consisting of electrons and one sort of ions, and use the one-fluid approxim-

ation to describe its motion. The only difference between the Hall MHD equations

that we use and the ideal MHD equations is that we take the Hall term in Ohm’s

law into account. The system of Hall MHD equations can be written in the form

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1a)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p +

1

µ 0

(∇ × B) × B, (2.1b)

∂B

∂t
= −∇ × E, (2.1c)

E = −v× B+
mi

ρe

(
1

µ 0

(∇ × B) × B− ∇pe

)
, (2.1d)

p = p0

(
ρ

ρ0

)γ

. (2.1e)

Here ρ is the plasma density, pe the electron pressure and p the total pressure
(electron plus ion); v, B and E are the velocity, magnetic field and electric field

respectively; mi is the ion mass, e the elementary charge, γ the ratio of specific
heats and µ0 the magnetic permeability of free space. Here and in what follows,

the subscript ‘0’ indicates an equilibrium quantity.

Now we substitute (2.1d) in (2.1c) to eliminate the electric field. As a result, we

obtain

∂B

∂t
= ∇ × (v× B) − mi

eµ0
∇ ×

(
1

ρ
(∇ × B) × B

)
. (2.2)

When deriving this equation, we have neglected the term proportional to ∇ ×
(∇pe/ρ). In the case when not only p but also pe is a function of ρ this term is

identically zero. This term can also be neglected without any assumption about pe
in low-β plasmas.
Equations (2.1a), (2.1b), (2.1e) and (2.2) constitute a closed system of equations.

This system will be used in what follows to study the parametric instabilities of

circularly polarized Alfvén waves.
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3. Derivation of the dispersion equation

In what follows we use Cartesian coordinates x, y, z, and assume that both equi-
librium quantities and perturbations only depend on x. The system of equations

(2.1a), (2.1b), (2.1e) and (2.2) has exact solutions in the form of circularly polarized

Alfvén waves (pump waves) propagating along a constant magnetic field Bxex ,

where ex is the unit vector along the x-axis (Barnes and Hollweg 1974; Ovenden
et al. 2004; Sakai and Sonnerup 1983). Introducing the components of the velocity

and magnetic field, v = (u, v, w) and B = (Bx , By , Bz ), we write these solutions in
the form

u0 = 0, ρ0 = constant, p0 = constant, B0x = Bx = constant,

v0y = V0 cos φ, v0z = V0 sin φ,

B0y = A0 cos φ, B0z = A0 sin φ.

(3.1)

Here φ = k0x − ω0t, and the quantities k0 , ω0 , A0 and V0 are related by

V0 = −A0v
2
Ak0

Bxω0
,

ω0

k0vA
=

(
1 +

1

4
ℓ2k2

0

)1/2

− 1

2
ℓk0 , (3.2)

where the square of the Alfvén speed, the ion cyclotron frequency and the ion

inertia length are given by

v2
A =

B2
x

µ0ρ0
, Ωi =

eBx

mi

, ℓ =
vA
Ωi

=
mi

e(µ0ρ0)1/2
, (3.3)

respectively. The positive (negative) values of k0 in the second equation in (3.2)

correspond to left-hand (right-hand) polarized pump waves. When |ℓk0 | � 1, the
second equation in (3.2) reduces to ω0 = k0vA, which is the dispersion relation for
Alfvén waves in ideal MHD. We see that these waves propagate without dispersion.

The dispersion effect becomes important when |ℓk0 | ∼ 1, so that ℓ can also be called
the dispersion length. The frequencies of both left-hand and right-hand polarized

waves grow monotonically when |k0 | increases. However, while the frequency of
a right-hand polarized wave tends to infinity when |k0 | → ∞, the frequency of
a left-hand polarized wave tends to Ωi in this limit. The right-hand polarized
waves become whistler waves when their frequency is above the ion cyclotron

frequency (|ω0 | > Ωi). The left-hand polarized waves are ion cyclotron waves for
ω0 ∼ Ωi.
Now we represent all the dependent variables in the form f = f0 + f ′, where

the prime indicates a perturbation, substitute in (2.1a), (2.1b), (2.1e) and (2.2), and

linearize with respect to perturbations. As a result we obtain

∂ρ′

∂t
+ ρ0

∂u′

∂x
= 0, (3.4a)

∂u′

∂t
= − c2

S

ρ0

∂ρ′

∂x
− A0

µ0ρ0

∂

∂x
(B′

y cos φ + B′
z sin φ), (3.4b)

∂v′
⊥

∂t
+ u

∂v0

∂x
=

Bx

µ0ρ0

∂B′
⊥

∂x
− Bxρ′

µ0ρ2
0

∂B0

∂x
, (3.4c)

∂B′
⊥

∂t
= Bx

∂v′
⊥

∂x
− ∂(u′B0)

∂x
− ℓvAex × ∂

∂x

(
∂B′

⊥
∂x

− ρ′

ρ0

∂B0

∂x

)
, (3.4d)
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where v⊥ = (0, vy , vz ), B⊥ = (0, By , Bz ) and c2
S = γp0/ρ0 is the square of the sound

speed. When deriving (3.4), we have eliminated p from (2.1b) using (2.1e).

The traditional approach for solving the system of equations (3.4) is to assume

that ρ′ varies as exp[i(kx − ωt)] (see, e.g., Galeev and Oraevskii 1963; Sagdeev and
Galeev 1969; Derby 1978; Goldstein 1978; Wong and Goldstein 1986). To avoid

this ad hoc assumption, Jayanti and Hollweg (1993a) noticed that, if the variables

t and φ are used instead of t and x, then the coefficients of the linear system of

(3.4) depend on φ only. Then, looking for solutions proportional to exp(−iωt), they
obtained a system of ordinary differential equations with periodic coefficients, and

applied Floquet’s theory.

