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HECKE OPERATORS IN K K-THEORY AND
THE K-HOMOLOGY OF BIANCHI GROUPS

BRAM MESLAND AND MEHMET HALUK SENGUN

Abstract. Let I" be a torsion-free arithmetic group acting on its associgtedal symmetric
spaceX. Assume thatX is of non-compact type and I€tact on the geodesic bounda®yX of

X. Via general constructions il K-theory, we endow thé<-groups of the arithmetic mani-
fold X/T, of the reduced groug’*-algebraC': (I") and of the boundary crossed product algebra
C(8X) x T with Hecke operators. Th&-theory andiK -homology groups of thes€*-algebras
are related by a Gysin six-term exact sequence. In the caseiis a group of real hyperbolic
isometries, we show that this Gysin sequence is Hecke a@aivaFinally, in the case whdnis

a subgroup of a Bianchi group, we construct explicit Hecfgheariant maps between the inte-
gral cohomology of" and each of thesE -groups. Our methods apply to torsion-free finite index
subgroups oPSL2(Z) as well. These results are achieved in the context of unkeslifded-
holm modules, shedding light on nhoncommutative geomesjpeets of the boundary crossed
product algebra.
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Introduction

The ordinary cohomology of arithmetic groups, endowed wWithaction of Hecke operators,

plays an important réle in the theory of automorphic formd anthe Langlands programme.
Could K -theory, as an alternative to ordinary cohomology, offer msight or reveal new phe-
nomena?
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2 B. MESLAND AND M.H. SENGUN

Let G be a semi-simple algebraic group o@randI”’ C G(Q) be an arithmetic group. Let
X denote the symmetric space associated to the real Lie g&dg). Assume thafX is of non-
compact type and ledX denote the geodesic boundary Xf We consider thre€'*-algebras
that are naturally associated o namely, the algebré&’,(X/T") of functions on the arithmetic
manifold X/T", the reduced grou@™-algebraC;(I") and the boundary crossed product algebra
C(0X) x I', which we call thearithmeticC*-algebrasassociated td'.

In this paper, via general constructionshii -theory, we endow thé&’-groups of arithmetic
C*-algebras with Hecke operators and show that whésa torsion-free finite index subgroup
of a Bianchi group, théntegral cohomology ofl" and theK'-homology of the arithmetic*-
algebras associated Iocapture the same ‘arithmetic information’. This is achiby exhibit-
ing Hecke equivariant isomorphisms between cohomologyfrttbomology. Our results also
apply to the case dPSLy(Z).

Our motivation to focus on the case of Bianchi groups is tlbfd=irstly, Bianchi groups
are among the simplest generalizations of the classicaufandroupPSLy(Z), yet from the
perspective of the Langlands programme, many fundameuégtipns are still wide opefg8])
and moreover new phenomerié{, 9, 15, 66]) that are not present in the settingBSL2(Z)
(or, more generally, in the setting of Shimura varietie®ear Secondly, from the perspective
of algebraic topology, Bianchi groups are advantageousorl with as their associated locally
symmetric spaces are low dimensional, nanghallowing us to construct explicit maps be-
tween cohomology groups arid-homology. The case d?SL2(Z) can be treated by the same
methods.

The explicit nature of our maps allows, in principle, for thensfer of questions of arithmetic
nature from cohomology of congruence subgroups of Bianahigs (or ofPSLy(Z)) to the
K-homology of the associated arithmefi¢-algebras. As such, ideas and tools fréfrtheory
(both topological and analytic) and noncommutative geoynedin be employed in their study.
For example, one of our results implies that, in a sense, iagef a Bianchi (or classical)
modular form can be interpreted as the index of a Fredholmatgethat we construct explicitly.

Our work is inspired by the works of Manin and MarcdHi6, 47, 48] which pursue number
theoretic questions around the ‘noncommutative modularesl via tools of Connes’ noncom-
mutative geometry18, 19]. The K-theory of C*-algebras associated to Kleinian and Fuchsian
groups has been studied by several authr$0, 17, 23], with K-homology receiving attention
only recently[24, 25, 60, 61]. Indeed, the first step in our project was obtaining a deseripof
the K-homology of what Manin and Marcolli would call, the ‘noncomtative Bianchi mani-
folds’ by employing aK K -theory spectral sequence of Kasparov. This spectral sequsee
Sectionl, shows that there are abstract isomorphisms

K%Co(M)) ~ HYI",Z), KYCi(I')~HYTI,Z), KYC(0H3) xTI')~ HY(T, Z)%2.

Our results providexplicitisomorphisms between the above and explain WHhYC (9H3) x T')

is made of two copies of/'(I', Z) in a conceptual way. Furthermore, we equip the above
K-groups with a Hecke module structure and show that our isphiems are in facHecke
equivariant

Description of results and the plan of the paper.We first carry out a very general treatment
of Hecke operators as they are crucial for the link with ani¢ic that we are aiming to establish.
This is done in Sectio@. A novelty of our treatment is the introduction of Hecke aiers via
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K K-theory. This proves to be a powerful, and natural, way dditingg Hecke operators that
allows us to establish various results related to Heckeadpes in a robust and efficient manner.
Let G be a group acting on a locally compact Hausdorff sp&EceGiven a subgroup’ of G
which acts freely and properly ok, put M = X/T'. For any elemeny in the commensurator
group ofl" in G, we define a bimodul&’ and let[T}'] € K Ko(Cy(M),Co(M)) be its class.

Then we define the Hecke operator

T, : K*(Co(M)) = K*(Co(M)), z— [T} @,

to be the Kasparov product with this class. Now/ean arbitraryl’-C*-algebra. Similarly we
define a clasgl"gr] € KKy(B %, I', B x, I') and define the Hecke operator

Ty: K*(B %, T) = K*(Bx,T), z~ [T}z,

as the Kasparov product with this class. Of course, in bosles;ave obtain Hecke operators on
K-theory as well. These two constructions allow us to definekd@perators on th& -groups
of arithmeticC*-algebras.

Next, in Section3, we study the Hecke equivariance of a certain Gysin exaaiesemg,
which shall play an important role in our investigation. 8anexact sequences were stud-
ied by Emerson-Mey€d23] in K -theory and later by Emerson-Ni¢a4] in K-homology. Our
treatment is again general here. l[ebe a group acting freely and properly on hyperbalic
spaceH,, via isometries such that the hyperbolic manifdll = H,,/T" has finite volume. Let
C}(T") denote the reduced group*-algebra ofl". Starting from thd -equivariant short exact
sequence of'*-algebras

0— Cy(H,) - C(H,U0H,) — C(0H,,) — 0,

we show the following in Theorerd.10below.
Theorem A. The K-homology Gysin exact sequence takes the form

0 — K'(Co(M)) — K°(C(0H,) x T') — K(C}(I))

|

0« KN (C}(T)) <—— KN (C(IH,) x T) <— KO(Co(M))

and isHecke equivariant

This is done by representing the boundary extension as &élradnodule constructed from
the field of harmonic measures on the boundary. Since we withinni K -theory, the results
of Section2 and Sectior8 have counterparts fdk -theory groups as well.

At this point, we specialize to the case of Bianchi groups study the above Hecke equi-
variant Gysin exact sequence in great detail. Kebe an imaginary quadratic field with ring
of integersZg . LetI" be a torsion-free finite index subgroup of the Bianchi grir§ls (Z )
acting on the hyperbolig-spaceH 3 and its boundargHs. In this case, thé-homology Gysin
exact sequence splits into two exact sequences,

() 0 — K™Y Coy(M)) - KY(C(0H3) x T') — K'(C*(T)) — 0,

with i = 0, 1, revealing thaf<-homology ofC'(0H3) x I' is ‘made of’ that ofC;(I") and that of
M. We then study thd{-groups of these two parts in Sectiérand Sectiorb, relating them to



4 B. MESLAND AND M.H. SENGUN

the ordinary (co)homology df and M. We do not considek -theory groups anymore except
in Section4 where we prove the following result in TheoreiiQ

Theorem B. There are explicit Hecke equivariant isomorphisms
HYT,Z) ~ KYC(T)), Hy(T,Z)~ K(C}T)).

Moreover under these isomorphisms, the homological paii x H, — Z corresponds to the
index pairingK™* x K, — Z.

The K-theory isomorphism comes from the resultd1d, 50]. To obtain theK-homology
isomorphism, we give a construction of unbounded Fredholmlutes from group cocycles.
The fact that Kasparov's-element is equal to the identity iR K} (C, C) (see[37, 39]) is a
vital ingredient in the construction.

In Section5 we exploit the equivalence between geometric and anal§tttomology (7]) of
the non-compact manifold/ and in Theoren.5 establish the following:

Theorem C. There is an explicit Hecke equivariant isomorphism
HZ(M7 8M7 Z) = KO(CO(M))

whereM denotes the Borel-Serre compactificatioméf

Note thatH }(T', Z) ~ Hy(M,0M,Z). This result is proved by showing that every class in
K°(Cy(M)) can be represented by a self-adjoint Dirac operator on tiegian of a properly
embedded hypersurface in the Borel-Serre compactification

Our methods above also apply to the case of torsion-free fimitex subgroups d?SL2(Z)
which we discuss in Sectioh

With these results in place, we proceed to describddHeomology of the boundary crossed
productC(0H3) x I using the mapg! (C(0H3) x ') — K(C}(T)), for which we construct
an explicit section in Section, and K°(Cy(M)) — K'(C(0H3) x I') coming from ). To
compute the latter map, we construct an unbounded repagisentor the extension class by
means of a hypersingular integral operator built from thertwaic measures and associated
metrics on0Hj in Section7. In Section8 we then compute the unbounded Kasparov product
of this operator with the self-adjoint Dirac operators orbexided hypersurfaces from Section
5. The main result here can be found in Theor@® The results in Sectioné and8 can be
summarized to describe the structure of fidomology of the purely infinite simpl€*-algebra
C'(0H3) x I as in the following theorem.

Theorem D. There is an explicit Hecke equivariant isomorphism
HYT',Z) ® Hy(M,0M) ~ K'(C(6H3) x I)
defined at the level of unbounded Fredholm modules.

The two pieces of(! (C(0H3) x T') give rise to very different unbounded Fredholm modules,
which by virtue of the Gysin sequence pair withtheory in distinct ways.

Questions.

(1) Given an arithmetic group, we construct Hecke operators on tRegroups of arith-
metic C*-algebras associated fa In the case of Bianchi groups, we show that our
Hecke operators correspond to the classical Hecke operaahe cohomology groups
of I'. While this convinces us that our construction is natura ewrrect, for generdl
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such a comparison is still to be made. A natural questionkdage is, does the Chern
character homomorphism

K¥(BT) - @ B> (BT, Q),
n=0
wherei = 0,1 commute with the Hecke operators?

(2) Torsion in the homology of arithmetic groups has gainéat af interest in recent years.
What can we say about the torsion in thetheory of arithmeticC*-algebras? We
observe in Sectiofh that for Bianchi groupsi; and K hold the same torsion. However
this is a coincidence of low dimensionality and in general tibrsion on the two sides
will not agree. Note that it is natural expect thatorsion Hecke eigenclasses in the
K-homology of arithmetic”*-algebras have associated mo@alois representations.

