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Stationary Random Fields on the
Unitary Dual of a Compact Group

David Applebaum

Abstract We generalise the notion of wide-sense stationarity from sequences
of complex-valued random variables indexed by the integers, to fields of ran-
dom variables that are labelled by elements of the unitary dual of a compact
group. The covariance is positive definite, and so it is the Fourier transform
of a finite central measure (the spectral measure of the field) on the group.
Analogues of the Cramer and Kolmogorov theorems are extended to this
framework. White noise makes sense in this context and so, for some classes
of group, we can construct time series and investigate their stationarity. Fi-
nally we indicate how these ideas fit into the general theory of stationary
random fields on hypergroups.

1 Introduction

There are many important classes of stochastic process that have been sys-
tematically developed, both because of their mathematical vitality, and their
importance for applications. These include, for example, Markov chains,
branching processes, and diffusion processes. The emphasis in this paper is on
discrete-time (wide-sense) stationary, complex-valued processes (Xn, n ∈ Z),
so that E(|Xn|

2) < ∞ and

E(XmXn) = E(Xm−nX0), (1)

for all m,n ∈ Z. These may be used to model fluctuations from some fixed
background signal. Stationarity is a vital ingredient in the theory of time
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2 D.Applebaum

series (see e.g. [6]) which has a wide range of applications, including economics
and climate science.

A stationary process is characterised by its covariance function C(n) =
E(XnX0), which is positive-definite, and so by the Herglotz theorem, there
is a finite measure µ on the torus T, known as the spectral measure of the
process, for which

C(n) =

∫

T

e−2πinθµ(dθ),

for all n ∈ N.
If we are interested in describing the interaction of chance with symmetry,

then it is natural to consider stationary random fields on a group G, i.e.
mappings X : G → L2(Ω,C) for which1

E(X(hg1)X(hg2)) = E(X(g1)X(g2)),

for all g1, g2, h ∈ G. The study of these, and related objects on homogeneous
spaces, seems to have begun with work by A.M. Yaglom in the late 1950s (see
e.g. [15]); recently there have been monograph treatments and new applica-
tions to e.g. earthquake modelling and the study of the cosmic background
radiation left over from the Big Bang [13, 14].

In this paper, we suggest that, although replacing Z as the index of a
stationary field by a group G is mathematically highly productive, it may
not be the most natural generalisation. As was discussed above, the spectral
measure of a stationary process is defined on the torus T; this is the simplest
compact group, and its dual group is Z. We propose that T should be replaced
by a general (and so, not necessarily abelian) compact group, so that the role

of Z is now played by the unitary dual Ĝ of G. Note that Ĝ is not itself a
group if G fails to be abelian.

In section 2 of this paper we generalise the definition (1) to random fields

over Ĝ. Indeed we say that a field (Yπ, π ∈ Ĝ) is stationary if

E(Yπ1
Yπ2

) = E(Yπ1⊗π∗

2
Yǫ),

for all π1, π2 ∈ Ĝ, where π∗ is the irreducible representation that is conjugate
to π, and ǫ is the trivial representation. Some justification as to why this is a
sensible generalisation of (1) will be provided. We also define the covariance
function and show that it is the Fourier transform (in the group-theoretic
sense) of a finite central measure on G, which we call the spectral measure
of the field. We establish a Cramer-type representation of stationary fields as
stochastic integrals with respect to orthogonally scattered random measures
on G, and we prove a theorem of Kolmogorov-type to the effect that every

1 We only write down the left-invariant case here, but of course right-invariance is equally
valid.
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positive-definite function on Ĝ is the covariance of a stationary random field
on Ĝ.

We have already pointed out that Ĝ is not in general a group, but it is a
hypergroup [4] and we discuss this in section 4. There is an existing literature
on stationary random fields on hypergroups [9, 11, 12] which this current work
complements. We make some observations:

1. The definition of stationarity for general hypergroups is quite non-intuitive.
But in our case, the parallel with the classical case is very direct.

2. The duality between the hypergroup Ĝ and the group G is manifest in the
relationship between the stationary field and its spectral measure. There is
a rich structure here that merits further investigation, and which could lead
to new examples of the important class of central measures on compact
groups.