Jayanti and Hollweg (1993a) have used the first part of Floquet’s theorem which

prescribes the form of solutions to a linear system of ordinary differential equations

with periodic coefficients. Ruderman and Simpson (2004a) have improved their

approach and used the second part of Floquet’s theorem. This second part states

that, for any system of ordinary differential equations with periodic coefficients,

there exists a linear transformation of dependent variables reducing this system to

a system with constant coefficients. Ruderman and Simpson (2004a) have found

that, in the case of ideal MHD, this transformation is very simple and is given by

B+ = B′
y cos φ + B′

z sin φ, B− = B′
y sin φ − B′

z cos φ, (3.5a)

v+ = v′
y cos φ + v′

z sin φ, v− = v′
y sin φ − v′

z cos φ. (3.5b)

It turns out that this variable transformation also works in the case of Hall MHD.

In the new variables, (3.4) is rewritten as

∂ρ′

∂t
+ ρ0

∂u′

∂x
= 0, (3.6a)

∂u′

∂t
= − c2

S

ρ0

∂ρ′

∂x
− A0

µ0ρ0

∂B+

∂x
, (3.6b)

∂v+

∂t
− ω0v− =

Bx

µ0ρ0

(
∂B+

∂x
+ k0B−

)
, (3.6c)

∂v−
∂t

+ ω0v+ − V0k0u
′ =

Bx

µ0ρ0

(
∂B−
∂x

− k0B+ +
A0k0ρ

′

ρ0

)
, (3.6d)

∂B+

∂t
− ω0B− = Bx

(
∂v+

∂x
+ k0v−

)
− A0

∂u′

∂x

− ℓvA

(
∂2B−
∂x2

− 2k0
∂B+

∂x
− k2

0B− +
A0k0

ρ0

∂ρ′

∂x

)
, (3.6e)

∂B−
∂t

+ ω0B+ = Bx

(
∂v−
∂x

− k0v+

)
+ A0k0u

′

+ ℓvA

(
∂2B+

∂x2
+ 2k0

∂B−
∂x

− k2
0B+ +

A0k
2
0ρ′

ρ0

)
. (3.6f)
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This is the system of equations with constant coefficients, so that we can look for

solutions proportional to exp[i(Kx − Ωt)]. As a result we reduce (3.6) to

Ωρ′ − ρ0Ku′ = 0, (3.7a)

ρ0Ωu′ − K

(
c2
Sρ

′ +
A0

µ0
B+

)
= 0, (3.7b)

ρ0(Ωv+ − iω0v−) +
Bx

µ0
(KB+ − ik0B−) = 0, (3.7c)

ρ0(Ωv− + iω0v+ − iV0k0u
′) +

Bx

µ0

(
KB− + ik0B+ − iA0k0ρ

′

ρ0

)
= 0, (3.7d)

ΩB+ − iω0B− + Bx(Kv+ − ik0v−) − A0Ku′

− ℓvA

(
iK2B− − 2k0KB+ + ik2

0B− +
A0k0Kρ′

ρ0

)
= 0, (3.7e)

ΩB− + iω0B+ + Bx(Kv− + ik0v+ ) − iA0k0u
′

+ ℓvA

(
iK2B+ + 2k0KB− + ik2

0B+ − iA0k
2
0ρ′

ρ0

)
= 0. (3.7f)

This is the system of six linear homogeneous algebraic equations for six variables.

It has a non-trivial solution only when its determinant is zero. This condition gives

the dispersion equation that can be written as

D(ω, k) ≡
6∑

j=0

qj (k)ω6−j = 0. (3.8)

In this equation we use the dimensionless quantities

τ =
k0vA
ω0

, k =
K

k0
, ω =

Ω

ω0
, a =

A0

Bx
, b =

cS
vA

. (3.9)

Note that, in accordance with (3.2), the dispersion length ℓ is related to τ by

ℓk0 = (τ 2 − 1)/τ, (3.10)

so that τ > 1 (0 < τ < 1) corresponds to left-hand (right-hand) polarized pump
waves. The coefficient functions q0(k), . . . , q6(k) are given in Appendix A. Note that,
with the accuracy up to the notation, the dispersion equation (3.8) coincides with

the one derived by Longtin and Sonnerup (1986) if we take the electron mass, me,

equal to zero in the latter. It also coincides with the dispersion equation obtained

by Wong and Goldstein (1986).

In what follows, we restrict our analysis to the case of small plasma beta, b < 1.
The reason for this is that the basic system of Hall MHD equations (2.1) is only valid

for low-beta plasmas. For high-beta plasmas, kinetic effects and effects of pressure

anisotropy become very important (e.g. Khanna and Rajaram 1982; Mjølhus and

Wyller 1988).