(3) Can theK-homology of the arithmetic*-algebras as Hecke modules be accounted
for by automorphic forms as is the case for cohomology? Ifvduat are theseK-
theoretic’ automorphic forms? Are they the same as cohogitdbones? In the case
of PSLy(Z) and Bianchi groups, we show that they are the same. In thess,caan
we directly associate A -homology class associated to a Bianchi (or classical) taodu
form?

(4) What can we say about the summability properties of théb@unded Fredholm mod-
ules that we construct? Do their spectral zeta functiorsdeed the arithmetic of Bianchi
modular forms?
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1. Prelude: Kasparov's spectral sequence

LetI" be a torsion-free cofinite discrete subgroupR8L,(C) acting on the hyperbolis-
spaceHj3 and its boundaryHs. The limit set ofT" is all of 9H3 on which it acts with dense
orbits. We can identifygpH3z with S? ~ P!(C) and the action of® with the usual Mo6bius
action. LetM denote the hyperbolig-manifold Hs/I'. In this section, we employ & K-
theory spectral sequence and get a descriptidis-groups ofC'(0Hjz) x I', C¥(I") andCy (M)
in terms of the cohomology df.

The abstract isomorphisms that will come out of the spestguience will motivate the main
task we accomplish we address in the present paper: Can Vi thgurespectivell -groups
with a Hecke module module structure and faxlicit Hecke equivarianisomorphisms from
(co)homology taK -groups?

We let D be aC*-algebra with d'-action andD x..I" be the reduced crossed product algebra
of 'and D. Lety € KK'(C,C) denote the Kasparov idempotent. A spectral sequence
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of Kasparov (se¢38, Section 6.10.] see alsd65]) calculates they-parts of the K-groups of
D %, T out of those ofD. For discrete subgroups of Is¢H,, ), it holds thaty = 1, a fact that
will be of importance in several places in the present pagee for instancg§71, Chapter 9]
and[37, 38]). For our groups, the-part of a K-group ofD x.,. I is itself.

Theorem 1.1. There is a cohomological spectral sequer{dg., d,.) with differentials ¢ :
EP9 — EPTM and the termE? Y = HP(T, K9(D)) converging to the K-homology groups
of D x,. I". There is an analogous homological spectral sequence ogingeto the K-theory
groups ofD x,. I'.

By settingD equal toC = C(pt), Cy(H3) andC'(0H3), we shall use the above spectral se-
quence to obtain information on tié-groups ofC'(0H3) x,.I", C*(I") andCy (M ) respectively.
We first setD = C'(0H3), and note that the action &f on 0Hj is amenable so the full and
reduced crossed products coincide (p&& Lemma 3.8). The following well known lemma
computes thd{-homology groups of> asI’-modules in this case.

Lemma 1.2. We have
K°(C(0H3)) ~ Z*, K'Y(C(0H3)) = {0},
where the action ofl’ on K°(C/(0H3)) is trivial.

Proof. The K-homology of the two-spher§? ~ 9Hj is well-known. The triviality of the
action of I' on K°(C(0H3)) follows from the facts that it is the restriction of the actiof
PSLy(C), which is a connected group, afid-homology is homotopy invariant. O

Proposition 1.3. There is a short exact sequence

(1.1) 0— HT,Z?) — K°(C(0H3) x T) — H*(I',Z%) = 0
and an isomorphism

(1.2) HYI',Z?) ~ K'(C(0H3) x T)

where the action ofl" on Z? is trivial.

Proof. We apply Theoreni.1 with D = C(0Hj3) and use Lemmd.2. The cohomological
dimension ofT" is two. AsT is torsion-free, all its integral cohomology above degree t
vanishes and we see that the page of the spectral sequence looks like this:

0 0 0 0 0 0
HO(I,Zz?) HV\I,Z®) H2I,Z®) 0 0 0
0 0 0 0 0 0

H(T,Z?) HYT,Z?) H*T,Z*) 0 0 0

The E5 page of the spectral sequence.
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O

Note that since the action df is trivial on Z2, we haveH*(I", Z?) ~ H*(I',Z) ® Z*. In
particular, (", Z?) = H*(T, Z)®? and thusK'! (C(0H3) x T') holds two copies ofi }(T', Z).
Moreover, H(I', Z?) ~ Z2. As H?(T',Z) typically has a lot of torsion (sef7, 9]), the se-
guencel.1ldoes not split.

Next, we apply Theoren.1to the caseD = C = C(pt). Note thatC(pt) x I' ~ C*(T").
SinceK(C) ~ Z, K'(C) = {0}. and thel-action is trivial, we find

Proposition 1.4. There is a short exact sequence

(1.3) 0— HYI',Z) - K°(C(T)) = HXI',Z) — 0
and an isomorphism
(1.4) HY(T,Z) ~ K'(C(T)),

where the action of on Z is trivial.

Lastly, we apply Theorem.1 to the caseD = Cy(Hs). Note thatCy(Hs) x I' is Morita
equivalent toCy(M) as the action of® on Hjs is free and properly discontinuous. In par-
ticular, they have the samk-groups. It is well known thatk®(Cy(Hs)) ~ {0} and that
K'(Cy(H3)) = Z with trivial T'-action.

Proposition 1.5. There is a short exact sequence

(1.5) 0— H'T,Z) — K'(Co(M)) — H*(T,Z) — 0
and an isomorphism
(1.6) H'(T,Z) ~ K°(Co(M))

where the action of on Z is trivial.

We summarize the results of the homological spectral seguand omit the details as they
are the same as the above.

Proposition 1.6. There are isomorpshisms

(1.7 H,(T,Z?) ~ K;(C(0H3) x T,

and

(1.8) H\(T,Z) ~ K1 (Cr(T)),

and

(1.9) Hy(T',Z) ~ Ko(Co(M)),

and short exact sequences

(1.10) 0 — Ho(T',Z%) — Ko(C(0H3)) x T') — Hy(T,Z*) — 0,
(1.12) 0 — Ho(I',Z) — Ko(C:(T)) = Ho(I',Z) — 0,

where the actions df on Z2 and onZ are trivial.
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With these abstract isomorphisms in hand, we set ourselgetasks. The first is to equip the
K-groups of the above arithmetic*-algebras with natural Hecke module structures. Secondly,
we would like to compare thé-groups and (co)homology groups as Hecke modules. For
this purpose, the abstract isomorphism coming from Kasfsmspectral sequence above cannot
help, so we need to construct explicit isomorphisms betvileemespective groups appearing in
this section. In the rest of the paper, we accomplish bothuoftasks. However it should be
noted that while our treatment of the first task is general t@atment of the second task is very
specific to the case of Bianchi groups (see Question 2 in tineduction).

2. Hecke operators andK K -theory

The various (co)homology groups associated with an arititcrgeoupI” come equipped with
so calledHecke operatorsThese arise from elements in the commensur@iefl’) of I in its
ambient real Lie groug:

Cg(T) := {g € G:T nglg ! has finite index in botl andgl'g~'}.

We start by quickly recalling the definition of Hecke operaton the (co)homology groups that
we deal with in the paper. Afterwards, for each elemenC#T"), we construct elements in
KK-rings K Ky(A, A) of the arithmeticC*-algebrasA associated td'. The elements that we
construct will give rise to endomorphisms which play thesr6f Hecke operators oR -groups
of A.

2.1. Homological definitions. LetI’ ¢ PSLy(C) =: G be a torsion-free finite-index subgroup
of a Bianchi groupPSL+(Z ), acting onHj freely and proper discontinuously. In this case,
we haveCq(I') = PGL2(K) C PGLy(C) = G. For our purposes, the main distinction to
be made is that between algebraically defined Hecke opsratol *(I", Z) and topologically
defined Hecke operators di,(M,0M,Z) where M is the associated hyperboliemanifold
H3/T and M is its Borel-Serre bordification.

2.1.1. On Group HomologyFor a subgroupA C T of finite indexd, any choice of coset
representatives

d
Y € F> r'= |_| WZAa
i=1

gives a maps : I' — A determined byyy; = v,(;)si(y), wheres;(v) € A and~(i) is a
permutation ofl, - - - , d. This determines th&ansferor corestriction map

d
cores: H'(A,Z) — H'(T,Z), coresc(y) =Y c(si(7)),
=1
which is independent of the choice of coset representativesor g € Cq(I'), write I'y :=
I' N gI'g~! and the Hecke operator on group cohomology is given by

res A cores

(2.1) T,: H(T,Z) = HY (T, Z) Ada, HYTy-1,2) == H'(T', Z).
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OperatorsTy, : H(I',Z) — Hy(T',Z) are defined analogously. To compute the operéjor
one uses the disjoint union decomposition of the doubletcose

d
(2.2) g 'T'=| |gT, g=0g'€G, 6&¢el
=1
The elements; form a complete set of coset representativesfdr,-:. The groupl’ acts on
the double cosdfg~!T, and thus permutes the cosgtE. As above there are indicegi) and
group elements;(vy) € I' such thatyg; = g.,(;yti(7), determining a map' — Pj_l. The Hecke
operatorsl, : H'(I',Z) — H'(',Z) andT, : H,(I',Z) — H,(T', Z) are then given explicitly
by
d d

(2.3) (Tye)(7) =D clti(7),  To(l]) = D _[ti(7)]

=1 %

which is independent of the choice of coset representadives

2.1.2. On Simplicial HomologyWe start with the manifold/, := H3/I'; and the associated
finite coveringrm, : M, — M. This finite covering induces a corestriction map: H.(M) —
H,.(M,) by mapping a simplex to the sum of its inverse images. Sityitaere is a covering
mg-1 : Mg+ — M, and the isometry : H3 — Hj induces a homeomorphism : M, —
M,-1 becausg 'I'yg = I';,-1. Thus we obtain a second covering:= ;-1 0 g, : My — M.
Forg € C(T"), we define Hecke operators, both dendigdon homology and on cohomology
as the group homomorphisms

Tg =Tg, 071'; : H*(M, Z) — H*(M, Z)v

Ty =71 0my : H(M,Z) - H*(M,Z).

We shall need Hecke operators also on the homology of thd-Bemee compacitifications. In
our low-dimensional cases, these compactifications careberitbed concretely as follows (see
[13] and alsd 12, 111.5.15], [8, §2.8]). We first construct a partial compactificatiﬁh of Hs
by adding a copy of the complex plagzto every boundary point i?! (K) c P'(C) = 0Hs,
more precisely

Hy=Hs; || P'(C)\{z}.
z€P1(K)

The copyP!(C)\{z} = C is the parameter space of all geodesicdlig converging to the
boundary point € P'(K). The action ofPGLy(K), but not ofGG, on H3 extends to an action
on Hs by sendingw € P!(C)\{z} to wy € P}(C)\{z7}. One can topologizéls in such a
way that the action oPGLy(K) is continuous. The action &f on Hj, unlike its action on the
geodesic completioHl, is free and proper. The quotieﬁg/l“ can be shown to be a compact
3-manifold with boundary which we call the Borel-Serre cowrtffacation of M/ and denote by
M. The connected components of its boundary2ateri, attached at ‘infinity’ to each cusp of
M. Note that)M is the interior ofM and thus they are homotopy equivalent.