3. The key process of “white noise ” may not exist in general hypergroups.
But it always does in our case. This means that, at least for some classes
of compact groups, we may develop a theory of time series on their unitary
duals, and investigate stationarity. Some examples for the case of the dual
of SU(2) are considered in section 3 of this paper.

Notation. If A is a complex-valued matrix, then tr(A) is its trace (i.e.
the sum across the leading diagonal). If U is a topological space, then B(U)
is the Borel σ-algebra of U (i.e. the smallest σ-algebra containing all open
sets). Haar integrals of suitable functions f on a compact group G are written∫
G
f(σ)dσ.

2 Definition and Main Results

Let G be a compact (second countable, Hausdorff) topological group, Ĝ be
its unitary dual, comprising equivalence classes of irreducible unitary repre-
sentations of G, and ĜF be the set of equivalence classes of finite-dimensional
unitary representations of G (each with respect to unitary conjugation). Since

G is compact, Ĝ is countable and Ĝ ⊂ ĜF .
2 We denote the trivial represen-

tation of G by ǫ ∈ Ĝ. The character χπ of π ∈ ĜF is defined by

χπ(g) = tr(π(g))

for each g ∈ G, and it is consequence of the celebrated Peter-Weyl theorem
that {χπ, π ∈ Ĝ} is a complete orthonormal basis in the complex Hilbert
space L2

c(G) of all central (i.e. conjugate invariant) square-integrable (with
respect to normalised Haar measure) functions on G. It follows that we may

decompose each π ∈ ĜF as

2 We refer to a standard text, such as [5], for all facts about compact groups quoted herein.
See also the account for probabilists in [1].
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π =
⊕

π′∈Ĝ

M(π, π′)π′, (2)

where

M(π, π′) =

∫

G

χπ(g
−1)χπ′(g)dg, (3)

is the multiplicity of π′ is π. Of course M(π, π′) ∈ Z+ vanishes for all but

finitely many π′ ∈ Ĝ. The conjugate representation associated to π ∈ ĜF is
denoted π∗ and the tensor product of the representations π1 and π2 is π1⊗π2.
Note that for all g ∈ G,

χπ∗(g) = χπ(g) , χπ1⊗π2
(g) = χπ1

(g)χπ2
(g). (4)

Proposition 1. For all π1, π2 ∈ Ĝ,

M(ǫ, π1 ⊗ π∗
2) = δπ1,π2

.

Proof. Using (3), (4), and orthonormality of characters, we have

M(ǫ, π1 ⊗ π∗
2) =

∫

G

χπ1
(g)χπ2

(g)dg

= δπ1,π2
. 2

Let (Ω,F , P ) be a probability space. A mapping Y : ĜF → L2(Ω,F , P ;C)

is said to be a decomposable random field on ĜF if it satisfies

Yπ =
∑

π′∈Ĝ

M(π, π′)Yπ′ ,

with respect to the decomposition (2). Clearly such a field is uniquely deter-

mined by its values on Ĝ. We say that such a field is (wide-sense) stationary
if

E(Yπ1
Yπ2

) = E(Yπ1⊗π∗

2
Yǫ), (5)

for all π1, π2 ∈ Ĝ. The motivation for the definition (5) comes from the

well-known case G = T = [0, 2π), Ĝ = Z. In that case the irreducible repre-
sentation corresponding to π1 = n is uniquely determined by the character
θ → einθ, and the character associated to π1⊗π∗

2 , where π2 = m, is precisely
θ → ei(n−m)θ.

Remark. Clearly if the random field is stationary, then E(|Yπ|) < ∞,

for all π ∈ Ĝ. It may seem strange to some readers that we do not impose
some additional stationarity condition on the means, i.e. that the quantity
E(Yπ) does not depend on π ∈ Ĝ, or even that the field is centred, in that

E(Yπ) = 0, for all π ∈ Ĝ. Here we follow Doob [7], p.95 who, in the classical
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case G = T, Ĝ = Z wrote, “Usually the added condition that E(Xs) does not
depend on s is imposed. This condition is unnatural mathematically, and has
nothing to do with the essential properties of interest in these processes, and
we shall therefore not impose it.”