Using (A 1) it is straightforward to see that, if the pair (k, ω) satisfies the disper-
sion equation, then the pair (−k, −ω) also satisfies it. This observation enables us
to restrict the analysis to k > 0.
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4. Stability analysis

In this section we study the stability of pump waves with small amplitudes, a � 1.
Our analysis is very similar to that made by Jayanti and Hollweg (1993b) for

non-dispersive waves using the ideal MHD description. Using (A 1) we write the

dispersion function in the form D(ω, k) = D0(ω, k) + a2D1(ω, k), where

D0 = (ω2 − b2τ 2k2){(ω − 1)2 − (k − 1)2 [1 + ω(τ 2 − 1)]}

× {(ω + 1)2 − (k + 1)2 [1 − ω(τ 2 − 1)]}, (4.1)

D1 = τ 2k2(k − ω){k[1 + (2τ 2 − 1)ω2 ] + ω[ω2 − (2τ 2 + 1)]}. (4.2)

When a = 0 the dispersion equation (3.8) reduces to D0(ω, k) = 0. The roots of this
equation considered as an equation for k are

k1,2 = ± ω

bτ
, (4.3a)

k3,4 = 1 ± ω − 1

[1 + ω(τ 2 − 1)]1/2
, (4.3b)

k5,6 = −1 ± ω + 1

[1 − ω(τ 2 − 1)]1/2
. (4.3c)

In (4.3a) the upper sign corresponds to k1 and the lower to k2 . The same convention

is applied to k3,4 and k5,6 . It is straightforward to show that kj (ω) is a mono-
tonic function with the range (−∞, ∞) (j = 1, . . . , 6). This implies that equation
D0(ω, k) = 0 considered as an equation for ω has six real roots for any k > 0, and
the pump wave is stable in the limit a → 0.
The curves defined by (4.3) in the ωk-plane are shown in Fig. 1. It is easy to

see that k1 and k2 correspond to forward- and backward-propagating sound waves,

respectively. Following Jayanti and Hollweg (1993b), we denote them as fs and bs

(i.e. forward sound and backward sound) in Fig. 1. The remaining four roots are

Alfvén waves. Ω andK are the frequency and wave number of density fluctuations.

Then it follows from (3.5) that the frequency and wave number of fluctuations of

v′
⊥ and B

′
⊥ are Ω ± ω0 and K ± k0 , which correspond to ω± = ω ± 1 and k± = k ± 1

in the dimensionless variables. This observation implies that k3 and k5 are the

roots corresponding to forward-propagating Alfvén waves involving (k−, ω−) and
(k+ , ω+ ), respectively, and k4 and k6 are the roots corresponding to backward-

propagating Alfvén waves involving (k−, ω−) and (k+ , ω+ ), respectively. These roots
are denoted as fA± and bA± (i.e. forward Alfvén and backward Alfvén) in Fig. 1.
The intersection points of the different curves in Fig. 1 correspond to the double

roots of equation D0(ω, k) = 0 considered as an equation for ω. Taking a �= 0, a � 1
corresponds to a small perturbation of this dispersion equation. This perturbation

causes small perturbations of simple roots of the dispersion equation D0(ω, k) = 0,
but these simple roots remain real. As for a double root, the perturbation causes

its split either into two real roots or into a pair of complex conjugate roots. The

latter case corresponds to instability. Hence, only a perturbation with k close to
one of the values corresponding to double roots can be unstable when a � 1. This
discussion shows that the intersection points in Fig. 1 are of crucial importance for

the stability analysis. Fig. 1 clearly shows that the number of intersection points
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Figure 1. The dimensionless wave number k as a function of the dimensionless frequency ω
for a = 0 and b = 0.4. The upper left panel corresponds to τ = 0.8 (right-hand polarized
pump wave). The three other panels correspond to left-hand polarized pump waves. The
upper right, lower left and lower right panels correspond to τ = 1.07 (b < b1 (τ )), τ = 1.2
(b1 (τ ) < b < b2 (τ )) and τ = 2 (b > b2 (τ )), respectively. The notation fs and bs is used
for forward and backward sound waves, respectively. The notation fA− and bA− is used for
forward and backward Alfvén waves involving k− and ω−. The notation fA+ and bA+ is used
for forward and backward Alfvén waves involving k+ and ω+ .

depends on the value of τ . This observation inspires us to carry out the stability
analysis for the right-hand polarized and left-hand polarized waves separately.

4.1. Stability of right-hand polarized waves (τ < 1)

In what follows, we use the notation (ωij , kij ) for the coordinates of the intersection
point of the curves ki(ω) and kj (ω). When τ < 1, there are seven intersection points:
(ω13 , k13), (ω14 , k14), (ω24 , k24), (ω26 , k26), (ω34 , k34), (ω45 , k45) and (ω46 , k46), where

ω13 = bτ +
(1 − bτ)[1 + bτ +

√
(1 − bτ)2 + 4bτ 3 ]

2(1 − τ 2)
, k13 =

ω13

bτ
, (4.4a)

ω14 = bτ +
(1 − bτ)[1 + bτ −

√
(1 − bτ)2 + 4bτ 3 ]

2(1 − τ 2)
, k14 =

ω14

bτ
, (4.4b)
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ω24 = −bτ +
(1 + bτ)[1 − bτ −

√
(1 + bτ)2 − 4bτ 3 ]

2(1 − τ 2)
, k24 = −ω24

bτ
, (4.4c)

ω26 = bτ − (1 + bτ)[1 − bτ +
√

(1 + bτ)2 − 4bτ 3 ]

2(1 − τ 2)
, k26 = −ω26

bτ
, (4.4d)

ω34 = 1, k34 = 1, (4.4e)

ω45 =

√
1 − 2τ 4 +

2τ 2(1 − χτ 2)

1 − τ 2
, k45 = 1 − ω45 − 1

[1 + ω45(τ 2 − 1)]1/2
, (4.4f)

ω46 = −
√

1 − 2τ 4 +
2τ 2(1 + χτ 2)