Just as before, we obtain finite coverings 7, : M, — M, extendingr,, 7, : M, — M,
and construct the Hecke operator

Ty = (mg-1)x0gs0my: H.(M,Z) — H,(M,Z).
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As T4, T4 restrict to finite coverings on the boundaries, we also abiticke operators on the
relative homology groups
T,: H.(M,0M,Z) — H.(M,0M,Z).
These Hecke operators are compatible with the Lefschetitydismmorphism
H.(M,0M,Z) = H"*(M,Z),
seg[3, Lemma 1.4.3] and the isomorphisms
H*(M,Z) = H*(M,Z) =~ H*(T, Z),
see, for exampld44, Section 6]
2.2. Hecke operators inK K -theory. Let X be alocally compact Hausdorff space and assume

that G acts onX and thatl' C G acts freely and properly oX. Suggestively, denote by
M := X/T" the quotient space which is locally compact and Hausdorff.

The finite coverings\/ & M, 9 M form acorrespondenci the sense di20] and define
a cIass{Tgf”] € KKy(Co(M),Cy(M)). The conditional expectation and right module structure

pg: Co(My) = Co(M), p()(m) = > (x), ¢ f(x):=1v(@)f(ry(x))
zemy t(m)

give a rightCy (M )-module denoted bTSf‘”. Because the map, : M, — M is proper, there is
a left action by compact operators

Co(M) = K(T}"),  f-u(x) = f(rg(a)(w).
The clas§T}"'] € KKo(Co(M),Co(M)) coincides with the class of this bimodule.
Definition 2.1. Let M = X/T as above. For any separabi&*-algebraC', theHecke operators
T, : KK.(Co(M),C) = KK.(Co(M),C), T,: KK.(C,Co(M)) = KK.(C,Co(M)),
are defined to be the Kasparov product with the cl[ﬁgg] € KKo(Cop(M),Co(M)).

For the moment, we denote an arbitraryl’-C*-algebra and by : b — ~(b) theI'-action.
Let C.(T", B) denote the compactly supportédvalued functions of’. TheI'-C*-module

C(T,B)={y:T = B: Y ¢(7)"(y) < oo},

yel’

of £2 functions onl" with values inB is constructed as a completion ©f(I", B). Theconvolu-
tion productand involution given by (se89])

(2.4) Fru(y) =Y F0)6(p(6 1Y), F() =vf(y)
éer

makeC, (T, B) into a *-algebra and define arepresentatiorC, (T, B) — Ends(¢%(T, B)).

Thereduced crossed produét x,. I" is defined as the closure 6%.(", B) in this representation.
For a subgroup\ C T, restriction of functiong”.(I', B) — C.(A, B) C C.(I', B) defines a

projectionpa € End;(¢2(T, B)). This gives a contractive conditional expectation

pa B x.T'—= Bx,.A, aw— paapa,
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extending the restriction ma@.(I', B) — C.(A, B). Thus, forg € Cg(I") we obtain the
expectatiorp,-1 : B %, I' = B x, I'y-1 and a(B %, I', B %, ';-1) bimodule(B ., F)pq_l.
Using the *-homomorphism ‘
Ad _
B %, Pyt = B, Tg = B T, Adg(f) () = 9f (97" 9),
we form the interiorC*-module tensor product
T} = (B X, T)p 1 @ad, B %, T,
which is aB x,. I'-bimodule.

Definition 2.2. Let B be a separablé-C*-algebra andC' a seperable’*-algebra. TheHecke
operators

T, : KK.(Bx,T,0) - KK.(Bx,T,C), T,:KK.C,Bx,T)— KK.C,B x,T).
are defined to be the Kasparov product with the cl[agﬁ € KKo(Bx,T',B x,T).

Let A be any of theC*-algebras and’, any of the K K-theoretic Hecke operators discussed
above. If(z,y) denotes the index pairing of elements K, (A) andy € K*(A), associativity
of the Kasparov product giveé§,z, y) = (z, Tyy). Thatis, the Hecke action is self-adjoint with
respect to the index pairing betweénitheory andk -homology.

2.3. Explicit formulae for the reduced crossed product.To describe the3 x,. I'-bimodule
TgF, letd; be asin®.2) andy; € C.(I", M (B)) be the function that i$ até; and0 elsewhere. It

is straightforward to check thif:1 xi*p(x;*f) = f,andp(x; *x;) = d;;. This implements
a unitary isomorphism of right modules

(25)  w:T; =(Bx.T), , ®ag, B, T = (B, 1) f@ke (p(x; * f)*k),

whered = [I' : T'y-1]. To describe the lefB x,. I action onT, ~ (B x, I')% we consider the

dense submodul€,.(T", BY), the elements of which we view as columiis= (¥;)L_; of maps
V¥, : I' — B. First we collect some useful facts and relations for the elast; ().

Lemma 2.3. We have the relations:
(o) — os—1l s 1 1.
1) ti(y) = 967(2‘)’7629 = (i) V90
2) ti(m2) = tye ) (M)ti(12);
) ti(vyh) =ty (1)
Proof. All relations are checked by direct computation using thintlens in sectior2.1 [

Fory € I" denote byu, € C.(I', M (B)) the function which isl at~y and0 elsewhere. We
identify B C C.(T", B) with the function that takes the valbdate € " and0 elsewhere.

Proposition 2.4. The leftB x, I module structure off; ~ (B x, I')%is given by
(2.6) (tg(f)W)i(0) = Zgi_lf(’}/)ti(fyil)il\pvfl(i) (ti(v~1)d).
ol

Equivalently, we have the covariant representation
(2.7) (tg(0) - )i(0) := g; H(O)Wi(0),  (tg(uy)W)i(8) := ti(v 1) (W1 (ti(71)D)).
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Moreover, fory € T' we have a factorisatior, (u,) = 7(y)diag(u, (), wherer(y) €
M,4(C) is a permutation matrix.

Proof. By right B x,. I linearity, it suffices to proveZ6) for elements¥ with supp¥ C T',.
Usingu as in @.5) and the relations in Lemm#&3one computes, fat € C.(I', B) andd € T',:

(1y(W)W):(6) = (ulh 5 u*)):(5) = Adgp(x? b+ u"0)(9)
= gp(x} * h*u*W)(g 6g) = gd; ' (hxu*V)(6;9 *6g)

(2.8) =96, (h(y)v659 (g8 v 6ig710))
Jy
(2.9) =D 96 h(M)98; 98109 Uiy (980 1 7 0ig o)

.
=D 9 Nty T g (E(r ).

The step fromZ%.8) to (2.9) follows sincegéjfly*léig*lé eIy & j=~"1(i). Thus we have
established4.6) and @.7) follows. Letr(y) € My(C) be the permutation matrix corresponding
to (7(y)¥); = ¥.,-1(;). To prove the last statement we compute

(7(v)diag(tg, () )i (8) = (diag(u, () ¥)1-1)(6) = ty-1y (7)™ (=105 (ty-103) (7)0))
= ti(y ) TN (8 (7 T1)E)) = (tg(uy)W)i(6),
as required. d

3. Gysin sequence and Hecke operators

The papef23] is an extensive study of the Gysin sequenc&itheory arising from a group
action on a spac&” and the associated boundary actiondon, e.g. the Furstenberg or Gromov
boundary. 124, Section 10], the K-homological version is described for hyperbolic grolips
with cocompact classifying space for proper actiéiis. We will describe the Gysin sequence
in the setting of hyperbolie + 1-spaceH, the geodesic compactificatidd and its boundary
spheredH = S™.

3.1. The K-homology exact sequencelLet G = Isom(H) andH := H U dH the geodesic
compactification oH on whichG acts as well. We consider tli¢-equivariant extension
(3.1) 0 — Co(H) — C(H) — C(6H) — 0,

defining a class ik K& (C(0H), Co(H)). Thus, for any subgroup C G we obtain a class
in KK}'(C(6H), Co(H)) through restriction, and a long exact sequence in equivaria
homology:

3.2 = Kp(Co(H)) = Ki (C(0H)) — KpH (C(H)) — -
Lemma 3.1. Supposd’ C G is discrete and torsion-free. Then the inclusionC — C(H) as
constant functions induces an isomorphism K& (C(H)) — K&(C).

Proof. Becausel' is torsion-free andd is contractible, H-equivariant contractibility{53] of
H for finite subgroupsd < T follows trivially. Then the argument of24, Lemma 10.6]
applies. O
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The extensiond.1) induces an extension of crossed products
(3.3) 0= Co(H)xTI' - C(H) T — C(OH) x T — 0,

as thel'-action on either of the algebras i8.{) is amenable, and the full and reduced crossed
products coincide. LeL?(A*H) be the Hilbert space of?-sections of the exterior algebra
bundle ofH, and ) ;; z the Hodge-DeRham operator. The tripl€, L*(A*H), )] defines

an element ik K§'(C, C) and thus ink K} (C, C) for any subgroud’ c G. We will refer to
each of these elements as thaler class(cf. [23, 24]). We obtain the following Proposition.

Proposition 3.2. For a discrete torsion-free subgrodp C G there is an exact hexagon

(3.4) KY(Co(M)) —2= K(C(9H) % T) —— K(Cx(I))

EU|1 T lEUk}

K'(C: () <—— K'(C(8H) » T') <2 K%(Co(M)),

wherei* is induced from the inclusion: C — C(H) and the map£ul, are induced from the
Kasparov product with the Euler cla$aC, L?(A*H), Dy )]

Proof. This follows from the arguments if23, 24]. Sincey = 1 € KK} (C, C), there is an
isomorphismK%(C) = K'(C;(T')), by descent in the first variable. Thus, Lemfha gives
isomorphisms
K*(C(H) xT) = K (C) = K*(CXI)).
Because the action @f on H is free and proper, we have isomorphisms
K1(Co(H)) = K*(Co(H) x T') = K*(Co(M)).
Lastly, [45, Lemma 3.8]andy = 1 give
K (C(0H)) = K*(C(0H) x I).

Via these isomorphisms, the sequengg)(can be identified with the six-term exact sequence
associated to the extensioB.§). The identification of the map&™(C; (")) — K*(Co(M))

as induced by taking the Kasparov product with the Eulersctemsv follows by combining the
argument ir{23, Proposition 9] with [23, Theorem 38] yielding (3.4). O

The exact sequenc8.f) simplifies further. We denote Hpt] € K°(Co(M)) the class given
by the homomorphisn®y (M) — C, f — f(z), for somez € M. SinceM is connected this
does not depend on the choicexofFurthermore we denote by

dimM
X(M) = > (=1)Frank H*(M, Z),

k=0
the Euler characteristic dff. The following result uses the method[@4, Theorem 10.7]
Theorem 3.3. For a discrete torsion-free subgroup C Isom(H), the homomorphism
Euh : KY(Cx(I")) — K*(Co(M)) vanishes andtul, is given by

Euly : K°(C(T)) = K (Co(M)),  [(Cr(T),#, D)] = x(M)Ind(D*)[pt.

In particular, if I' is noncocompact oH has odd dimension, there are short exact sequences

(3.5) 0— KN (Co(M)) & KO(C(OH) x T) 5 KO(CH(T)) — 0,
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(3.6) 0 — K%(Co(M)) S KY(C(OH) x T) 5 KY(CHT)) — 0.