If Y is a stationary random field on Ĝ, we define its covariance function
CY : ĜF → C by

CY (π) = E(YπYǫ),

for all π ∈ ĜF , and we note that it is a decomposable mapping on ĜF in that

CY (π) =
∑

π′∈Ĝ

M(π, π′)CY (π
′),

with respect to (2).

We recall from [8] that Φ : Ĝ → C is positive definite if for all N ∈

N, π1, . . . , πN ∈ Ĝ and c1, . . . , cN ∈ C,

N∑

m,n=1

cmcn
∑

π∈Ĝ

M(π, πm ⊗ π∗
n)Φ(π) ≥ 0.

If Φ extends to a mapping ĜF → C that is decomposable, then we have the
equivalent condition

N∑

m,n=1

cmcnΦ(πm ⊗ π∗
n) ≥ 0. (6)

Proposition 2. If Y is a stationary random field on Ĝ, then its covariance
function CY is positive definite.

Proof. Using (6) and (5), we find that

N∑

m,n=1

cmcnCY (πm ⊗ π∗
n) =

N∑

m,n=1

cmcnE(Yπm⊗π∗

n
Yǫ)

=

N∑

m,n=1

cmcnE(Yπm
Yπn

)

= E



∣∣∣∣∣

N∑

n=1

cnYπn

∣∣∣∣∣

2

 ≥ 0. 2

It follows from Proposition 2 and the Bochner theorem (Theorem 5.5 in
[8]) that there exists a unique finite Radon central measure µY defined on
the Borel σ-algebra of G for which
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CY (π) =

∫

G

χπ(g)µY (dg) (7)

for all π ∈ Ĝ. We call µY the spectral measure of the random field Y .
As an example, consider the white noise Z : ĜF → L2(Ω,F , P ) which is

defined to be a decomposable random field which is uncorrelated in that

E(ZπZπ′) = δπ,π′ ,

for all π, π′ ∈ Ĝ. It follows from Proposition 1 that Z is stationary and the
spectral measure is easily seen to be (normalised) Haar measure on G.

The next result gives a Cramer representation for the field.

Theorem 1. If (Yπ, π ∈ Ĝ) is a stationary random field, then there exists an

orthogonally scattered random measure ΓY on G so that for all π ∈ Ĝ,

Yπ =

∫

G

χπ(g)ΓY (dg) a.s.. (8)

Furthermore, E(|ΓY (A)|
2) = µY (A) for all A ∈ B(G), and ΓY is a.s. central

in that for each g ∈ G,

P (ΓY (gAg−1) = ΓY (A)) = 1.

Proof. This is along standard lines. We sketch the details following the argu-
ment given in [10] pp. 46-7 for the classical case.

Let M be the closed subspace of L2(Ω,F , P ;C) generated by {Yπ, π ∈ Ĝ}.

Consider the linear mapping V from the complex linear span of {Yπ, π ∈ Ĝ}
into L2

c(G,µY ) := L2
c(G,B(G), µY : C) (where the subscript c, indicates the

restriction to central functions) given by

V




n∑

j=1

αjYπj


 =

n∑

j=1

αjχπj
.

It is straightforward to check that V is isometric. Since the set of all finite
linear combinations of characters is dense in L2

c(G,µY ), it follows that V

extends to a unitary isomorphism between M and L2
c(G,µY ). For each A ∈

B(G), define
ΓY (A) = V ∗1A.

Then it is straightforward to check that ΓY has the desired properties. More-
over, for all f ∈ L2(G,µY ),

V

(∫

G

f(g)ΓY (dg)

)
= f.

Then for all π ∈ Ĝ,
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V

(∫

G

χπ(g)ΓY (dg)

)
= χπ(g) = V Yπ,

and we thus obtain (8). 2

We also have a reconstruction theorem of Kolmogorov type:

Theorem 2. Given a positive definite function Φ : Ĝ → C with Φ(ǫ) = 1,

there exists a stationary random field (Yπ, π ∈ ĜF ) having covariance Φ.