1 − τ 2
, k46 = 1 − ω46 − 1

[1 + ω46(τ 2 − 1)]1/2
, (4.4g)

with χ =
√

1 + (1 − τ 2)2 . The characteristic picture of curves kj (ω) (j = 1, . . . , 6)
for τ < 1 is shown in the upper left panel of Fig. 1.
Note that there is one additional intersection point, ω = k = 0. In this point

four curves, fs, bs, fA− and fA+ , intersect, so that ω = 0 is the four-fold root of
D0(ω, k) = 0 at k = 0. When 0 < k � 1, this four-fold root splits into two single real
roots, ω1,2 = ±bτk, and one real double root ω3 = 2k/(1+ τ 2). It is straightforward
to show that the roots ω1 and ω2 remain real when 0 < a � 1. The double root ω3

splits into two roots, ω±
3 . To calculate ω±

3 we introduce ω = aω̃ and k = ak̃, and
then look for ω̃ in the form

ω̃ = k̃

(
2

1 + τ 2
+ aκ

)
. (4.5)

Substituting (4.5) into the dispersion equation D(ω, k) = 0 and collecting terms of
the lowest order with respect to a, we easily obtain

κ2 =
(1 − τ 2)(1 + 3τ 2)

(1 + τ 2)2

{
τ 2

4 − b2τ 2(1 + τ 2)2
+ k̃2 (1 − τ 2)(1 + 3τ 2)

(1 + τ 2)4

}
. (4.6)

We see that κ2 > 0 when τ < 1. Hence, both ω−
3 and ω+

3 are real, and there is no

instability related to the intersection point ω = k = 0.
Let us calculate the expansion of D0(k, ω) in the Taylor series in the vicinity of

the intersection point (ωij , kij ). Since the equation D0(k, ω) = 0 considered as an
equation for k has a double root at ω = ωij , then ∂D0/∂k = 0 at k = kij , ω = ωij .

Similarly, since the equation D0(k, ω) considered as an equation for ω has a double
root at k = kij , then ∂D0/∂ω = 0 at k = kij , ω = ωij . Hence, the Taylor expansion

of D0(k, ω) in the vicinity of (kij , ωij ) is

D0(k, ω) = 1
2 Dkk (k − kij )

2 + Dkω (k − kij )(ω − ωij ) + 1
2 Dωω (ω − ωij )

2 + · · · , (4.7)

where

Dkk =
∂2D0

∂k2

∣∣∣∣
k=k i j
ω=ω i j

, Dkω =
∂2D0

∂k∂ω

∣∣∣∣
k=k i j
ω=ω i j

, Dωω =
∂2D0

∂ω2

∣∣∣∣
k=k i j
ω=ω i j

.

Since the equation D0(k, ω) = 0 has two solutions in the vicinity of (ωij , kij ),
k = ki(ω) and k = kj (ω), the quadratic equation for k − kij ,

Dkk (k − kij )
2 + 2Dkω (k − kij )(ω − ωij ) + Dωω (ω − ωij )

2 = 0, (4.8)
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has two different real roots, which implies that

D2
kω − DkkDωω > 0. (4.9)

Let us now put k = kij + ak̃ and ω = ωij + aω̃, and use the expansion (4.7).
Then, in the vicinity of (ωij , kij ), the dispersion equation D(ω, k) = 0 takes the
approximate form

Dωω ω̃2 + 2Dkω ω̃k̃ + Dkk k̃2 + 2D1(ωij , kij ) = 0. (4.10)

This is the quadratic equation for ω̃. Its discriminant is

∆ = (D2
kω − DkkDωω )k̃2 − 2Dωω D1(ωij , kij ). (4.11)

If Dωω D1(ωij , kij ) < 0, then ∆ > 0 for any value of k̃, and the two roots of (4.10)
are real. On the other hand, when

Dωω D1(ωij , kij ) > 0, (4.12)

then ∆ < 0 if k̃ satisfies

k̃2 < η2
ij ≡ 2Dωω D1(ωij , kij )(D

2
kω − DkkDωω )−1 , (4.13)

and (4.10) has two complex conjugate roots. Hence, we conclude that the pump

wave is unstable with respect to perturbation with the wave number k = kij + ak̃

when |k̃| is sufficiently small if and only if the inequality (4.12) is satisfied. Note
that this inequality can be rewritten as η2

ij > 0.
However, the criterion (4.12) does not work in the vicinity of (1, 1), (ω45 , k45) and

(ω46 , k46) because D1(1, 1) = D1(ω45 , k45) = D1(ω46 , k46) = 0. Simple calculation
shows that ∂D1/∂k = ∂D1/∂ω = 0 when k = 1 and ω = 1. This implies that the
approximate solutions of the dispersion equation in the vicinity of (1,1) are given

by (4.8), i.e. they are real. Hence, there are no unstable modes with k and ω close
to unity.

In order to have an equation similar to (4.11) with the contributions from D0

and D1 of the same order when (ω, k) = (ω45 , k45) or (ω, k) = (ω46 , k46), we have to

take k = k4j + a2 k̂ and ω = ω4j + a2 ω̂, where j = 5 or j = 6. Then in the vicinity
of (ω4j , k4j ) (j = 5, 6), the dispersion equation D(ω, k) = 0 takes the approximate
form

Dωω ω̂2 + 2Dkω ω̂k̂ + Dkk k̂2 + 2D1ω ω̂ + 2D1k k̂ = 0, (4.14)

where

D1ω =
∂D1

∂ω

∣∣∣∣
k=k4 j
ω=ω4 j

, D1k =
∂D1

∂k

∣∣∣∣
k=k4 j
ω=ω4 j

(j = 5, 6).