Proof. The exact sequences.f) and (3.6) are derived directly from Propositich4. We now
prove the statements about the maps.Elletx € M, = : H — M the quotient map and
pz : Co(H) x T' — B(£2(rm~'(z))) the induced representation. B33, Example 24]and[23,
Theorem 30]we find that

3.7) [(Co(H), L2 (N"H), Pr)] = x(M)|m] € KK (Co(H), C).

There is a factorisatiofir,] = [¢.] ® [1] where[1] € KK{ (Cy(T),C) ~ Z is the class of
the mapCy(I') — B(¢*(T)) andy, : Co(H) — Co(T) is defined through® — H,~
xv. This yields the explicit form of Eyl Since K K} (Cy(T'),C) = KK;1(Co(T') x T, C) =
KK;(K(¢3(T'), C) = 0, the statement Eyl= 0 follows. O

In particular the Gysin sequence simplifies for all Bianatups and some Fuchsian groups.

3.2. The extension classFor a subgroug? C G, we denote the class defined through the exact
sequenced 1) by [Ext] ¢ KK (C(0H),Cy(H)). We now construct an equivariant Kasparov
module representinfExt], and then employ Kasparov descent and Morita equivalenabté&in
an explicit representativ)] € K K,(C(0H) x I, Cy(M)) for torsion-free discrete subgroups
I'ca.

In the Poincaré ball model of hyperbolic+ 1 spaceH, the boundaryH is the unit sphere
in R™*L. For an elemeny € G, write |¢'(£)| = | det J,(€)|, the determinant of the Jacobian of
the conformal transformatiofn ConsidefI1H := H x 0H, which can be thought of as the unit
tangent bundle ocH. ThePoisson kerneis the map

1 — |l|f?

(38) P TlH — (0,00), P(SE,5) = W,

which for g € G satisfies the transformation rule
(3.9) P(xg.£g9) = lg' ()|~ P(a,€)

(see[54, Equation 5.1.2). Theharmonic measure, on 0H based atr € H is defined to be
unigue probabiltity measure a?H that is invariant under the action of the stabiligey of x.
Thenyy is normalised Lebesgue measuredi and the measures. satisfy

(3.10) dve(§) = P(x,€)"dvo(§),  dvag(€g) = dva(§).

We consider thé&' — C*-algebraC(H) as aG-equivariantC*-module over itself. A second™-
module is constructed using the harmonic measures on thedbou The harmonic measures
give an expectation

Co(TyH) — C(H), p()(x,€) = / (e, 2)dva (€),

and hence &’y (H)-module L*(T1H, v;)¢, ). This module carries a representation of the
boundary algebr&’(0H) by pointwise multiplication.
Theorem 3.4. Letp = ww™* be the projection defined from the adjointable isometry

w: Co(H) — L*(TyH, Ve)oom), w¥(z,§) = V().
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Thenp commutes witl; and has compact commutators with th¢oH )-representation. The
triple (C(6H), L*(T1H) ¢, m), Fp), With F, := 2p — 1 is a G-equivariant K K-cycle for
(C(0H), Cy(H)) representing the class of the boundary extenﬁbfh)

Proof. To see thatw is adjointable definev*f(z) := [, f(&, z)dv,.€. A quick computation
shows thatv andw* are mutually adjoint:

(w0,0) = [ DUERI0(6,2)dva(6) = / () B(E, w)duy (€) = (U, D).

Then computing the compositian*w f (x) = [wf (&, p)dv.(§) = [ f(z)dv,(§) = f(z), that
isw*w = 1 andw is an isometry. Forf e C(0H), theradlal extensmnfr( ) = f(HxH) de-

fines a completely positive linear, multiplicative, but rGrequivariant splitting of the extension
(3.1). Consider the difference

(3.11) (w fw— f,)0 (/ F(E)dvat — fo(a )) W ().

The functionz — [ f(£)dv,¢ is hyperbolically harmonic and continuous up to the boupdar
with limit f by [1, page 69](see alsd54, Theorem 5.1.5]. Thus the function3.11) is an
element ofCy(H) = K(Cy(H)). The remainder of the proof is modelled [V, Lemma 3.7]
Sincelp, f] = pf(1 —p) + (1 — p)fp, to show thafp, f] € K(L*(T1H, v;) ¢, ), it suffices

to show thap f (1 — p) fp € K(L*(T1H, vz) ¢y m)- We find

pf(L=p)fp=pffp—wf fw" +wf frw* —pfpfp
= w(w*ffw - (7f)r)ZU* + w((ff)r - 7rfr)w*+
w(f, — w* fw)wfw* + pfw(w* fw— f)w*),

and since(ff), — f,fr € Co(H) = K(Co(H)), all elements on the righthand side are in
K(L*(T\H, vz) o). Thus (C(0H), L*(T1H, v3) ¢, 1) Fp) is @ G-equivariant Kasparov
module, and the usual Stinespring dilation argument shbwas it represents the extension
(3.1). O

3.3. Kasparov descent and Morita equivalenceConsider the universal cover: H — M,
and the associated expectation

(3.12) par: Co(H) = Co(M),  ppr(W)(m) = Y W(h),
her—1(m)

defining aC..(M)-valued inner product o6'.(H) by (®, ¥) := pr(®¥). Denote its completion
by LEF(H)CO(M) .The following result is a special case of the well known NBgquivalence for
free and proper actions.

Lemma 3.5. TheC*-algebraK (L2 (H) ¢, () is isomorphic toCy(H) x I, implementing the

Morita equivalence withCiy(M). TheC*-algebraC (H) x T acts faithfully onLZ (H) ¢, (ar)-
The well known descent homomorphigB9, Theorem 6.1]is a map

(3.13) jr: KKN(A,B) = KK, (AxT,BxT),

which can be explicitly defined on the level of cycles. We wiiscribe the image of the cycle
(C(0H), L*(T1H, Vi) co(H), Fp) from TheorenB.4under the mapr as well as its composition
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with the Morita equivalence from Lemniab. This will furnish us with a representative of the
mapping K *(Co(M)) — K**1(C(0H) x I') appearing the in the exact sequencgs$)(and
(3.9).

Following[39, Section 6.1] the underlying”y (H) x I" module for the clasg-([Ext]) is given
as the completion of .(7:H x I') in the C.(H) x I'-valued inner product

(@, 1)z, ) Z/ B(E 2.0)W(E5 2671, 67)dv (6,

oerl
and left and right module structures

(f- )& mv) =D f(E0)U(ES 26,671 y), (V- g)(&w,7) =Y (&, x,8)g(xd, 67 ).

IS é6erl’
The operatorF), is defined by viewingl., (¢, z) := \I/(g,x 'y) as an element of.(71H) for
eachy € T. The product with the Morita equivalendé (H ) Is now easily described. The
map
m : Co(TTH x T) &, t1xr) Ce(H) = Co(TiH), m(T @ ®)(§,2) = Y U(¢,2,0)P(x9),
ser

is surjective and compatible with the balancing relatiorhe TesultingCy (M )-valued inner
product onC..(71(H)) is given by

(U, ®)(m) = me;(m /8 , U(E,2)D(E, x)dv,E.

The left representation and the operafigr= 2p— 1 are induced from tensoring with the identity
operator. We summarize the above findings:

Corollary 3.6 (of Theorem3.4). The class
[0] := jr([EXt) @cy(m)xr [L2(H)gyan) € KK (C(0H) x T, Co(M)),
is represented by the bounded Kasparov modGi@H) x ', LZ(TyH) ¢ (ur), Fp)-

Consequently the boundary mép K°(Co(M)) — K'(C(0H) x I') is implemented by the
Kasparov product WithC(0H) x T, L*(T1H, vz ) ¢y (m)s Fp)-

3.4. Hecke equivariance.Our purpose is now to show that the exact hexago#) (s equivari-
ant for the action of the Hecke operaffiy on the various algebras appearing &4j. We first
consider compatibility of the Hecke operators with Moritguvalences arising from free and
proper actions.

Let X be aG-space such thdt acts freely and properly oX, 7 : X — M := X/I" the
covering map an@%(X)CO(M) the associated(X) xI'-Cy(M ) Morita equivalence bimodule.
There is a well-known unitary isomorphism

(3.14) Ty @cox)wr La(X)aoon) = La(X)E ary (@) @ U = (B;0),

of right Cy(M)-modules. We show that the same is true fd(X) ®c, ) T." and then
compare the left actions. Consider fiiteer productwith its natural covering maps

X X7y My :={(z,m) € X x My :7m(z) = 14(m)}, M << X X, M—)M
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makingC.(X x, M) into aC.(M) inner product bimodule. There is a well-defined map
w: Ce(X) @, (ar) Ce(My) = Ce(X X7y M), w(¥ @ @)(z,m) = W(x)®(m),

of right C.(M)-modules preserving the inner product. By standard sumorgdmentsuw is
shown to be surjective, antf (X) ®co(M) T;” is obtained as a completion 6f.(X x., M,).

Lemma 3.7. Let §; be a set of right coset representatives fgf-1, I' = |_|§l:1 0;l'y-1. The
continuous open maps

i X = X xry My, @ (wgdh[a]), =1, .4,
assemble to a homeomorphigm | || X — X x, M,.

Proof. Sincer,([z]) = n(zg) = m(xgd; '), eachy; is well-defined and injective. Moreover,
the p; assemble to an injective map on the disjoint union
d
o | X = X %, M,
i=1
This can be seen by assuming thatz) = ¢;(z’) for somez, 2z’ € X. Then
xgd; ! = x’g5j_1, [z] =[] & Iy el, zy=41

which giVGSacg&{l = awg&;l = acgg_lyg&;l.

Now g*lfygdj‘l € I" becausey € I'; and freeness of thE action onX givenglfyg(Sj‘1 =
5;'. Hence we find5; '0; = g~'yg € T'y-1, which givesi = j and hencer = 2’ as well, as
desired.

It remains to show thap is surjective, so le2’, [z]) € X x,, M,. Sincen(z) = m(z'g),
there isy’ € I' such thateg = 2/+' = 2/§;4~! for some uniqué and~y € I',-1. Hence, we find
= xgy&;l = :Ugwg_lgéifl. Now in M, it holds thatz] = [zgyg~!], becausgryg~t € Ty.
Therefore

(2, [2']) = (zgvg~" 90, ' [2979~ ') = wilzgrg ™),
proving thaty is surjective. d

Proposition 3.8. Let X be aG-space such thal' acts freely and properly oX', M := X/T’
and L%(X)CO(M) the associated’y (X) x I'-Cy (M) Morita equivalence bimodule. For each
g € Cg(I) there is a unitary isomorphism ¢fy(X) x I'-Cy(M )-bimodules
Ty ®co(x)nr La(X) = L2(X) @cyon T,
In particular we have the identity
(T3] @cy@yxr [La(X)] = [L2(X)] @cyan [T)] € KKo(Co(X) x T, Co(M)).

