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Abstract The solar atmosphere is a dynamic environment, constantly evolv-
ing to form a wide range of magnetically dominated structures (coronal loops,
spicules, prominences, etc.) which cover a significant percentage of the surface
at any one time. Oscillations and waves in many of these structures are now
widely observed and have led to the new analytic technique of solar magneto-
seismology, where inferences of the background conditions of the plasma can be
deduced by studying magneto-hydrodynamic (MHD) waves. Here, we generalise
a novel magneto-seismological method designed to infer the density distribution
of a bounded plasma structure from the relationship of its fundamental and
subsequent harmonics. Observations of the solar atmosphere have emphatically
shown that stratification, leading to complex density profiles within plasma
structures, is common thereby rendering this work instantly accessible to solar
physics. We show, in a dynamic waveguide, how the period ratio differs from
the idealised harmonic ratios prevalent in homogeneous structures. These ratios
show strong agreement with recent observational work. Next, anti-node shifts are
also analysed. Using typical scaling parameters for bulk flows within atmospheric
waveguides, e.g., coronal loops, it is found that significant anti-node shifts can be
predicted, even to the order of 10 Mm. It would be highly encouraged to design
specific observations to confirm the predicted anti-node shifts and apply the
developed theory of solar magneto-seismology to gain more accurate waveguide
diagnostics of the solar atmosphere.

Keywords: Oscillations, Solar; Waves, Magnetohydrodynamic; Waves, Propa-
gation.

1. Introduction

The ubiquitous magnetic fields within the solar atmosphere create a vast array of,
often dynamic, plasma structures, such as coronal loops and spicules, which are

1 Solar Physics and Space Plasma Research Center,
University of Sheffield, Hicks Building, Hounsfield Road,
Sheffield, S3 7RH;
Email: (robertus; sma08abh; c.j.nelson)@shef.ac.uk
2 Armagh Observatory, College Hill, Armagh, BT61 9DG

SOLA: Influence_of_stratification_on_P1P2_ratios.tex; 4 June 2013; 11:19; p. 1
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known as ‘waveguides’ for magneto-hydrodynamic (MHD) waves. Such waves
have been widely studied in recent years due to the potential that they may
contribute non-thermal energy to heating the corona (for a review of MHD waves,
see: Roberts, 2000; Ruderman and Erdélyi, 2009; Taroyan and Erdélyi, 2009;
Mathioudakis, Jess, and Erdélyi, 2012). In this article we focus our attention on
a thin, finite-length, magnetic string, analogous to a coronal loop, to study how
density stratification effects the relationship between the fundamental (first) and
subsequent harmonics in a dynamic waveguide.

Oscillations in magnetic, cylindrical structures were extensively studied, and
summarised in a recently popular form, in a theoretical capacity, by Edwin and
Roberts (1983) and Roberts, Edwin, and Benz (1984). However, it was not until
Aschwanden et al. (1999) interpreted coronal loop oscillations, viewed using the
Transition Region and Coronal Explorer (TRACE) satellite, as manifestations
of the fast kink-mode that they were first observed. Recent improvements in
spatial and temporal resolutions have allowed a large number of oscillations to
be observed, e.g., Alfvén waves first observed by Jess et al. (2009) in the lower
solar atmosphere (for a review see Mathioudakis, Jess, and Erdélyi, 2012); kink
waves (Aschwanden et al., 1999; Verwichte et al., 2004; see Andries et al. (2009)
for a review); longitudinal waves (Deforest and Gurman, 1998; Berghmans and
Clette, 1999; reviews of sausage modes include De Moortel (2009) and Wang
(2011)). In particular, Verwichte et al. (2004) claimed to have observed evidence
of the first harmonic of an oscillating coronal loop; a potentially important tool
for solar magneto-seismology.

A plethora of examples of the fundamental and first harmonic within an
active region have been reported in recent years (e.g., De Moortel and Brady,
2007; O’Shea et al., 2007). Analysing a variety of TRACE observations, Van
Doorsselaere, Nakariakov, and Verwichte (2007) reported P1/P2 ratios of 1.81,
1.58 and 1.795 for fast kink-mode oscillations within coronal loops. Srivastava
et al. (2008) used Hinode data to calculate a P1/P2 ratio of 1.68 for sausage
modes in cool post-flare chromospheric loops. One suggested reason for the de-
viation of these values from two (the P1/P2 ratio for a homogeneous flux tube) is
density stratification, where complex interactions of gravity and magnetism lead
to inhomogeneity within the tube. Inhomogeneity within tubes may also lead to
spatial periodicities. Jess et al. (2008) analysed the same data as Aschwanden
et al. (1999), finding spatial periodicities over length scales of, approximately,
3.5 Mm. Observed period ratios within sunspot umbrae have been studied by
Campos (1986) (including the P1/P2 and P1/P3 ratios) finding deviations from
homogeneous values, implying that analytical approximations for thin-tubes
should be extended to thick-tubes. The P1/P2 ratio has been widely applied
in recent years, for example, Andries, Arregui, and Goossens (2005) and Verth,
Erdélyi, and Jess (2008) were able to estimate the scale height of a coronal loop;
the latter even considering the significance of magnetic stratification.