The discriminant of this quadratic equation is

∆̃ = (D2
kω − DkkDωω )k̂2 + 2(Dkω D1ω − Dωω D1k )k̂ + D2

1ω . (4.15)

We see that ∆̃ is a quadratic trinomial with respect to k̂. Its discriminant is equal
to

∆̂ = Dωω

(
Dωω D2

1k + DkkD2
1ω − 2Dkω D1kD1ω

)

=
4τ 4k4(k − ω)2(ω2 − 1)2(ω2 − b2τ 2k2)2 [(1 + τ 2)2 − (1 − τ 2)2ω2 ]

1 − (1 − τ 2)2ω2
UW, (4.16)
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where

U =
[1 + τ 2 − (1 − τ 2)ω][1 + (2τ 2 − 1)ω2 ]

1 − (1 − τ 2)ω
+ 4ω(ω − 1)(2τ 2 − 1)

− 2[3ω2 + 2ω(2τ 2 − 1) − (2τ 2 + 1)]
√

1 − (1 − τ 2)ω, (4.17a)

W =
[1 + τ 2 − (1 − τ 2)ω][1 + (2τ 2 − 1)ω2 ]

1 + (1 − τ 2)ω
∓ 4ω(ω − 1)(2τ 2 − 1)

± 2[3ω2 + 2ω(2τ 2 − 1) − (2τ 2 + 1)]
√

1 + (1 − τ 2)ω. (4.17b)

In (4.16) and (4.17) either (ω, k) = (ω45 , k45) or (ω, k) = (ω46 , k46). In (4.17b) the
upper sign corresponds to ω = ω45 and the lower sign to ω = ω46 .

It is straightforward to see that the sign of ∆̂ coincides with the sign of UW .

We verified analytically that U4j < 0 and W4j > 0 for τ � 1 and 1 − τ � 1, where
U4j and W4j are given by (4.17) with ω = ω4j and j = 5, 6. We also calculated
U4j and W4j numerically for τ varying from 0.01 to 0.99 and found that U4j < 0

and W4j > 0. Hence, ∆̂ < 0 both for (ω, k) = (ω45 , k45) and (ω, k) = (ω46 , k46).

This implies that ∆̃ > 0 for any k̂ �= 0. Then it follows that the two roots of equation

(4.14) are real for any k̂, so that there are no unstable modes with (ω, k) close to
either (ω45 , k45) or (ω46 , k46).
We proved analytically that the inequality (4.12) is not satisfied when (i, j) =

(1, 3), (i, j) = (2, 4) or (i, j) = (2, 6). This implies that there are no unstable modes
with (ω, k) close to (ω13 , k13), (ω24 , k24) or (ω26 , k26).
The expression for η2

14 is given by

η2
14 =

4τ 8(1 − bτ)[1 + τ 2 − (1 − τ 2)ω14 ]

ω14 [1 − (1 − τ 2)ω14 ][(1 − bτ)2 + 4bτ 3 ][
√

(1 − bτ)2 + 4bτ 3 − (1 − bτ) + 2τ 2 ]

× {(1 − bτ)2 + 4bτ 3 − 2τ 2(1 − τ 2) − (1 − bτ − 2τ 2)
√

(1 − bτ)2 + 4bτ 3}−1 .
(4.18)

It is easy to prove that the last multiplier in this expression is positive for any

values of b and τ . Taking into account that, in accordance with (4.3b) and (4.4b),
ω14 > 0 and 1 − (1 − τ 2)ω14 > 0, we conclude that the sign of η2

14 coincides with

the sign of 1 − bτ . Since b < 1, it follows that η2
14 > 0 when τ < 1. This implies

that there are unstable modes with (ω, k) close to (ω14 , k14). The interval of wave
numbers corresponding to unstable modes is determined by |k − k14 | < aη14 . It

follows from (4.11) that the instability increment takes its maximum value when

k̃ = 0, i.e. when k = k14 . It is equal to γ14 = aγ̃14 , where γ̃14 is given by

γ̃14 =

√
2D1(ω14 , k14)

Dωω
=

τ

2b

{
ω14(1 − bτ)[1 − (1 − τ 2)ω14 ]

1 + τ 2 − (1 − τ 2)ω14

×
√

(1 − bτ)2 + 4bτ 3 − (1 − bτ) + 2τ 2

(1 − bτ)2 + 4bτ 3 − 2τ 2(1 − τ 2) − (1 − bτ − 2τ 2)
√

(1 − bτ)2 + 4bτ 3

}1/2

.

(4.19)
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Figure 2. The dependences of η14 on the dispersion parameter d. The solid, dashed and
dotted curves correspond to b = 0.2, 0.5 and 0.8, respectively. Negative (positive) values of
d correspond to the right-hand (left-hand) polarized waves.

Figure 3. The same as Fig. 2, but for γ̃14 .

In the limit of ideal MHD (τ → 1) the interval of unstable wave numbers and the
maximum instability increment are given by

∣∣∣∣k − 2

1 + b

∣∣∣∣ <
a(1 − b)1/2

b1/2(1 + b)2
, γ =

a(1 − b)1/2

2b1/2(1 + b)
. (4.20)

These results coincide with those obtained by Jayanti and Hollweg (1993b). The

dependences of η14 and γ̃14 on the dispersion parameter d = ℓk0 = (τ 2 − 1)/τ for
different values of b are shown in Figs 2 and 3.
This particular type of instability results in decay of the pump wave in the

forward-propagating sound wave and backward-propagating Alfvén wave, so that

it is called the decay instability (Galeev and Oraevskii 1963; Sagdeev and Galeev

1969; Derby 1978; Goldstein 1978; Wong and Goldstein 1986).