Proof. The homeomorphisma from Lemma3.7induces a unitary isomorphism of righty (M )-
modules
L2(X) @cyon Ty = L2(X)Y 2 T, @cyxyur L2(X) o (a1)-

As before we write elements of the moduld(| |, X)c, () as columnst = (¥;)¢ ;. The
action of a functionf € Cy(X) is given by

P fo T Wi(e) = fo T R (2dig ™" [2])) = (f (2907 ) Wi(2)),
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which equals the action coming from the identificatibh(X)? = TT ®¢, x)«r L2(X). The
action of a group elementis given by

Pruy " (W) (@) = uy 0" (W) (g L, [a]) = 9" (W) (28 L ).
We compute further by using Lemn2a3 and observing that
zgd; = ati(vT) g0 ),
and since; (v~ 1)t € T'y we find[z] = [zt;(y"1)71] so
& (W) (290, 2]) = @ T @) (ati () g0t ) [t () TY)
= \11771@) (wti(’y_l)_l) = \IJ,Y—I(Z') (Z’tﬁ/ﬂ(i) ().
As above, this equals the action coming from the identifcati
L2(X)! = T, @cy(x)ur La(X).
This completes the proof. O
As arightC(0H) x I“—module,TgF is free of rankd. Therefore, as in3.14) the map
(3.15) wu:T) ®cmyxr L (MH xT,v,) = LX(TTH T, v,)%,  (0;) @ f — (V;f),

defined through coordinatewise product, is a unitary rightlobe map. Using this map we can
define the operatar*diag(p)u onT, @c(om)»r L*(T1H % T, 1,). By a slight abuse of notation,
we denote this operator Hy® p.

Theorem 3.9. There is a unitary isomorphism ¢6€'(0H) x I', Cy(H) x I')-bimodules
LHTYH % T, v,) @cymysr Ty — Ty @camyxr L2 (THH x T, 1),
intertwining the operator® ® 1 and1 ® p. We have the identity
[T)]® (0] = [0] ® [T)] € KK1(C(OH) x T, Co(M)).
In particular, the boundary map : K°(Co(M)) — K*(C(0H) x I') is Hecke equivariant.

Proof. By Corollary 3.6 and Lemma3.8, the second statement follows from the first because it
implies that
Jr(Ext) ® [T3] = [T;] @ jr([ExY),

and the clasgr ([Ext)) is represented by the Kasparov modWlé (T1H x T, v,) o 1)1 £p)-
First we compare the bimodulds (T\H x T', v,) ®c,yxr Ty andT, Qcomxr L2 (T1H x
I',v;). The rightCo(H) x I'-module L?(T1H x 1“,111)‘100(11)XF is a left B x,, ' module for
either of thel'-C*-algebrasB = C(0H), Cy(H), Cy(T71H) via Equation 2.7). The mapu in
Equation 8.15) is readily seen to be a left(0H) x I" module map.

We now construct a unitary isomorphism(@f(0H) x I', Co(H) x I')-bimodules

a: LX(MH xT,v,) @co@ysr Ty — L*(TH =T, %)dco(H)NF.

To achieve this we viewl.?(T1H x T, v,.) as a completion of’,(7;H x I') and we consider the
embedding of rightCy(H) x I' bimodules

BTy = (Co(H) xT)! = LAMHXT,1,)%,  B(T:)(2,&7) = (¥(x,7)).
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We view L?(TiH x T', v,)? as a leftC.(X x I')-module, whereX = T1H or X = 0H, via
Co(X xT) x LA(TH x T, v,)* — LA(MH x T,v,)%  f- () i= t,(£)(y),
using Equation4.7) in Proposition2.4. Now define a map
a: Co(TH xT) ®c,mxry Ty — LA(MH T, 0,)%,  alf @ (1;) = f - B(¥;),
which respects théC.(0H x I'), C.(H x I')) bimodule structures because
a(f *h® (0;)) = to(f * h)(BR)) = to(Ftg(WB(T) = ty(alh @ (T7)),

and the right module structure is respected becalse right module map. We find

a(pf @ (0:))(6) = ty(pf)B(L:)(0) =D g7 'pf(Nti(y™ ) BU, -1 (ti (v )d)

=p (Zgz )BT ( (71)5)> = p(tg(f)B(¥s)),

by Proposition2.4 using thaip(®5(¥;)) = (p®)(8(¥)); andp is G-invariant. Thus,
diagip)a(f @ (¥;)) = a(pf ® (¥;)), (diaglp))ca=ao(p®1).

To complete the proof, we now show thats unitary. To this end we compute the inner product
on LQ(TlH x I Vx) ®CO(H)><F Tgr:

(f1®(P14), f2 @ (W2,))(z,7) = (P14), (f1,f2> ~(2,:))(z,7)

d
= Uik (fi, fo) - ¥ ZZ\DU 28,0 1) ({f1, f2)W2)i (26,6~ 1)
=1 i=1 4
d
=D > U(@d, (1, fo) (wdg; e e )Wy ooy (@Sti(eT ), ta(e ) THOT)
i=1 ¢
(3.16)
d
= ZZ \Ill,i(xéy 61)/ (fl(fC,3359i15§,<1)f2(f<a5'359¢15<ag_15_1) X
i=1 4,6,
\1’275—1@)(56(%@'(8_1),ti(e_l)_l(s_l’}/)> dyl‘5gi_1€£
(3.17)

d
= ZZ \Ill,i(xé? 61)/ (fl(gégilec,xgilec,g1)f2(£5.gil€<ax5.gi1€<ac161) X

i=1 d,e,

Uy 105 (zdti(e71), ti(€1)151’Y)> dvg€
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d
- ZZ/W(ﬁ * f2)(€6g; te, wdg; te, e ) x

i=1 4,
Uy -105) (x5ti(€_1)_1, ti(€_1)5_1’y)du$§

d
= ZZ/W((J“T % fa) - B(W2))i(£6, 28,8 y)dv,é
J

=1
= </8(\I/1)7 (fik * f2) : ﬂ(\p2)>(x77) = <f1 ' ﬂ(\pl)va : /8(\:[/2»('7;77)

Here we have only used a change of varialjles £5g;15 and the invariance property
deégi—lag(Sg;lg = dv,¢ between line.16) and @.17). O

We arrive at the main general result of this section, expigshe compatibility of the of the
various Hecke operators we construct.

Theorem 3.10. The Gysin-sequences ii-homology

0 ——= K'(Co(M)) —= K°(C(9H) x I') — K°(Cx(I"))

0~ KN(C3(I)) = KN (C(9H) x ) <2 K°(Co(M))
and K -theory

0 — K1(C: (")) —2= K1 (C(9H) x T) — Ko(Co(M))

|

0 ~— Ki1(Co(M)) ~— Ko(C(9H) x ) <2— Ko (C;(T)
are Hecke-equivariant.

Proof. This follows by combining Propositios.8, 3.9 and the observation that the inclusion
K, (CxT)) — K.(C(0H) x T)) and restrictionx*(C'(0H) x I') — K*(C>(T")) are Hecke
equivariant by construction. Hecke equivariance of theEmapsk™(Cy(M)) — K*(Cx(T))
follows from the commutative diagram

k(1) —25 K+ (C(H) % 1)

cl |

K*(Co(M)) =—— K*(Co(H) x T)

and sincel,.* = *T, implies (:*) T, = T,(c.)~!, the map Eul is a composition of Hecke
equivariant maps, whence Hecke equivariant. The argunoerié K -theory sequence is iden-
tical. 0
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4. K-homology of the reduced Bianchi groupC*-algebra

We will describe a naturally defined map H'(T', Z) — K*(C(T")) for a discrete groupy
of hyperbolic isometries and show that in the special casenwhis a torsion-free finite index
subgroup of a Bianchi group, our explicit majis a Hecke equivariant isomorphism.

It is well known that for a general discrete grollpthere is a homomorphism: Hy (T, Z) —
K1(C}(I')). This homorphsim has been studied for instance by Matthélyin the context of
the Baum-Connes conjecture. We show that whds a torsion-free finite index subgroup of
a Bianchi groupt is an isomorphism and that the homological pairfiig x H; — Z and the
index pairingK! x K; — Z commute with the isomorphismsandt.

4.1. Group cocycles and index theory.In this subsectionl' is an arbitrary countable discrete
group. Lete : ' — Z be an integral group cocycle, simply a group homomaorphistd,denote
by I'. its kernel. The multiplication operator

D.:C.(T) — C.(I),

defined through(D.f)(v) := —c(v)f(y) extends to a selfadjoint regular operator in e
completionE, of C.(I") overI'.. This gives an unbounded Kasparov mod(#., D.) and
an element in the groufX K, (C;(T"),Cx(I'.)), as a special case of the construction[%4,
Theorem 3.2.2, Lemma 3.4.1]

To describe the pairing of this cycle witi; (C;(I")), we need a concrete description of the
latter group. First note that here we use the surjective giioz) mapl’ — I'** ~ Hy(T',Z),
we can represent homology classes by elemg&rts™. A group elemend € T defines a unitary
us in the reduced’*-algebraC; (I"), and thus a class,s| € K (C;(T")) via the standard picture
of K. This gives us a homomorphis#, (I', Z) — K (C;(I")), for any discrete group'.

Definition 4.1. We define theormof a cocycle: : I — Z to be the nonnegative integer
e := min{|e(7)] : v € T,y ¢ T}
A cocyclec is isnormalisedf 1 € ¢(I") C Z. The norm of thé@-cocycle is defined to bso.

Sincec(T") = |c¢|Z, the statement thatis normalised is equivalent to saying thét') = Z.
Any cocycle is an integral multiple of a normalised cocyeled thusH ! (T', Z) is generated by
normalised cocycles. is normalised, the short exact sequence of groups

0—-T.—-T—=>Z—0,

admits a non canonical splitting by choosings ¢~!(1) and defines : Z — T', n — g™
Any such splitting determines a group is isomorphisré T'. x ¢ Z (semidirect product) and a
C*-algebra isomorphisr’}(I") = C*(T';) x Z.

Proposition 4.2. Letc : I' — Z be a normalised cocycle. The Kasparov product
K1(C () x KK1(C}(T), G (Te)) = Ko(C;(Te)),
maps the pail[us], [D,]) to the class

sgn(c(8))[Cy (o) N = ¢(6) Loz (r.)-
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Proof. Choosingg € ¢~!(1) gives a generating st » },<z for the moduleE and a decompo-
sition
(4.1) E= @ Cr(Le), €y = Che(n) Ug—c() >
neZ
under which the operatdp. becomes multiplication by-n € Z. Denote byp,. : E. — E. the

projection onto the positive spectrumBf, which is adjointable by the decompisitioh {). The

Fredholm operator given bk, := D.(1 + DE)‘% is a compact perturbation of the adjointable
operatorS, = 2p. — 1 and defines the same class|Bs| = [F;]| € KK;(C}(T'),Cx(T.)). For
6 € T, sinceusegn = €gnte(s)Uy-n—c(5)54n it follows that

imp.usp. = spafegn : n < min{0, —c(6)}},

which is a complemented submodule, and hence smjgsujp.. Thus by[43, Ch. 3] the
operatorp.usp. + 1 — p. admits a polar decomposition and 85, Theorem 7.8]and the
argument i35, Lemma 2.1] the Kasparov product maybe computed as a higher indexisthat

[us] @ [(Ee, D.)] = [kempeuspe] — [cokerpeuspe] € Ko(Cr(Te)).