This article expands the current topic of magneto-seismology, a technique
which allows the inference of properties of the background plasma (e.g., density
structure and temperature) by analysing MHD waves. Magneto-seismology was
first suggested by both Uchida (1970) and Rosenberg (1970), and has since been
expanded by Roberts, Edwin, and Benz (1984), and more recently investigated in
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the context of solar interior-atmospheric magnetic coupling, by Erdélyi (2006),
to any magnetised solar plasma structure. There are several examples of this
method being exploited including Nakariakov and Ofman (2001) and Erdélyi
and Taroyan (2008). Verth et al. (2007) used spatial magneto-seismology to
calculate the anti-node shift of a magnetic flux tube with a non-homogeneous
density stratification. Further examples of magneto-seismology can be found in,
for example, Soler and Goossens (2011) and Soler, Ruderman, and Goossens
(2012). However, we expand upon these works by finding analytical approxi-
mations for specific density profiles that may model, and give insight, to the
complex stratification of atmospheric waveguides.

Dı́az, Oliver, and Ballester (2010) discussed a step-function density within
a loop structure, modelling the large density gradient between its footpoint
and apex, finding that for large density jumps a bead which is close to the
centre of a magnetic structure, representing dense prominence threads, will be
observed to have P1/P2 < 2. Soler and Goossens (2011) expanded this work to
a flowing heavy thread, where the period ratio was calculated numerically, also
finding a fall from the canonical value of two. In this work, we discuss a bead,
analogous to a ‘blob’ of plasma propagating slowly along a coronal loop such
that ρthread ≈ ρbead (observed by, for example, Ofman and Wang, 2008). We
assume that the bead is close to the end of the tube (rather than in the centre
as studied in, e.g., Dı́az, Oliver, and Ballester, 2010), as the largest divergence
from the homogeneous harmonic ratio should occur in spatial positions close to
the end of the loop. We begin by formulating an analytical solution for a light
bead which is stationary and situated close to the end of the loop. This is then
expanded so that the bead may move slowly away from the end of the loop,
simulating flows observed within coronal loop structures. A comparison between
these results and numerical results is also made.

Recent high-cadence, high-resolution observations have led to discussions re-
lating to the idea of flows within coronal loops (see, Kopp et al., 1985; Ofman
andWang, 2008). Often, localised brightenings can be observed progressing along
loop structures from the footpoints in the photosphere and chromosphere into
the corona (see, e.g., Ofman andWang, 2008). How these localised flows influence
MHD modes within loop structures has initially been studied in, e.g., Soler and
Goossens (2011) and Soler, Ruderman, and Goossens (2012) in ideal MHD and
by Morton and Erdélyi (2009) for cooling coronal loops. It has been found that
small, propagating density structures within loops can cause a deviation from the
expected canonical P1/P2 ratio. We study such a system. Further, the topic of
anti-node shifts is also discussed, finding that non-homogeneous density profiles
lead to large divergence from expected anti-node positions. The underpinning
idea here is that eigenfunctions may be more sensitive to small (i.e., linear)
perturbations when compared to variations in eigenvalues (i.e., frequencies) of
MHD waveguides.

Our work will be structured in the following way. In Section 2, we describe
the basic model. Section 3 discusses the effects of a single density discontinuity
on the relationship of the harmonics of an oscillating thin tube. In Section 4,
we derive the effects of a step-function density on the relationship between the
harmonics of an oscillating tube before expanding this to a moving bead in
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Figure 1. A schematic diagram of the model presented. For Section 4, v0 = 0. The dashed
line represents the first harmonic standing oscillation of a homogeneous loop.

Section 5. In Section 6, the anti-node shift of the harmonics is discussed in the
context of spatio magneto-seismology. Section 7 draws together our conclusions
and suggests further research.