Proof. By the Bochner theorem of [8], there exists a unique finite Radon

central measure µ on (G,B(G)) so that for all π ∈ Ĝ,

Φ(π) =

∫

G

χπ(g)µ(dg),

and the normalisation Φ(ǫ) = 1 ensures that µ is a probability measure. Now

define (Yπ, π ∈ Ĝ) on the probability space (G,B(G), µ) by the prescription

Yπ = χπ, for each π ∈ ĜF . Then the field is automatically decomposable and
is stationary since

E(Yπ1
Yπ2

) =

∫

G

χπ1
(g)χπ2

(g)µ(dg)

=

∫

G

χπ1⊗π∗

2
(g)µ(dg)

= E(Yπ1⊗π∗

2
Yǫ),

and Yǫ = χǫ = 1. 2

Let ρ be a central probability measure on G. Then its central Fourier trans-
form ρ̂ : Ĝ → C is positive definite, and so is the covariance of a stationary
random field by Theorem 2. So Theorem 2 tells us that there are a rich vari-
ety of stationary random fields on Ĝ. One important example is white noise,
as discussed in section 2. For further examples, suppose that G is a compact,
connected Lie group and that ρ is Gaussian, so that ρ(dσ) = k1(σ)dσ, where

(kt, t ≥ 0) is the heat kernel on G. Then for each π ∈ Ĝ,

ρ̂(π) :=

∫

G

χπ(g)ρ(dg) = dπe
−κπ ,

where dπ is the dimension of the complex linear space in which π acts, and
{κπ, π ∈ Ĝ} is the Casimir spectrum. A large class of non-Gaussian infinitely
divisible central measures on G may be obtained by subordination of the heat
kernel (see e.g. [2] or Chapter 4 of [1]).
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3 Examples - Time Series

It is interesting to seek examples in the case where G is a rank-one, connected,
compact Lie group. Then the lattice of weights is a subset of the real line, and
so inherits an ordering that can be used to develop a theory of time series, by
analogy with the familiar one on the group of integers. As an example, let us
consider the group G = SU(2). In this case Ĝ is in one-to-one correspondence
with the set Z+ (with 0 corresponding to ǫ) and we may consider the AR(1)
process defined for each n ∈ Z+, λ ∈ C by

Yn = λYn−1 + Zn, (9)

where Y−1 := 0.
Here we may take the index n ∈ Z+ as labelling the unique equivalence

class of irreducible representations having representation space with dimen-
sion n+ 1.

We show that this process cannot be stationary.
Define the backwards shift operator B on the linear space generated by

{Yn, n ∈ Z+} by
BYn = Yn−1.

Then

Yn = (I − λB)−1Zn

=

n∑

k=0

λkZn−k. (10)

Note that in contrast to the familiar case of G = T, no condition is needed
on λ to obtain the moving average representation (10) as this series is finite.
It follows easily from (10) that (Yn, n ∈ Z+) has covariance

E(Yn+hYn) =

n+h∑

k=0

n∑

l=0

λkλle(Zn+h−kZn−l)

= λ−h

n∑

k=0

|λ|2(k+h)

=





λh

(
1− |λ|2n+2

1− |λ|2

)
if |λ| 6= 1

(n+ 1)λ−h if |λ| = 1.

On the other hand, consider the MA(q) process on ŜU(2) given by
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Yn =

q∑

k=0

βkZn−k,

where βk ∈ C for all k ∈ Z+. Then by standard arguments, (Yn, n ∈ Z+)
is easily seen to be a stationary random field with covariance function

E(Yn+hYn) =





∑q−h

k=0 βk+hβk if 0 ≤ h ≤ q

0 if h > q.

4 The Hypergroup Connection

Let K be a non-empty locally compact Hausdorff space which is equipped
with an involution x → x′. Let M b(K) be the complex linear space of all
bounded, complex Radon measures on K. We say that (K, ∗) is a hypergroup
if there is a binary operation ∗ defined on M b(K) with respect to which
M b(K) is a algebra, and if certain axioms hold. We state only one of these
here; that there must exist a “neutral element” e ∈ K so that for all x ∈ K,

δx ∗ δe = δe ∗ δx = δx,

where δx is the Dirac mass at x. The others may be found on p.9 of [4];
they will play no direct role in the sequel. Examples are locally compact
groups (where ∗ is the usual convolution of measures), double coset spaces
and the unitary dual of a compact group (see below). The hypergroup is said
to be discrete if K is equipped with the discrete topology, and commutative
if µ1 ∗ µ2 = µ2 ∗ µ1 for all µ1, µ2 ∈ M b(K).