As above we have
ker pousp. = spaf{egn : —c(d) < n < 0},

and sincec is normalised, this module is isomorphic to the free moddleaak |c(d)| over
Cr(T,.) if ¢(6) > 0 and0 otherwise. Since

cokerp usp, = ker peug-1pe,

the statement follows. O

In order to obtain a genuine unbounded Fredholm module fraracgicle, we need to get
rid of the algebraC}(I'.) in Proposition4.2. It is not clear how to do this without making
more assumptions an. In the next subsection, we achieve this wheis a discrete group of
hyperbolic isometries.

4.2. The unbounded~y-element. In casel is a group of isometries of a simply connected,

complete Riemannian manifold with nonpositive sectional curvature, Kasparov’s Diraald

Dirac constructiorj38] gives a canonical elemepty] € K°(C#(T.)). In this section we work

with the real hyperbolie: + 1-spaceX = H, but this is not necessary. Letlenote the function

p(z) := du(0,x), L?(A*H) the Hilbert space of.2-sections of the exterior algebra bundle of

H, D the Hodge-DeRham operatéithe Clifford multiplication and d the exterior derivative.
The following lemma is well-known in the case= 1 and we state it for convenience.

Lemma 4.3([38]). For 0 < s < 1 the triple (C,L*(A*H), D, := Dy g + p*c(d(p))) is a
G-equivariant unbounded Fredholm module representing tasséyg] = 1 € KK%(C, C).
In particular, for any discrete subgroup C G the triple

(Cr(D), L*(A"H), B, 5) »

is an unbounded Fredholm module almai( ;S) = 1.
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Proof. The statement follows from the observation thiat- p)°¢(dp) a bounded perturbation of
p*¢(dp) and is a representative for Kasparov’s dual Dirac elemem. graded commutator

[Drr, (1+p)c(dp)] = [Prr, (1 + p)*]é(dp) + (1 + p)° [P g, ¢(dp)],
is relatively bounded té1 + p)®, solZ)W represents the Kasparov product of the Dirac and dual-

Dirac element and is hence in the classgf]. For a discrete subgroup C G its action onH
defines a representation@f (T') on L2(A*H). The statement about the index is immediatel

Lemma 4.4. For 0 < s < 1 and any elemenj € G we have the estimate
[1p%[e(dp), ug]|| < 2dg (0, 0g).
Proof. By the proof of[38, Lemma 5.3] for x # 0 it holds that
1), gl < 2dr1(0,09)(dr (0, ) + du (0, 29)) ",
S0 we assume@g # 0 as well. This yields the estimate
d§1(0, )[é(dwp), ugl || < 2dr(0,09)diy (0, ) (drr (0, 2) + dr (0, 2g)) "

< 2dg(0,09)(dgz (0, ) + dpz(0, 29)) !

< 2du(0,09)du (0,09)* " = 2dwu(0,09)°,
which produces the claimed norm estimate. O

Lemma4.5.Let0 < s< 1,7, -,y € l'andz € H. Then
k

dyy(x, xyy - (Z du(z, zv;) ) Z (x, ;).

Proof. This is a straightforward induction. Fér= 1 there is nothing to prove. Then fér> 1
we write

di(z,2vg - ) < (du(z, yk—1 ) +da(@ye—1- 71, 2% --7))°
k

= (du(z,zv6-1"-n) + da(z, 2n)) (Z du (2, 27y;) ) < dig(z,2y),
i=1
which are the desired inequalities. O
We wish to construct the Kasparov product of the eleméni ¢ KK,(C}(T),Cx(T.))
and [ya] € K'(C}(T'.)) in order to obtain an unbounded Fredholm module and a class in
K(C(T)). In order to do this we define, fgre ¢=(|c|)

(42) 1 ®Vg le,s(ev Y w) = Cgel) ® wp,s(ug—c(“/)yw)

which is a densely defined symmetric operator with initiah@in C..(T") ® ¢, () Dom D, We
then consider the densely defined symmetric operator

Jr
C 1®Vg le’S
1®Vng 8 —C

on the Hilbert spacé& ®c«(r.) L 2(A*H) with grading operator, decomposed according to
even and odd formg&?(A*H) = L2(ATH) @ L2(A~H).

(4.3) De®o+1@yv D, = (
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We recall from the appendix §@8§], that the notion of unbounded Fredholm module can be
loosened.
Definition 4.6. Anunbounded Fredholm modutea triple (<7, H, D), where

(1) « is ax-algebra represented on tt&/2-graded Hilbert spacédd;

(2) D is a self-adjoint operator such tha{ D +i)~! € K(H);

(3) forall a € o7, abom D C Dom D and there exists > 0 such thaf D, a](1+D2)‘1%5
and(1+ DQ)*% [D, a] extend to bounded operators.

If £ can be chosen independentwkt < then(<7, H, D) is called ans-unbounded Fredholm

module.

Theorem 4.7. LetI" C Isom(H) be a discrete grou) < s < 1 andc: I' — Z be a normalised
cocycle. The Kasparov product of the clasgds., D..)] and [yg] is represented by th@ — s)
unbounded Fredholm module

(C:(F)7 E ®C;‘(FC) Lz(/\*H)7 wc,s =D.®o+1 ®Vg lpp,s) ’
and in particular is independent of the choicegof ¢—1(1).

Proof. Essential self-adjointness and compact resolvent of thaeammrlbw in (4.3 follows
from general considerations B2]. It remains to show condition 3 of Definitioh6is satisfied
for the unitariesu, generating”;(I') ande = 1 — s. For the operatoD. ® ¢ this follows from
the fact tha{D., u.,] defines an adjointbale operator 6.

Forl ®v, 1, s, Equation ¢.2) shows that the commutator can be expressed as

[1 ®Vg lpp7s7 u’y](eg” ® ¢) = egn“’c(W) ® [¢p78? ug*n*‘j("/)fyg”]’liz)‘
The Hilbert spaceéZ ® L?(A*H) decomposes as a direct sum

E 80, L(NH) = @ egr @ L2(AH),
neZz

and it suffices to control the supremum of the notmg|,, of the operators
[1 ®Vg le,s’u’y](l + Dg + (1 v lbp,s)z)ig $ Egn ® Lz(/\*H) - €gnte(v) ® LQ(/\*H)

To compute the commutat@l) , ;, t,—n—c(-). 4], We observe thal, ; = Dy + p*é(dp), and
Dy r commutes withus for all §. So we need only concern ourselves with the dual Dirac part.
To this end we expand

[psé(dp)’ ug*"*C(W)’ygn] = [pS’ ug*"*C(W)'yg”]é(dp) + pS [é(dp)7 ug*n*‘i("/)'yg”]‘
Sincé|é(dp)|| = 1, the norm of the first term is controlled by

sup (di1(0,2) — d§z (0,29~ yg"))| < dig (0,09~ ryg™),
xre

whereas Lemma&.4 takes care of the second term with the estimate

19°[é(dp), tg—n—cygul Il < 2d34(0,09~" ) yg").
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Thus the size of the commutator is determined by the distdfj¢e, 0g~"~“(")yg™). Using
lemma4.5we can estimate

dg1 (0,097 g™y < 2d3(0,09™) + dig(0,07) + dig(0,09°)
< 2n°d§1(0,09) + d§1(0,07) + dig(0,09°).
Thus, the norm of the operator

1@y, Dy uy] : egn @ L*(NH) = €gniey) © L2 (AH),
satisfies|[1 ®v, 1, s, u][ln < Cy + 2n*. Since we also have the estimate

1+ D201+ 1@y B,,)%) %, < (1+n?)73,
we find that

sup [|[1 ®v, D,eu,)(1+ D2+ (1@v B, )% 2|, < 2d§1(0,09) + Cs.
n

The operato(1 + D? + (1 ®v 1, ) %[l ®v, D, .. u,] is shown to be bounded by noting
thatu, = ui,l. O

Our next result says that the index pairing betwé&enand i, when applied to thé(-cycles
constructed from group cocycles in Theoréni and unitariegu;] € K;(C;(T")) recovers the
pairing betweernfl; and H'. This result will play an important réle in what follows.

Proposition 4.8. LetI" C Isom(H) be a discrete group and: I' — Z a normalised cocycle.
The index pairing
Ki(C/(D) x KHCr(T)) — Z
maps the paif[u;], [D.. ;]) to the integer:(5), and thus recovers the (co)homology pairing
H,(T,Z) x HYI",Z) — Z.
Proof. We use that the Kasparov product is associative:

[U,5] X [lpc,s] = [u5] @ [lpc,s] & [VH]v
and apply Propositiod.2and Lemmat.3to obtain that this equals

c(®)[Leg o) © hu) = ¢(@)Ind(B, ) = c(6).
This proves the proposition. O

4.3. A Hecke equivariant isomorphism. We return to the specific setting of Bianchi groups in
dimension 3. We saw in Propositiois4 and 1.6 that for a Bianchi grouf’ there are isomor-
phisms

KYC; (1) =~ HY(T,Z), Ki(C;(T)) =~ Hi(T,Z).

However for our purposes, these isomorphism are not useftiiey are only given abstractly.
In this subsection we set out to show that the constructidgheprevious section gives explicit
isomorphisms between the above. We prove their the Heckeagi@unce and construct a section
for the restriction mags (C(0H3) x I') — K'(C*(T)) in the Gysin sequence.
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Proposition 4.9. LetI" C PSLy(C) be a noncocompact torsion-free discrete subgroup. The
map

H\(T,Z) = Ky (CE(L)), (6] = [us],
is an isomorphism.

Proof. The quotient manifold/ = Hs/T is a model forBT'. Since H3(I',Z) = 0, by [50,
Propositon 2.1.ii)] there is an isomorphism} : H,(T',Z) — K{°(M), which we compose
with the Novikov assembly mag} : K9°9(M) — K;(C#(T)). Since the Baum-Connes con-
jecture holds fofl", v is an isomorphism. The compositiofi o 5/ is shown to coincide with
the map[d] — [us] in [11, Theorem 10.4] O

Theorem 4.10.LetT" ¢ PSL,(C) be a noncocompact torsion-free discrete subgroup. The
maps
H(T',Z) — Ki(CHI)) and HYT,Z) — KY(CrT))
0] = [us] ] = el [Ded]
are isomorphisms compatible with the pairings of the repegroups.

Proof. Propositior4.9 gives theK -theory isomorphism. To show that tli&-homology map is
a homomorphism, we use thaf (T") is K K -equivalent taC' (Hs) x I which is in the bootstrap
class. By the Universal Coefficient Theorem (UQ®2, Theorem 1.17, Corollary 1.18]there
is a short exact sequence

0 — Extl(Ko(CH(T)), Z) — K'(C*(I")) £ Hom(K;(C*(T)), Z) — 0,
where® denotes the map induced by the Kasparov product. 1Byl K, (C;(I")) is finitely
generated and torsion-free, so the Ext group vanisheg@ii@? (I')) = Hom(C;#(T'), Z). That

is classes in thé -homology K (C(T")) are determined by the index pairing. For an arbitrary
cocyclec : I' — Z, % is normalised and)ﬁ = |¢| D, is a scalar mutliple oD.. Thus

e

[De] = [D g ] € KEA(CH (), G (Te))-

Theorem4.8and theK -theory isomorphism show that the clas§efD. | + |'|[ D] and|c +
d|[D¢4] have the same index pairing and hence are equal, provinghthatapc — |c|[.. ]
is a homomorphism. Injectivity follows in the same way. Forjsctivity, let(H, F') be an odd
Fredholm module ang, the positive spectral projection @f. Thenc : v — Indp;u,p4 is a
1-cocycle onl, and|c|[1D,. ;] is an unbounded Fredholm module whose index pairing cagscid
with F. Therefore[(H, F')] = |c|[I].. ] proving surjectivity. O

We now show that the explicit isomorphism of abelian gro&pgT", Z)) — K'(C(I")) is
Hecke equivariant and construct an explicit section forésgriction mapk*(C(0Hjz) x I') —
K'(Cx(I")) in the Gysin sequence.