2. Model Setup

The model which is studied can be summarised as the oscillations of a straight-
ened, thin flux tube of length L and radius R. We use a cylindrical coordinate
system (r, ϕ, z) where the z-axis corresponds to the axis of the tube. The mag-
netic field both inside and outside the tube has the form B = Bez where B is
homogeneous with respect to z. As in many coronal models, the β = 0 (i.e., cold
plasma) condition is applied, thereby removing any dependency on temperature.
The loop has footpoints fixed in the photosphere, i.e., its ends are immovable at
z = 0 and z = L.

We state that ρe is the background density of the tube and ρb(= ρe + δρ
where |δρ| ≪ |ρe|) is the density within the bead. The tube sits within a quiet
coronal plasma with density, ρo, much less than the tube density i.e. ρo/ρe ≪ 1.
The bead moves with a constant speed, v0. The setup of the problem is shown
in Figure 1. This model represents an oscillating coronal loop in which plasma,
of a higher density than that of the loop, moves along the magnetic field lines,
modelling observations by, e.g., Ofman and Wang (2008).

The density discontinuity in our model is situated such that it is close to
the end of the loop, therefore, enacting the largest influence on the oscillations
of the tube (see, e.g., Soler and Goossens, 2011). By specifying the placement
of the bead in such a way, as well as considering a small density change, we
find significantly different results from other researches in this topic (e.g. Dı́az,
Oliver, and Ballester, 2010; Soler and Goossens, 2011), including elegant ana-
lytical approximations for all harmonics. It should be noted that we consider
only piecewise constant density profiles, as opposed to continuous stratification.
Magnetic atmospheres with continuous stratification have been extensively stud-
ied by many authours including Ferraro and Plumpton (1958), Leroy and Bel
(1979) and Zhugzhda (1984), among others, and has recently been extended
to flux tube geometry by, e.g., Verth and Erdélyi (2008). Geometries similar to
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these are thought to be more realistic of solar structures. However, a combination
of flows and continuous density profiles present numerous difficulties which are
not studied in the present article. The expansion of the methods presented in
this research to more complex geometries could form the basis of an interesting
future study.

It is assumed that the tube exists such that it can be modelled by the thin-tube
approximation (TT) outlined by Dymova and Ruderman (2005) i.e. R/L ≪ 1.
Assuming a typical coronal loop structure, we estimate that L ≈ 50 − 150 Mm
and R ≈ 1−2 Mm giving R/L ≈ 0.007−0.04 and, hence, that this approximation
holds for our model. From this approximation, Dymova and Ruderman (2005)
found that the governing equation (which has later been used by, e.g., Erdélyi
and Verth, 2007; Verth and Erdélyi, 2008) of transversal perturbations can be
written as

∂2v(z, t)

∂t2
− v2k(z, t)

∂2v(z, t)

∂z2
= 0, (1)

where v(z, t) is the transverse velocity at the tube boundary, and vk(z, t) is the
kink-speed defined as

vk,e(z, t) =

√

2B2

µ(ρe + ρo)
and vk,b(z, t) =

√

2B2

µ(ρb + ρo)
. (2)

Note, as δρ → 0, it is simple to see that vk,e(z, t) ≈ vk,b(z, t).
Equation (1) is only strictly applicable when vk is independent of t, i.e. there

are no bulk motions present. The correct equation, taking into account bulk
flows, was derived by Ruderman (2010); however, in a suitable limit (v0 ≪ vA,
the Alfvén speed), Equation (1) is applicable and has been widely used by, e.g.,
Soler and Goossens (2011).

3. Single Density Discontinuity

We begin our analysis by considering a single density jump; this can be mod-
elled using a Heaviside function. Let us assume that the density, ρ, follows the
distribution

ρ(z) =

{

ρe z ∈ [0, z0];
ρb z ∈ [z0, L],

(3)

where z = z0 is the position of the density jump and ρe < ρb implies 0 < δρ (or
ρb < ρe that δρ < 0).

To calculate the dispersion relationship for standing waves with these back-
ground conditions, we will use the separation of variables technique on the
governing equation [Equation (1)], assuming that v(z, t) = Z(z)T (t). The spatial
dependence, Z(z), is denoted by

Z(z) =

{

Ze(z) z ∈ [0, z0];
Zb(z) z ∈ [z0, L],

(4)
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where

Ze(z) = A sin

(

ωz

vk,e

)

(5)

and

Zb(z) = C

[

sin

(

ωz

vk,b

)

− tan

(

ωL

vk,b

)

cos

(

ωz

vk,b

)]

, (6)

are calculated using the boundary conditions. We shall define two further con-
ditions on the oscillating loop