4.2. Stability of left-hand polarized waves (τ > 1)

For any τ > 1 and any b < 1 there are three points of intersection of two curves,
(ω14 , k14), (ω34 , k34) and (ω45 , k45), determined by (4.4b), (4.4e) and (4.4f), and
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the point ω = k = 0 where four curves intersect. There are additional points of
intersection of two curves with their number depending on the values of τ and b.

(i) b < b1(τ) ≡ τ−1(τ −
√

τ 2 − 1)2 .In this case there are three additional points of

intersection: one of curves k1(ω) and k5(ω) at point (ω15 , k15), and two of curves
k2(ω) and k4(ω) at points (ω±

24 , k
±
24), where

ω15 = −bτ +
(1 − bτ)

[
bτ + 1 +

√
(bτ − 1)2 + 4bτ 3

]

2(τ 2 − 1)
, k15 =

ω15

bτ
. (4.21)

ω±
24 = −bτ +

(1 + bτ)
[
bτ − 1 ±

√
(1 + bτ)2 − 4bτ 3

]

2(τ 2 − 1)
, k±

24 = −ω±
24

bτ
. (4.22)

(ii) b1(τ) < b < b2(τ) ≡ 2/τ(τ 2 + 1).In this case, there is only one additional point
of intersection, (ω15 , k15).

(iii) b > b2(τ).In this case once again there is only one additional point of intersec-
tion, (ω13 , k13), determined by (4.4a). The characteristic pictures of curves kj (ω)
(j = 1, . . . , 6) for τ > 1 are shown in Fig. 1. The upper right, lower left and lower
right panels correspond to b < b1(τ), b1(τ) < b < b2(τ) and b > b2(τ), respectively.
Similarly to Sec. 4.1, we start our analysis from the point ω = k = 0. Once again,

for 0 < k � 1, there are two real simple roots of D0(ω, k) = 0 and one real double
root satisfying |ω| � 1. Once again the two simple roots remain real when 0 < a � 1,
while the double root splits into two roots, ω±

3 , given by (4.5). In accordance with

(4.6), these roots are real when bτ(1+τ 2) > 2. However, they are complex conjugate
when bτ(1 + τ 2) < 2, and k̃ satisfies

k̃ < k̃lim =
τ(1 + τ 2)2

√
(3τ 2 + 1)(τ 2 − 1)[4 − b2τ 2(τ 2 + 1)2 ]

. (4.23)

Hence, for bτ(1 + τ 2) < 2 (which means that cS is smaller than the pump wave
group velocity; see, e.g., Longtin and Sonnerup (1986)) there is an unstable mode

with |ω| � 1 when k < ak̃lim, where k̃lim is given by (4.23). This mode corresponds
to the modulational instability studied by many authors (e.g. Sakai and Sonnerup

1983; Longtin and Sonnerup 1986; Wong and Goldstein 1986). Its increment is

given by

γmod = k

√
(τ 2 − 1)(3τ 2 + 1)

(1 + τ 2)2

{
a2τ 2

4 − b2τ 2(τ 2 + 1)2
− k2

(τ 2 − 1)(3τ 2 + 1)

(1 + τ 2)4

}
. (4.24)

The instability increment γmod(k) takes its maximum value,

γm =
a2τ 2(1 + τ 2)

2[4 − b2τ 2(τ 2 + 1)2 ]
, (4.25)

when k = km = ak̃lim/
√

2. Obviously, (4.23)–(4.25) are only valid when bτ(τ 2 + 1)
is not too close to 2. With the accuracy up to the notation, the expressions for k̃lim,
γmod, km and γm exactly coincide with the corresponding expressions obtained by
Longtin and Sonnerup (1986).

The general theory described in Sec. 4.1, of course, remains valid for τ > 1.
Once again the pump wave is unstable with respect to perturbation with the wave

number k = kij +ak̃ when |k̃| is sufficiently small if and only if the inequality (4.12)
is satisfied. We proved analytically that (4.12) is not satisfied for (ω, k) = (ω15 , k15)
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and (ω, k) = (ω±
24 , k

±
24). Hence, there are no unstable modes with (ω, k) close to

either (ω15 , k15) or (ω±
24 , k

±
24).

It follows from the analysis of Sec. 4.1 that the sign of η2
14 coincides with the sign

of 1−bτ . Hence, η2
14 > 0 when τ < 1/b and η2

14 < 0 when τ > 1/b. This implies that
the perturbations with the wave numbers satisfying |k − k14 | < aη14 are unstable

when τ < 1/b. The increment of these perturbations takes its maximum value

γ14 = aγ̃14 , with γ̃14 given by (4.19), when k = k14 . If τ > 1/b, then there are no
unstable perturbations with (ω, k) close to (ω14 , k14). The dependences of η14 and

γ̃14 on the dispersion parameter d = ℓk0 = (τ 2 − 1)/τ for different values of b are
shown in Figs 2 and 3.