Proposition 4.11. Let [TgF] € KKy(Cx(I),Cx(TI)) be the Hecke class from Definitich2,
c¢:I' — Z acocycle and € I". We have the identities

[us] ® [T3] = [ur, )] € Ky(CH(D)),  [Tg] @ ellDe,s) = [Ty()|[Pr,(0),s) € K (CEHT)).

In particular the isomorphismgi,(I",Z) — K;(C}(T')) and HY(T',Z) — KY(C}(I")) are
Hecke equivariant.
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Proof. By Proposition2.4 we havet,(u;) = 7(d)diag(u,, ) and sincer(s) € M,(C) we
have[r(y)] = 0 € K1(C}(I")). So together withZ.3) we find

d
[Ty (us)] = [tg(us)] = [r(7)diag(xi(7))] = [diaQ(uiy, ;)] = D [ty ()] = [, (o)))-
=1
Thus Hecke equivariance of the mayp — [us] is proved. ForK-homology, by the UCT, it
suffices to show that for aff € T" it holds that

(Ty ®lel[De], uy) = (ITy(0)|[Dr (o)), uy)-

By Theorem4.8, we can compute the right handside to edliglc)(y). For the left handside,
observe that the clasg| ® [).. ] is represented byDL_, E ®csr,) L*(A*Hz), diag( D, ).
The representation of a unitany, is given byay(uy)(hi) = (xi(7)h+))- The positive spectral
projection of diagl). ,) is p; = diag(p,) and thus the index pairing becomes

d d
(T} @ |c][De], uy) = |e|IndpT g (uy)py = le| Y Indpyuy,ypr = > c(xi(7)) = Ty(e)(7),
i=1 =1

as required. O

Unlike the previous results in this section, the followimgdrem is valid for discrete subs-
groupsl’ C IsomH in any dimension.

Theorem 4.12. The (1 — s)-unbounded Fredholm modules in Theorém extend to(1 — s)-
unbounded Fredholm modules f6i9H) x I' such thatC(9H) commutes with). ;. The
extension is compatible with the restriction map(C'(0H) x I') — K1(C}(T)).

Proof. Let X = Xr C H be an open connected fundamental domairi fof he disjoint union
U, er X is dense irH and

T:H-T, 7(@)=71x(z)=gexg !X,

is an almost everywhere defined equivariant measurable map.

The tensor produdt ® L?(A*H) can be identified with the Hilbert spaép,,., L?(A*H) by
choosingg € g~'(|c|) and using Equatior4(1). By choosing a poin € 0H, representations
of C}(I') andC'(0H) are defined, fot) = (v, )nez, by

us()n(h) = o5y (hg 69" D), (mx.e(F))n(h) = f(ET(h)g™)ibn(h),

and form a covariant pair. Thus we obtain a representatic(@H) xI" on E® ¢« (FC)LQ(/\*H).
The representationy ¢ clearly commutes with the multiplication operatgrandc. Because
Tx.¢(f) is constant on eack v, it also commutes with the Dirac operatfir. Therefore the
(1 — s) spectral triples from Theorerh.7 extend toC'(0H) x I'. SincedH is connected, the
choice of¢ € 9H does not affect the homotopy class of the spectral tripl&. i§ another open
connected fundamental domain Oy there exists) € Isom(H) such thatX = Y4 and thus
Tx(x) = 61y (x). This implies thatry ¢ = 7x ¢5. Therefore the representationg ¢ andny ¢

are homotopic as well. O
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5. K-homology of Bianchi manifolds

Let I be a torsion-free finite-index subgroup of a Bianchi groud ah be the associated
hyperbolic3-manifold. We already know from Propositiofis and1.6that there is an abstract
isomorphism

KY(Cy(M)) ~ HY(T, Z).
In this section, we shall construct an explicit Hecke equéwd isomorphism
K%Co(M)) ~ Hy(M,0M,7Z),
where)M is the Borel-Serre compactification 8 (see Sectior2.1.2). Recall that
Hy(M,0M,Z) = H'(M,Z) = H\T', Z)

and these isomorphisms are Hecke equivariant. Our appressshgeometrié’-homology and
employ work of Matthey[50] on geometrick -homology of low-dimensional’1¥ -complexes.

5.1. Complex spin structures. Spin structures oM are in bijection with lifts of the holonomy
representatiol” — PSLy(C) to SLy(C) ~ Spin(3,1) (see, e.g[56, Section 2.7]. Itis known
that such lifts exist and thu&l admits a spin structure. Let us fix a lift of the holonomy map of
M and denote the corresponding spin structuré\bty o. It is well known that any compact
oriented3-manifold admits a spin structure (s, Section 1V]), in particular, the Borel-Serre
compactification/ of M admits a spin structure. It turns out that, $66, Proposition 1,
Section 1V], we can choose a spin structure df so that the induced spin structure o
agrees with our fixed. We fix such a spin structurgon M.

A spin structure induces a complex spin (or $pistructure, in a canonical way. We denote
the corresponding spirstructures on\/ and M with the same symbols and§ respectively.
This will not cause confusion as we shall only consider %piructures. In the rest of the paper,
we will endow all codimensior® and codimensiori submanifolds ofd\/ with the canonical
spirf structure arising frona.

5.2. Geometric K-homology. Let us describek®(Cy(M)) as a relative group in the Baum-
Douglas model for<-homology of manifold§6]. For a CW-pain X, Y'), ageometric cyclés a
triple (N, E, ¢) consisting of a compact sgimanifold N with boundaryo N, a vector bundle
E — N and a continuous map : N — X such thatp(ON) C Y. The parityx = 0,1
corresponds to the dimension &f being even or odd. Modulo a suitable equivalence relation,
such cycles generate thometric K -homology K9°%(X,Y) of the pair(X,Y). By taking
Y = (), we obtain the geometri&’-homology groupk?®(X) := K2*(X,0). For details see
[7,32].

The papef[50] describes explicit relationships between ordinary homywland geometric
K-homology of low dimensionalC' TV -complexes. Recall the Hurewicz homomorphigm
71 (M) — Hy(M,Z), which sends the class of a map S' — M to ¢.([S']), where[S!] €
H(S',Z) ~ Z is the fundamental class. By a slight abuse of notation, wetae:([]) €
H,(M,Z) by [¢]. By surjectivity of h, the groupH; (M, Z) is exhausted by the elemerits.
Similarly, any nontrivial class € H(M,Z) can be represented by an embedded surface, that
is, there is a compact oriented surfaéeand an embedding : N — M such thatp, ([N]) = =
where[N] € H?(N,Z) ~ Z is the fundamental clasg70, Corollaire 111.7.] . We shall denote

@+ ([N]) by [N, ¢].
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Proposition 5.1 ([50]). Let X be a connected’WW-complex such thatl;(X,Z) = 0 for all
k > 3. There are explicit natural isomorphisms

Bodd : Hl(sz) - Klgeo(X)’ [90] = [Slv 15%@]
BGV : HO(X’ Z) 2] HQ(Xv Z) — ngo(X)’ ([pt]’ [Nv 90]) = [pt? 1pt’i] + [N’ 1N’§0]’

where[p] € Hi(X,Z) and [N, ¢| € Ho(X,Z) are as above, and: pt — X is any choice of
inclusion.

Proof. This result follows by Theorem 2.1 and Propositions 3.2, 3.8and 3.6 if50]. O

Given a geometric cycléN, E, ) for a CW-pair(X,Y'), let Sy — N be the spinor bundle
and Dy, the associated symmetric Dirac operator on the buhtie S. The restriction ofp to
N\ o~ 1(Y) gives a continuous map: N \ o~ }(Y) — X \ Y, which by the Tietze extension
theorem gives a *-homomorphistily (X \ ) — Co(N). HereN = N\ ON C N denotes
the interior of N. We so obtain a representatiéiy(X \ Y) — B(L2(N,S)). The symmetric
operatorDg then defines d(-homology class by30, Theorem 3.2] The relation between
geometric and analyti&’-homology is given by the following result.

Lemma 5.2. Let M denote a topological compactification 8f and 9M := M \ M. If
(M,0M) is aCW -pair, then the map

K§*(M,0M) = K°(Co(M)) (N, E,¢) = (Co(M),L*(N,E @ S), Dp)
is a natural isomorphism.
Proof. This is the statement ¢¥, Theorem 6.2] O

In view of the last lemma, we consider the Borel-Serre conifieation M of M, see Section
2.1.2 The pair(M, M) form aCW -pair. In view of Propositiors.1and Lemméb.2, we aim
to construct a relative version of the mgg,. We begin with a relative version of Steenrod
representability forr{», which can be found 49, Proposition 1.7.16](see alsd36, Lemma
2.9] and the remark after its proof).

Lemma 5.3. Any nontrivial class: € Hy(M,0M,Z) can be represented by a properly em-
bedded surface, that is, there is a compact oriented surfa@nd an embedding : N — M

such thatp(ON) = ¢(N) N IM and ¢,([N]) = z where[N] € Ho(N,0ON,Z) ~ Z is the
fundamental class. MoreovéY can be chosen so that all its components have negative Euler
characteristic.

As before, we denote, ([N]) by [N, ¢]. For convenience we will writeN, ON) C (M,0M)
to mean thatV is a compact surface with boundary that is properly embedaed)/ as in
Lemma5.3.

As N C M is an embedded hypersurface, the spin structuré/omlescends taV and
(N, 1x,¢) is a geometrick -cycle for (M,0M). We now show that these cycles exhaust the
group K°°(M, 0M).

Proposition 5.4. There is a natural isomorphism
(51) ﬁ;el : H2(M7 aMa Z) 1> ngo(Ma aM)> [N> QD] = [N> 1N390]a

whereM is the Borel-Serre compactification 8f andy : (N,ON) — (M,9M) is an embed-
ding.
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Proof. The notationﬁ;e' is in accordance with50] and Propositiorb.1, as the mapPey =
Bo ® B2 andBodd = 1.

To show that3}' is well-defined, lef Ny, ¢1], [N2, 2] represent the same homology class.
Consider the oriented bordism grog© (M, 0M) (se€[16, Section 4). Noting that5° ~ Z
and Q9 = Q59 = 0, and thatHy(M,0M, Z) is finitely generated and is torsion-free (as
it is isomorphic toH!(I",Z) = Hom(T, Z)), we conclude by Theorem 15.2 fif6] that the
representation map : Qq(M,0M) — Ho(M,0M,Z) is an isomorphism. This implies that
[N1, 1] and[Na, o] are bordant ifM, 9M ). As we consider codimensighand codimension
1 submanifolds of\/ with the spiri structure inherited from that a¥/, it follows immediately
that the cycleg Ny, 1n,, 1] are [Na, 1n,, p2| are spifi-bordant and thus represent the same
geometricK -homology class. As the addition operation on both groupgivien by disjoint
union, it is now clear that we have a homomorphi&in(M, OM, Z) — KJ°%(M,dM).