[Z(z)]
z=z0+δz
z=z0−δz = [Z ′(z)]

z=z0+δz

z=z0−δz = 0, as δz → 0, (7)

thereby forcing continuity of the waveguide at z0. Applying these conditions to
Equations (5) and (6) gives us the dispersion relationship,

tan

(

ωL

vk,b

)[

tan

(

ωz0
vk,e

)

tan

(

ωz0
vk,b

)

+

(

vk,b
vk,e

)]

+

[

tan

(

ωz0
vk,e

)

−

(

vk,b
vk,e

)

tan

(

ωz0
vk,b

)]

= 0. (8)

In order to reduce the trigonometric equation [Equation (8)] to a simpler
approximation of ω, dimensionless parameters, as in Verth et al. (2007), are
introduced. This allows us to replace the characteristic speed, the eigenfrequency,
ω, and z0 with their scaled counterparts

κ =

(

vk,b
vk,e

)

, γ =
ωL

vk,e
, ǫ =

L− z0
L

. (9)

Using the dimensionless parameters [Equation (9)] and Equation (8), we are able
to calculate

tan
(γ

κ

)

=
κ tan

(

ωz0
vk,b

)

− tan
(

ωz0
vk,e

)

tan
(

ωz0
vk,e

)

tan
(

ωz0
vk,b

)

+ κ
, (10)

tan (γǫ) =
tan (γ)− tan

(

ωz0
vk,e

)

1 + tan (γ) tan
(

ωz0
vk,e

) , (11)

and

tan
(γǫ

κ

)

=
tan

(

γ
κ

)

− tan
(

ωz0
vk,b

)

1 + tan
(

γ
κ

)

tan
(

ωz0
vk,b

) . (12)
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(a) ǫ for κ = 0.9. (b) κ for ǫ = 0.1

Figure 2. Fits of the analytical solution derived in Equation (20) to numerical models.

After some further algebra, Equation (8) can be cast into the following, more
compact, form,

[tan(γ)− tan(γǫ)] + κ
[

tan
(γǫ

κ

)

+ tan
(γǫ

κ

)

tan(γ) tan(γǫ)
]

= 0. (13)

Assuming a weak stratification, such that ρe ≈ ρb, it is simple to see that
κ ≈ 1. Equation (10) implies

tan(γ) ≈ 0, (14)

and so

γ ≈ nπ, n = 1, 2, 3, ... (15)

Acknowledging the basic model setup of the geometry of the problem, we limit
the spatial position of the discontinuity such that ǫ ≪ 1. Simple calculations
then lead us to

tan(γ) ≈ γ − nπ, (16)

tan(γǫ) ≈ γǫ+
1

3
(γǫ)3, (17)

tan
(γǫ

κ

)

≈
γǫ

κ
+

1

3

(γǫ

κ

)3

, (18)

which allow us to rewrite Equation (13) as a cubic function in γ. Since ǫ is, by
definition, small, O(ǫ4) or higher order terms have been neglected from Equa-
tions (17) and (18). Our approximations allow the calculation of the dispersion
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relationship

ǫ2
[

1

3

(

ǫ− ǫκ2
)

+ κ2

]

γ3 − (ǫκ)
2
nπγ2 + κ2γ − nπκ2 = 0. (19)

The dispersion relation is now in a convenient form, as a wide range of methods
are available for solving cubic equations, allowing Equation (19) to be solved for
γ. Using the perturbation γn = nπ+ γ̃, we are able to analytically determine γ,
i.e.

γn = nπ +
ǫ3n3π3(κ2 − 1)

3(n2π2ǫ3(1− κ2) + ǫ2κ2n2π2 + κ2)
, (20)

hence, allowing the calculation of the P1/P2 ratios for this density profile (as γ
is related to ω through Equation (9), it is easy to see that Pn ∝ 1/γn). Note that
we have added the subscript n to γ to denote the (n− 1)-th harmonic clearly.

We are easily able to note, that γ̃ causes the deviation of the ratios of the
harmonics for κ 6= 1, from the counterparts in uniform plasma. Let us plot
P1/P2 by fixing κ at, e.g., 0.9 and varying ǫ (Figure 2a) and fixing ǫ at, say,
0.1 while varying κ (Figure 2b). These choices of κ and ǫ represent a coronal
loop embedded in the solar atmosphere. The period ratio is now calculated using
Equation (20) (solid line); also plotted is the period ratio computed using numer-
ical methods with respect to Equation (13) (dashed line). A strong correlation
between the numerical and analytical solutions is observed for ǫ < 0.2 (Figure
2a). This agrees with the assumption that ǫ ≪ 1. For ǫ = 0.1, the fit of the
analytical and numerical solutions around κ = 1 shows less than one percent
error (Figure 2b). Note that Figure 2b shows that for κ > 1, a lower density
after the jump, P1/P2 > 2. For κ < 1, corresponding to a higher density after
the jump, P1/P2 < 2; as in many observed kink mode oscillations of coronal
loops (e.g., Van Doorsselaere, Nakariakov, and Verwichte, 2007). This model is
rather basic and is not an accurate representation of observed density profiles.
However, in this work, it serves as a basis to expand the analysis in future
sections.