Once again the criterion (4.12) does not work when either (i, j) = (1, 3) or (i, j) =
(4, 5) because D1(1, 1) = D1(ω45 , k45) = 0. ∂D1/∂k = ∂D1/∂ω = 0 when k = 1 and
ω = 1, so that the approximate solutions of the dispersion equation in the vicinity
of (1,1) are given by (4.8), they are real and there are no unstable modes with k
and ω close to unity.
We have seen in Sec. 4.1 that the existence of unstable modes with ω and k close

to ω45 and k45 , respectively, depends on the sign of the quantity ∆̂ determined by

(4.16). The conclusion that the sign of ∆̂ coincides with the sign ofUW remains valid

for τ > 1. We showed analytically that U45 > 0 and W45 > 0 for τ − 1 � 1 and for
τ � 1. We calculated U45 and W45 numerically for 1.01� τ � 10 and obtained that

U45 > 0 and W45 > 0 for τ in this interval. Hence, we conclude that ∆̂ > 0 for any
τ > 1 when (ω, k) = (ω45 , k45), which implies that there are unstable modes with
(ω, k) close to (ω45 , k45). These modes correspond to the beat instability (Forslund
et al. 1972; Wong and Goldstein 1986). The wave numbers of the unstable modes

satisfy the condition ∆̃ < 0. Using this condition we obtain that the interval of the
wave numbers corresponding to the unstable modes is determined by

k45 + a2 k̂1 < k < k45 + a2 k̂2 , (4.26)

where k̂1 and k̂2 are given by

k̂1,2 =
τ 2ω45k

2
45(τ

2 − 1)[1 + (2τ 2 − 1)ω45 ]

8(1 − ω2
45)(b

2τ 2k2
45 − ω2

45)

× (
√

[1 − (τ 2 − 1)ω45 ][1 + τ 2 + (τ 2 − 1)ω45 ]W45

±
√

[1 + (τ 2 − 1)ω45 ][1 + τ 2 − (τ 2 − 1)ω45 ]U45)
2

× ([1 + τ 2 + (τ 2 − 1)ω45 ][1 − (τ 2 − 1)ω45 ]
3/2

+ [1 + τ 2 − (τ 2 − 1)ω45 ][1 + (τ 2 − 1)ω45 ]
3/2)−2 . (4.27)

The increment of these perturbations takes its maximum value at k = k45 +a2(k̂1 +

k̂2)/2. This maximum value is equal to γ45 = a2 γ̂45 , where

γ̂45 =
τ 2k2

45 |k45 − ω45 |[1 − (τ 2 − 1)2ω2
45 ]

√
U45W45

|ω2
45 − b2τ 2k2

45 |[(1 + τ 2)2 − (τ 2 − 1)2ω2
45 ]

√
2(1 − ω2

45)

× ([1 + τ 2 + (τ 2 − 1)ω45 ][1 − (τ 2 − 1)ω45 ]
3/2

+ [1 + τ 2 − (τ 2 − 1)ω45 ][1 + (τ 2 − 1)ω45 ]
3/2)−1/2 . (4.28)
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Figure 4. The dependence of τc (solid line) and dc = (τ 2
c − 1)/τc (dashed line) on b.

The following asymptotic formulae are valid:

k̂1 ≈ k̂2 ≈ − 1

4(1 − b2)
, γ̂45 ≈ d

√
2

4(1 − b2)
for d =

τ 2 − 1

τ
� 1, (4.29)

k̂1 ≈ 3 +
√

3

18b2
, k̂2 ≈ 3 +

√
3

6b2
, γ̂45 ≈ 33/4

2b2d3
for d =

τ 2 − 1

τ
� 1. (4.30)

We can observe that both expressions (4.27) for k̂1,2 and (4.28) for γ̂45 contain

the multiplier ω2
45 − b2τ 2k2

45 in the denominators. When τ = 1, ω45 = k45 = 1.
Since b < 1, we conclude that ω2

45 − b2τ 2k2
45 > 0 at τ = 1. It is not difficult

to show that ω45 decreases and k45 increases when τ increase, which implies that
ω2

45 − b2τ 2k2
45 is a monotonically decreasing function of τ . When τ → ∞, then

ω45 → 0 and k45 →
√

3, so that ω2
45 − b2τ 2k2

45 < 0 for τ � 1. This analysis shows
that there is exactly one value τ = τc such that ω2

45 − b2τ 2k2
45 = 0 at τ = τc.

Since ω45 > 0 and k45 > 0, we have ω45 = bτk45 at τ = τc, which corresponds to
the dispersion relation for the forward-propagating sound wave. Hence, at τ = τc
there is a resonance between three wave modes: the backward-propagating Alfvén

wave bA−, the forward-propagating Alfvén wave fA+ and the forward-propagating

sound wave fs. The dependence of τc and dc = (τ 2
c − 1)/τc on b is shown in Fig. 4.

Note that ω14 = ω45 and k14 = k45 when τ = τc.
The dependences of k̂1 , k̂2 and γ̂45 on d for different values of b are shown in Figs 5

and 6, respectively. When τ = τc, the expressions for k̂1,2 and γ̂45 have singularities.

This is not surprising at all because the expansions of the form k = k45 + a2 k̂ and
ω = ω45 + a2 ω̂ are not valid when τ is close to τc, more precisely, when |τ − τc| ∼ a.
Taking into account that, at τ = τc, ω45 is a three-fold root of D0 , it is not difficult

to see that the correct expansion is k = k45 + ak̃ and ω = ω45 + aω̃. We did not
study the behaviour of the unstable mode at |τ − τc| ∼ a because it only occurs in
a very restricted domain of parameters b and τ .

5. Summary and conclusions

In this paper we considered the stability of circularly polarized Alfvén waves (pump

waves). We re-derived the dispersion equation governing the pump wave stability.