Now let Ĝ be the unitary dual of a compact group G. It becomes a discrete,
commutative hypergroup, with neutral element ǫ and involution π → π∗,
under the convolution:

δπ1
∗ δπ2

=
∑

π∈Ĝ

M(π1 ⊗ π2, π)δπ, (11)

for each π1, π2 ∈ Ĝ, relative to the decomposition

π1 ⊗ π2 =
⊕

π∈Ĝ

M(π1 ⊗ π2, π)π.

The convolution (11) is extended to general measures in M b(Ĝ) by taking
weak limits of linear combinations. Note that this is not the same convolution
as that given in [4], p.13, where the following is found:
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δπ1
∗′ δπ2

=
∑

π∈Ĝ

dπ

dπ1
dπ2

M(π1 ⊗ π2, π)δπ, (12)

with dπ being the dimension of the representation space corresponding to
π ∈ Ĝ.

Following section 8.2 in [4], the survey article [9] and the original source
[11] we define a stationary random field over a commutative hypergroup K

to be a mapping X : K → L2(Ω,F , P ;C) which has covariance

C(a, b) = E(XaXb),

that satisfies the stationarity condition:

C(a, b) =

∫

K

C(x, e)(δa ∗ δb′)(dx), (13)

for each a, b ∈ K.
Now suppose that (Yπ, π ∈ Ĝ) is a stationary random field on Ĝ in the

sense of (5). We will show that it is also stationary in the hypergroup sense,
by using the convolution (11) to define the hypergroup structure. Note that
if we used (12) then this assertion would be false. It is enough to show that

(13) is satisfied. Indeed for all π1, π2 ∈ Ĝ,

C(π1, π2) = E(Yπ1
Yπ2

)

= E(Yπ1⊗π∗

2
Yǫ)

= C(π1 ⊗ π∗
2 , ǫ)

=
∑

π∈Ĝ

M(π1 ⊗ π∗
2 , π)C(π, ǫ)

=

∫

Ĝ

C(π, ǫ)(δπ1
∗ δπ∗

2
)(dπ),

as required.

Let MY (Ĝ) be the closure in L2(Ω,F , P ;C) of {Yπ, π ∈ Ĝ}. Following

[11, 12, 9], for fixed π′ ∈ Ĝ, we define the translation operator τπ′ associated

to Y to be the linear contraction in MY (Ĝ) obtained by continuous linear
extension of the prescription

τπ′(Yπ) = Yπ⊗π′ , (14)

for each π ∈ Ĝ. Note that because of the rather concrete context in which we
work, the definition (14) is much more transparent than that in the general
hypergroup case. A useful list of properties of such operators is collected in
Theorem 2 of Leitner [12].

Now let A be a family of subsets of Ĝ. For each A ∈ A, let MY (A) be
the closure of the linear span of {Yπ, π ∈ A}, and MY :=

⋂
A∈A

MY (A). We
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say that the stationary field Y is A-singular if MY = MY (Ĝ), A-regular if

MY = {0}, and A-adapted if τπ(MY ) ⊆ MY for all π ∈ Ĝ. The following
abstract version of the Wold decomposition is proved for general commutative
hypergroups in Theorem 2.2.5.2 of [9]. We will be content to state the result.

Theorem 3 (The Wold Decomposition). If Y is an A-adapted stationary
random field, then there is a unique orthogonal decomposition

Yπ = Y (1)
π + Y (2)

π , (15)

for all π ∈ Ĝ, where Y (1) is A-regular, and Y (2) is A-singular.

If G is a rank one, connected, compact Lie group then it is natural to
choose A in accordance with the lattice structure, e.g. for G = SU(2),A =
{An, n ∈ Z+}, where An := {0, 1, . . . , n}.

We conjecture that there is a generalisation to this context of the classical
result that can be found e.g. in Chapter 4 of [10], whereby the the abso-
lutely continuous measure µ1 and the singular measure µ2 which arise in
the Lebesgue decomposition of the spectral measure of Y are themselves the
spectral measures of the processes Y (1) and Y (2) (respectively) of (15).
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