4. Step Function Density

Step function densities are models which can be used to approximate a range of
observed phenomena within coronal loops. For example, a small bead propagat-
ing from the footpoints in the photosphere or chromosphere to the corona along
a waveguide (see Ofman and Wang, 2008) or stratification, where a two-layer
atmosphere is chosen (i.e. a heavy photosphere and light corona leading to a
decrease in density in the centre of the tube). The first example is analysed in
this article. The analysis presented, focuses on a density profile defined as

ρ(z) =

{

ρe z ∈ [0, z0 − a] ∪ [z0 + a, L];
ρb z ∈ [z0 − a, z0 + a],

(21)
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where z0 is the center of the step function and a is half the length of the step.
Performing a similar analysis to Section 3, the dispersion relationship for this
density profile can be written as

2γα

κ2

[

tan2
(

ωz0
vk,e

)

− tan

(

ωz0
vk,e

)

tan(γ)

]

+ 2γα

[

1 + tan

(

ωz0
vk,e

)

tan(γ)

]

+ [−2γα+ tan(γ)]

(

1 + tan2
(

ωz0
vk,e

))

= 0, (22)

where

tan

(

ωz0
vk,e

)

≡
tan(γ)− tan(γǫ)

1 + tan(γ) tan(γǫ)
, (23)

and

α =
a

L
. (24)

As we define the bead such that it is small, therefore a ≪ L, it is simple to note
that α ≪ 1. This is consistent with assumptions made in other analytical works
(e.g., Dı́az, Oliver, and Ballester, 2010).

Continuing the analysis as in Section 3, we are able to express γ as

γn = nπ +
2n3π3α(κ2 − 1)ǫ2

2n2π2αǫ(κ2 − 1)(1− 3ǫ) + κ2(1 + n2π2ǫ2)
. (25)

Figure 3 shows the period ratio using Equations (22) and (25) for the numerical
and analytical solutions, respectively. As in Figure 2, we see a reasonably good
agreement between the two solutions. For this plot, the newly defined length of
the bead to the length of the loop ratio is held fixed at α = 0.1. Recalling the
geometry of the problem (Figure 1), α = 0.1 creates the limit ǫ > 0.1. Intuitively,
varying α will give different limits for ǫ. Once again we see that if κ < 1, the
ratio of the period of the harmonics drops below two (Figure 3b), i.e., the period
ratio of a homogeneous oscillating loop. This finding agrees with both intuition
and with observational evidence which suggest that heavy plasma propagating
along coronal loops may influence each harmonic individually.

Dı́az, Oliver, and Ballester (2010) considered a step density function close to
the centre of a loop using a comparable TT approximation. Analytical period
ratios were determined for the cases for small frequency, γ ≪ π/2 in our notation,
and for a small thread α ≪ 1. The main applications of the work by Dı́az, Oliver,
and Ballester (2010), however, were towards prominence threads, principally
focusing on oscillations within these structures. This, therefore, provides impor-
tant differences from the model presented in this current work. For example, the
present work discusses a relatively light bead positioned towards a footpoint of
a loop, rather than a heavy central bead, allowing the derivation of a number of
analytical solutions for periods of standing kink waves.
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(a) ǫ for κ = 0.9. (b) κ for ǫ = 0.1

Figure 3. Equivalent to Figure 2 for Equation (25).

5. Bead Propagation along Loop

Now, it is possible to add a time-dependence of the background state, represent-
ing a gas plug flowing along the magnetic field lines (or a bead moving along a
string). It is assumed that the initial density profile of the bead is close to the
end of the loop as in Section 4, before advancing along the loop. This can be
written concisely as

ρ(z, t) =

{

ρe z ∈ [0, z0 + v0(z)t− a] ∪ [z0 + v0(z)t+ a, L];
ρb z ∈ [z0 + v0(z)t− a, z0 + v0(z)t+ a],

(26)

where t is time and v0(z) is the flow velocity of the bead. We take the initial
point of the bead close to z0 = L (and so ǫ ≪ 1) and consider a constant speed
of advancement in the negative z direction, that is v0(z) ≡ v0, v0 < 0. We now
use the WKB method (see Bender and Orszag (1978) for more information on
this technique) to solve the governing equation [Equation (1)] for the dynamic
density profile. Application of the WKB method requires that the characteristic
time of density changes should be small compared to the period of oscillations.
This implies

δ ≡
v0
L

(27)

is small or |δt| ≪ 1. This assumption is reasonable when compared to observa-
tions of flows (Ruderman (2010) suggested a reasonable limit to flow velocities
should be approximately 100 km s−1).