Then we carried out the stability analysis for small-amplitude pump waves. When
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Figure 5. The dependences of k̂1 (upper solid lines) and k̂2 (lower solid lines) on d for different

values of b. The horizontal dotted lines are the asymptotes for k̂1 and k̂2 as d → ∞. The
vertical dotted lines are the asymptotes for k̂1 and k̂2 as d → dc. Note that the gap between

the line showing k̂2 for d < dc, and the line showing k̂1 for d > dc is so small when b = 0.02
that it is almost invisible in the upper right panel.

doing so we assumed that the ratio of the sound and Alfvén speeds b is smaller than
unity (b < 1). We found that a right-hand polarized pump wave is unstable with
respect to perturbations with the dimensionless wave numbers satisfying |k−k14 | <
aη14 , where a is the dimensionless pump wave amplitude, and the quantities k14 and

η14 are functions of b and the dispersion parameter τ (recall that τ < 1 for right-
hand polarized waves and τ > 1 for left-hand polarized waves). The maximum
growth rate of this instability is proportional to a. This is the decay instability
which leads to the decay of the pumpwave into the forward-propagating sound wave

and backward-propagating Alfvén wave. We see that, qualitatively, the stability

properties of right-hand polarized pump waves are the same as those of pump

waves in ideal MHD, where the Hall term is neglected.

The stability properties of left-hand polarized pump waves are much more com-

plicated. In general, these waves can be subject to three different types of instabil-

ities. The first one is the modulational instability. For a small-amplitude pump

wave it occurs only if the inequality bτ(1 + τ 2) < 2 is satisfied. This inequality is
equivalent to the condition that cS is smaller than the pump wave group velocity.
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Figure 6. The dependences of γ̂45 on d for different values of b. The vertical dotted lines are
the asymptotes for γ̂45 as d → dc.

A pump wave is unstable with respect to perturbations with k satisfying k < ak̃lim,
where k̃lim depends on b and τ . The maximum growth rate of this instability is

proportional to a2 . A comprehensive analysis of the modulational instability for

pump waves with arbitrary amplitudes can be found in Longtin and Sonnerup

(1986).

The second type of instability is the same decay instability as occurs in the case

of right-hand polarized pump waves. However, now it only occurs if the condition

bτ < 1 is satisfied. Similarly to right-hand polarized waves, the instability increment
is proportional to a, and it occurs for the wave numbers satisfying |k − k14 | < aη14 .

The third type of instability occurs for any values of τ > 1 and b< 1. Only

perturbations with the wave numbers from a very narrow band k45 + a2 k̂1 < k <

k45 + a2 k̂2 are unstable, where k̂1 and k̂2 are functions of τ only. The increment of
this instability is proportional to a2 , except for τ close to τc when it is proportional
to a. This instability results in the growth of two side-band Alfvén waves, one
forward and one backward propagating. In accordance with Wong and Goldstein

(1986) this is the beat instability.
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Appendix A

Here we give the coefficient functions q0(k), . . . , q6(k):

q0 = 1, q1 = 4k(τ 2 − 1),

q2 = −{k4(τ 2 − 1)2 + k2 [(a2 + b2)τ 2 − 2(τ 2 − 2)2 + 4] + (1 + τ 2)2},

q3 = −2k[k2τ 2(τ 2 − 1)(a2 + 2b2) − 2(τ 2 + 1)],

q4 = b2τ 2(τ 2 − 1)2k6 − {2b2τ 2 [(τ 2 − 2)2 − 2] + a2τ 2(1 − 2τ 2) − 1}k4

+ {b2τ 2(τ 2 + 1)2 + a2τ 2(1 + 2τ 2) − 4}k2 ,

q5 = −2τ 2k3(τ 2 + 1)(a2 + 2b2), q6 = τ 2k4(a2 + 4b2 − b2k2).

(A 1)

References

Barnes, A. and Hollweg, J. V. 1974 Large-amplitude hydromagnetic waves. J. Geophys. Res.
79, 2302–2318.

Brodin, G. and Lundberg, J. 1990 On the stability of a finite-amplitude electromagnetic-wave
in an astrophysic-plasma. Phys. Scripta 42, 343–346.

Brodin, G. and Stenflo, L. 1988 Parametric instabilities of finite amplitude Alfvén waves.
Phys. Scripta 37, 89–92.

Brodin, G. and Stenflo, L. 1990 Coupling coefficients for ion-cyclotron Alfvén waves. Contr.
Plasma Phys. 30, 413–419.

Cramer, N. F., Hertzberg, M. P. and Vladimirov, S. V. 2003 Parametric instabilities in
magnetized bi-ion and dusty plasmas. Pramana-J. Phys. 61, 1171–1177.

Del Zanna, L. and Velli, M. 2002 Coronal heating through Alfvén waves. Adv. Space. Res. 30,
471–480.

Del Zanna, L., Velli, M. and Londrillo, P. 2001 Parametric decay of circularly polarized Alfvén
waves: Multidimensional simulations in periodic and open domains. Astron. Astrophys.
367, 705–718.

Derby, N. F., Jr. 1978 Modulational instability of finite-amplitude circularly polarized Alfvén
waves. Astrophys. J. 224, 1013–1016.

Forslund, D. W., Kindel, J. M. and Lindman, E. L. 1972 Parametric excitation of
electromagnetic waves. Phys. Rev. Lett. 29, 249–252.

Galeev, A. A. and Oraevskii, V. N. 1963 The stability of Alfvén waves. Sov. Phys. Dokl. 7,
988–993.

Ghosh, S. and Goldstein, M. L. 1994 Nonlinear evolution of a large-amplitude circularly-
polarized Alfvén-wave—low-beta. J. Geophys. Res. 99, 13 351–13 362.
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Viñas, A. F and Goldstein, M. L. 1991 Parametric instabilities of circularly polarized, large
amplitude, dispersive Alfvén waves—excitation of obliquely-propagating daughter and
side-band waves. J. Plasma. Phys. 46, 129–152.

Wong, H. K. and Goldstein, M. L. 1986 Parametric instabilities of circularly polarized Alfvén
waves. J. Geophys. Res. 91, 5617–5628.