Continuity of the solution at the endpoints of the bead, as in Sections 3 and
4, allows us to obtain the dispersion relationship

2γα tan(γ)

[

tan

(

ωz0
vk,e

)

+Ω

] [

1− tan

(

ωz0
vk,e

)

Ω

](

1−
1

κ2

)
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+(tan(γ)− 2γα)

{

[

tan

(

ωz0
vk,e

)

+Ω

]2

+

[

1− tan

(

ωz0
vk,e

)

Ω

]2
}

+
2γα

κ2

{

[

tan

(

ωz0
vk,e

)

+Ω

]2

+ κ2

[

1− tan

(

ωz0
vk,e

)

Ω

]2
}

= 0, (28)

where

Ω = tan

(

ωv0t

vk,e

)

. (29)

It is interesting to note that Equation (28) is equivalent to Equation (14)
of Soler and Goossens (2011) who, however, investigated the properties of the
fundamental harmonic of the kink mode within a solar prominence. Several key
differences arise from those performed by Soler and Goossens (2011), including,
e.g., the ratio of the density of the bead and loop, as explained in Section 2.
Now, by making some further simplifications, we seek to solve Equation (28)
analytically, hence allowing the explicit calculation of the P1/P2 ratio for the
specific density profile studied in this article.

Assuming that L ≫ |v0t| (i.e. at all modelled times, the distance travelled by
bead is much less than L), in accordance with the WKB method, we find

Ω ≈ γδt. (30)

Applying Equation (30) to Equation (28) and using the techniques exploited in
Sections 3 and 4, we obtain that

γn = nπ +
2n3π3α(κ2 − 1)(ǫ− δt)2

2n2π2α(κ2 − 1)[δt(6ǫ− δt− 1) + ǫ(1− 3ǫ)] + κ2f1
, (31)

where

f1 = 1 + n2π2δ2t2 + n2π2ǫ2. (32)

Here, we make note of several key limits. If bulk flows are absent, v0 = 0,
we recover Equation (25) as we expect. For κ < 1 and t increasing, the ratio of
the first two harmonics deviates from two towards zero, i.e., as a bead which is
heavier than the background loop moves through a thin tube, the ratio of the
fundamental and first harmonics decreases. For κ > 1 and t increasing, we find
that the period ratio increases from two, i.e., a light bead travelling through a
thin tube increases the value of the harmonic ratios. If |v0t| ≪ L we find that
P1/P2 ≈ 2, i.e., a small bead travelling very slowly has little effect on the ratio
of the periods of the first two harmonics, as we would expect.

Figure 4 shows how γn, calculated from Equation (31) (solid line) deviates
from the canonical values nπ (dotted line) over time. We plot for n = 1, 2, 3.
For larger values of n, the deviation from nπ occurs quicker, hence leading to
a reduction in the P1/P2 ratio over time. Note, as |v0t/L| → 0.15, γn slowly
flattens out. This can be easily seen in Figure 4(b), where the higher harmonics
show faster deviation from the idealised period ratio. It is interesting to note,
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Figure 4. (a) The deviation of γn from nπ over time. (b) Ratio of γn with respect to nπ over
time. Line styles and corresponding harmonic are as follows: Solid line for n=1; dashed line
for n = 2 and dot-dashed line for n = 3.

that Figure 4(b) shows a non-linear deviation for the harmonics and appears,
for n = 3, to approach a minimum over time.

The influence of bulk flows from the footpoints of a loop into the corona, on
standing MHD oscillations, is potentially an important tool for explaining the
deviation of the observed P1/P2 ratios from the idealised, uniform oscillating
loop ratios of two. In this article, we have derived an analytical approximation
for the P1/P2 ratio of a moving bead (analogous to a small propagating density
structure), finding approximate expressions which match closely with observa-
tions. It is interesting to note that, in the model presented here, the localised
density enhancements do not need to propagate deeply into the corona to influ-
ence the period of standing oscillations. Strong bulk motions at the photospheric
footpoints of such loop structures could cause rapid decrease of the P1/P2 ratio.
In the following section, we discuss the influence of density stratification on the
anti-nodes of standing MHD waves applicable to solar atmospheric oscillations,
e.g., to a coronal loop, thereby, presenting a second quantifiable value modi-
fied by a propagating density structure. Such study may open new avenues in
spatio magneto-seismology, providing conditional constraints on coronal loop
modelling.

6. Anti-Node Shift

The shift of anti-nodes within loop oscillations has also been discussed in re-
cent years (see, e.g., Verth et al., 2007; Verth and Erdélyi, 2008). It has been
found that the shift of the anti-nodes depends on both ǫ and κ and that high
density contrasts cause the largest deviation from canonical values, i.e., from
eigenfunctions of homogeneous loops. Here, discussion focuses on the influence
that changing both the density distribution and the position of the discontinuity
has on the anti-node shift.
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Figure 5. The change of the first harmonic anti-node shift over time with respect to velocities:
10 km s−1 (dot-dashed line); 25 km s−1 (dashed line); 50 km s−1 (dotted line) and 100 km
s−1. Other parameters are L = 150 Mm, ǫ = 0.1, κ = 0.9, n = 2 and α = 0.05.

The anti-node shift is an observable trait of oscillations which can be used as

a novel diagnostic tool to infer background plasma properties. Using the anti-

node shift to investigate solar structures is still in its infancy; mainly because the

spatial resolution of current solar instrumentation is just about at the sensitivity

to search for and detect this effect in standing oscillations. It is not yet thoroughly

expanded upon in the literature. Work such as we present here could become a

valuable addition to this new and exciting technique.

We shall begin by noting that the position of the anti-nodes can be found by

calculating

d

dz
(zAN) = 0, (33)

where z = zAN is the positions of the anti-nodes. To calculate shift, one must

first calculate the position of the anti-nodes for a homogeneous loop. We then

assume weak stratification ρe ≈ ρb to find the position of the anti-nodes for the

inhomogenous case. Once these are known, it is simple to subtract one from the

other to derive the anti-node shift expressed as

∆zAN =

∣

∣

∣

∣

(2n− 1)L

2

(

π

γn
−

1

n

)
∣

∣

∣

∣

. (34)
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Figure 6. Variance of the anti-nodes over time for n = 2. Different lines correspond to different
sizes of α in our model, namely: 0.01 (solid line), 0.05 (dotted line), 0.1 (dashed line), and 0.15
(dot-dashed line). It is simple to see that larger beads cause larger shifts of the anti-nodes.

Substituting Equation (20) into Equation (34), it is easy to calculate

∆zAN =

∣

∣

∣

∣

(2n− 1)L

2n

[

3ǫ3n2π2(1− κ2) + 3κ2(1 + ǫ2n2π2)

2ǫ3n2π2(1− κ2) + 3κ2(1 + ǫ2n2π2)
− 1

]
∣

∣

∣

∣

(35)

for the single-density-discontinuity case. Note that if κ = 1, i.e., there is no
density jump, we retrieve ∆zAN = 0. Therefore, no change in the anti-nodes,
as we would expect. Here, it is found that if there is a stronger contrast in the
densities (i.e. |κ| increases) then a higher anti-node shift would be manifested.
Substituting characteristic values applicable to coronal loops, e.g., L = 150 Mm,
ǫ = 0.1, κ = 0.9, and n = 2 (i.e., the first harmonic) into Equation (35), we
find ∆zAN = 0.248 Mm which is a relatively small deviation of node movement
over the length of the loop. This would be harder to measure with the currently
available instrumental limit, though with improving technology it is anticipated
that such measurements should be carried out in the near future.

Next, let us derive the anti-node shift for the step-density. After some algebra
we find

∆zAN =

∣

∣

∣

∣

(2n− 1)L

2n

[

2n2π2αǫ(κ2 − 1)(3ǫ− 1)− κ2(1 + n2π2ǫ2)

2n2π2αǫ(κ2 − 1)(2ǫ− 1)− κ2(1 + n2π2ǫ2)
− 1

]∣

∣

∣

∣

. (36)

Again, for κ = 1 there is no anti-node shift as expected. Substituting L = 150
Mm, ǫ = 0.1, κ = 0.9, and α = 0.05 into Equation (36) returns ∆zAN =
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0.789 Mm. This is a significant estimated deviation from the unperturbed anti-
nodes, even close to the spatial resolution of the Atmospheric Imaging Assembly

onboard the Solar Dynamics Observatory spacecraft (SDO/AIA) instrument,
implying that observations of these shifts could be possible. We would strongly
encourage the community to pursue observational studies into spatio magneto-
seismology.

Finally, we determine the anti-node shift of a thin loop over time when a bead
is propagating away from its footpoint. This can be written as:

∆zAN =

∣

∣

∣

∣

(2n− 1)L

2n

[

2n2π2α(κ2 − 1)f2 + κ2f1
2n2π2α(κ2 − 1) [f2 + (ǫ− δt)2] + κ2f1

− 1

]
∣

∣

∣

∣

(37)

where

f2 = δt(6ǫ− δt− 1) + ǫ(1− 3ǫ) (38)

and f1 is as described in Equation (32).
In Figure 5, we plot the anti-node shift over time from t = 0 (taken as the

conditions stated after Equation (36) and varying α, the ratio of half of the
length of the bead to the length of the loop). The plot beautifully agrees with
the intuitive result, that faster propagating bead will cause larger anti-node shift.
Next, in Figure 6, anti-node shifts are plotted for different flowing bead lengths.
It is found that small beads cause relatively small anti-node shifts (less than 2
Mm). However, even for values such as α = 0.15, anti-node shifts of around 12
Mm can be found. As the bead propagates away from the footpoint of the loop,
it is found that the deviation from the unperturbed anti-nodes increases. Given
that the pixel size of the SDO/AIA instrument is fixed at 0.6′′, we note that
values such as 2− 12 Mm may be easily observable with current techniques.

7. Discussion and Conclusions

In this article, we have presented both an analytical approximation for the period
ratio of transversally oscillating coronal loops, with different density profiles
representing a density jump, a static bead and a moving bead. An estimate
of the accompanying anti-node shift was found. These two quantifiable, and
complimentary, physical parameters for transverse standing oscillations could
provide clear insight into the background characteristics of magnetic loops in the
solar atmosphere. The model discussed in this work encompasses localised bulk
flows from loop footpoints into higher regions of the atmosphere. We find that
these localised density enhancements can have a large and measurable influence
by both modifying the P1/P2 period ratios and causing anti-node shifts within
flux tube structures.

We began our analysis by studying the P1/P2 ratios of loops which had
non-homogeneous density profiles. The dispersion relationship for each case was
derived before analytical solutions were obtained. It was found, as suggested by,
for example, Dı́az, Oliver, and Ballester (2010) and Soler and Goossens (2011),
that a bead, heavier than the plasma in the background loop, will lead to a
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modification of the P1/P2 ratio to a value less than its canonical value. Although
it is not directly studied in this article, it is interesting to note here that the
Equations derived here also apply to beads lighter than the background density
of the flux tube and show an increase of the P1/P2 period ratio from two.

The model studied in this article was dependent on a number of parameters,
specifically, the ratio of the kink speed of tube sections and ǫ, the dimensionless
position of the bead along the loop. Analytical solutions were obtained such that
ǫ ≪ 1, i.e., a jet flow propagating from the photosphere or chromosphere into
the corona (as observed by, e.g., Ofman and Wang, 2008). It is important to
note that the background density of the loop studied in this model includes no
stratification and, therefore, presents a simplistic example.

Wave propagation in a continuously stratifiied magnetic atmosphere, rather
than a flux tube, has been studied extensively. Vertical and oblique magnetic
fields were investigated by, e.g., Ferraro and Plumpton (1958) and Leroy and
Bel (1979), respectively. Campos (1987) found that the P1/P2 ratio for standing
Alfvén waves in an isothermal atmosphere (where the layer is larger than the
atmospheric scale height) is given by j2/j1 = 2.25, where jn is the n-th root of
the Bessel function J0. This increase from 2 for Alfvén waves is not in direct
disagreement with our results for kink waves in a thin flux tube as each case
neglects a different feature of a more complex, and realistic, model of a flux tube
with continuous density stratification and flows.

The P1/P2 period ratio was also derived as a function of time for a moving
bead through a loop. It was found that larger values of n cause quicker and
larger divergence from the typical period of nπ leading to a decreasing period
ratio initially. This suggests that the largest divergence from the expected P1/P2
period ratio for a homogeneous bounded flux tube occurs when the bead is in
a spatial position such that |v0t/L| → 0.2. However, due to our approximation
assumptions, we are unable to verify this analytically. We conclude that density
stratification can play an important role in the deviation of the P1/P2 ratio
from two. Future studies should be undertaken with the aim of discussing more
advanced, and applicable, density profiles (such as a bead flowing through a
non-homogeneous background loop).

Finally, anti-node shifts generated through density stratification were dis-
cussed. It was found that, as the bead propagates away from the end of the
loop, the anti-node shifts increase in general. Overall, we suggest that localised
bulk flows within loop structures could be an important factor in explaining
observed localised anti-node shifts.
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