As group operations on both sides amount to taking disjaiiins of manifolds representing
classes, itis clear thab is a homomoprhism.

To show that the map' is an isomorphism, recall the long exact sequence in horgolog
associated to the paif/, 9M ) which takes the form

|

due to the facts thati®(M,0M) ~ 0 ~ H3(0M). Next, consider the six-term exact sequence
of geometricK -homology groups (see for instanig 32]):

KJ*(OM) ——— K*(M) — K$*(M,0M)

| |
KON, 00) ~— K () ~—— K¥(0})

Writing Hey(X) = Ho(X) @ Ho(X), ande : (M,0) — (M,9M) for the inclusion of
CW-pairs, Propositio.1yields a diagram with exact rows

He(OM) ——= Hey(M) — = Ho(M, M) —2— H,(0M) —— H, (M)

5evl BeVJJ el J/ Boddl Boddl

K%00M) — K$*°(M) —= K&, 03 > K9(9M) — K(T1),

whose outer squares commute. If we show that the inner sgjaaremute as well, then the five
Lemma and the fact thak.,,, Soqq are isomorphisms, implies thé;e' is an isomorphism as well.

To show tha3i o 1, = 1, o ey, Observe that thély (M) summand ofe, (M) is annihilated
by .., as is the class of a point iK§°°(M). For a surface clag$N, ¢)] € Ho(M) we find that

B 0 1 [(N, )] = BRIV, @)] = (V. 13, 9)] = 6 [(N, 1y, 9)] = s © Bl (N, )],

as desired. We now prove thdgqo 0 = 9 o B¢, By Lemmab.3all classes inHy(M, M)
are of the form/(V, ¢)]. The boundary) N is a compact 1-dimensional manifold, and therefore



HECKE OPERATORS ANDK-HOMOLOGY OF BIANCHI GROUPS 31

decomposes as a disjoint unioiN = |_|f:1 S1 of circlesS'. Denote byy; the restriction ofp
to thei-th circle in this decomposition. We compute the compositio

Bodd © O[(N, ¢)] = Bodd[(ON, ¢lon)] Z Bodd[(S", 4)]

k
= 218" 1t )] = [ON: L )] = OV, L. 9] = 00 B, )

This completes the proof thé‘ge' is an isomorphism. d

Note that Lemm&.3implies thatV = NN M C M is a closed embedded hypersurface. We
equip N with the metric inherited from the hyperbolic metric &f as well as with the inherited
spirt structure. The Riemannian distanegg, dy; satisfydy (z,y) < dy(z,y) forz,y € N.
SinceN carries the relative topologx as a subsefipfand M is complete, it follows thatV i§
complete. The spinor bundle’y, — N is the restriction of the spinor bundl€,; — M to N
(see[5, 31)). ThusN is a complete Riemannian spimanifold and we denote b@N its Dirac
operator, which is essentially self-adjoint 6‘@(]\7 ,-/% ), the compactly supported®-sections.

Theorem 5.5. LetI" € PSL»(C) be a noncocompact torsion-free discrete subgroup. There is
a natural isomorphism

(5.2)  Hy(M,0M) =5 K*(Co(M)), (N 9)] = (Co(M),, L*(N, ), B,

whereN is viewed as a spinsurface with associated Dirac operatdi}N.

Proof. By Lemmab5.2, we obtain a magN, 1y, ) — (Co(M), L%(N, S),Dy;) whereD  is
the symmetric operator obtained from the manifold with btany V. Since we have chosen the
spin structure on/ to be compatible with that on/, the spin structure thaV inherits from

M is compatible with the spin structure thatinherits from/. By [29, Proposition 11.27]it
follows that

[(Co(M), L*(N, 8), D) = [(Co(M), L*(N,.%| 3), B )] € K°(Co(M)).
Combining Lemmas.2, 5.3and Propositiors.4, it thus follows that the mab(2) is an isomor-
phism. O

5.3. Hecke equivariance.Given a class$N, p| € Hy(M,0M,Z) and a Hecke operatdr,, it
can be seen that the claBg([V, ¢]) is represented by

(5.3) Ty(IN, ¢]) = [(mg ' (N), 79)] = [(Ng, )]

wherer,, 7, are as in Sectio.1.2and N, is a compact surface with bounda®y, C M,
given by the fiber product

(5.4) Ny := (Mg)r, xo N ~ 7 (N) C M,.
The reader should compare this with the discussid2M Section 3]

Proposition 5.6. The isomorphisnils(M,0M,Z) — K°(Co(M)) (cf. (5.2)) is Hecke equi-
variant.
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Proof. Take a clas$N, o] € Ho(M,0M,Z). Comparing5.3 and the isomorphismb(2), we
see that we need to show that

[(Co(M),r, L*(Ng, #y,), Pw,)) = (1,71 @ [(Co(M)p LA(N, ), D)),

in the groupK Ko (Co(M), Co(M)). Viewing Ng as the inverse image;l(N) C M, using
(5.4) it is straightforward to show that

w: T @cyany LN, Fy) =, LP(Ng, 7y,)s - wx @ 9)(n) = x(n)mg(n),

is a unitary isomorphism intertwining the le€t,(M/)-representations. To prove thﬂi

represents the Kasparov product we need to check conditiing [41, Theorem 13] of
which i and i are trivial since the moduI@M carries the0 operator. Now suppose that

X € Cl( ) is such that supp C U with U an open set such that |y is injective. Then we
can choos€ € C}(M) with x = (m3¢)|v. Then fory € L2(N, .#y) we havelZNnggw =
5, T (C)lu = 75 (1 yCo)|u. Thus we find

Dy xmgh — xmgIp yb = mg (D G — CID )l = g (e (Cly))w) o
wherec denotes Clifford multiplication of forms. Since

I (g ()2, vy = el (L)) 2y < el (I 2.,

it follows thatvy) — lD Xw*w Xw*lﬁ]\e,w extends to a bounded operator. The submodule of

TM generated by elemenxse CY(M,) of small support is dense iﬁgM Hence condition i of
[41 Theorem 13]is satisfied and we are done. O

6. The case oPSLy(Z)

Let T" be a torsion-free finite index subgroup BSL4(Z). Then it acts properly discontin-
uously on the hyperbolic plarH, and the quotienf/ = H,/I" is a finite volume hyperbolic
surface with cusps. The boundaryHf, can be identified witfP! (R).

The analogue of Propositioh 3 in this case is the following (note that the cohomological
dimension ofl" is one). Fori = 0, 1, we have

K;(C(P*(R)) xT) ~ Hy(T',Z) & H\ (", Z)

and
K{(CP'R)) x«T)~H'T,Z)® HY(T,Z).

This is actually well known, it is a special case of the worldofintharaman-Delaroche (Je#)
who treated cofinite discrete subgroup®PSLz(R). Note thatd*(I', Z) ~ Z andH' (T, Z) ~
Z2%9tc=1 whereg is the genus of andc > 1 is the number of cusps di! .

In [47], Manin and Marcolli describe the above isomorphisms in seoffManin symbols us-
ing Pimsner’s 6-term exact sequerjég] of which Kasparov’s spectral sequence can be viewed
as a generalization.
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Much of Sectior3 carries through and we obtain the Hecke equivariant exagtdon
(6.1) K'(Co(M)) —= K°(C(P'(R)) x ') — K°(C}(T)
KY(CH(T)) =— K'(C(P'(R)) x T) =— K°(Co(M))
As M is non-compact, this hexago8.{) breaks apart into two short exact sequences|[@ge

(6.2) 0 — K'(Co(M)) — K°(C(PY(R)) x T) = K°(C*(T)) — 0,

(6.3) 0 — K°Cy(M)) - KY(C(PYR)) xT) = KYC(T)) = 0

as in the Bianchi case.

It is well-known thatI' is a free group or2g + ¢ — 1 generators. It follows, for example,
from work of Cuntz[21] and of Lancg42], that K°(C(T")) ~ Z and K} (C(T')) ~ Z29+<~1,
As a result, the sequence.) and 6.3 split and also we gek' (Co(M)) ~ Z29<~! and
K°(Co(M)) ~ Z.

The analogue of Propositidh4 reads as follows. Far= 0, 1, we have

K'(C3(T)) ~ H'(T, 2),

The map we constructed in Sectiéiis defined here as well and we get
Theorem 6.1. The maps

Hy(T,Z) — Ki(CxI)) and HY(T,Z) — KYCXT))
(6] = fug] ] = - [De ]

are Hecke equivariant isomorphisms compatible with theipgs of the respective groups.

Our results in Sectioh adapt straightforwardly to the caseBBSL,(Z). The1-dimensional
analogue of Lemma&.3holds and we get the following (using the notation of Secfpn

Theorem 6.2. There is a Hecke-equivariant isomorphism
Hl(wv 8M7 Z) - Kl(CO(M))

sending the homology cla&y¥, o] to the clas$(Cy(M), L2(N, E® S), Dg)] whereM denotes
the Borel-Serre compatification of.

Note thatH,(M,0M,Z) ~ H'(T', Z) as Hecke modules.

7. The extension class as a hypersingular integral operator

In section3.2we used the harmonic measurgson the boundargH to represent the bound-
ary extensiong.1) as a Kasparov module. In order to compute Knomology boundary map
0 : K%Co(M)) — K'(C(6H) = T'), we now construct an unbounded Kasparov modiije
representing the extension class.
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7.1. Harmonic calculus onT} H. As before,H denotes the Poincaré ball model of hyperbolic
n + 1 space. To construct an unbounded representative for thedhoy extension we discuss
hypersingular integral operators defined using the haronmeiasures,, and a family of metrics
d, on 9H which we now describe For at,y € H andg € G we have (cf.[54, Equation
1.3.2):

1 1
(7.1) lzg = ygll = 19'(x)[21g' ()] 2 lz = yll,
where|| - || denotes the Euclidean norm ®&f**!. Using the Poisson kernes @) the function
(7.2) da(€,1) = P(x,€)"* P(a,n)'||¢ = 1],

satisfiesd,,(£g,1n9) = d.(&,n) by (3.9) and sad,, is a metric onoH, as this holds fotl, andg
acts transitively orH (compardg54, Lemma 3.4.2]and[59, Section 3.3].

For a pair(z,£) € T1H we denote by, ¢) : R — H the geodesic ray with, ¢(0) = z
andlim, o (7(z,¢)(t) = €. Recall that forr > 0 andx, y € H, theSullivan shadovis the set

Op(z,y) :={§ € OH : inf{dp(rz¢(t),y) : t € [0,00)} < r} C OH.
A proof of the following result can be found [54, 59].
Proposition 7.1(Sullivan’s shadow lemmg69]). For all &, 1 € €, (z,y) it holds that
e "el®Y) L dy (&, n) < @),
Moreover there existg, such that for alr > r( there existg”,. > 0 for which
C,Tle_"d(x’y) < (O (z,y)) < C, e "Uy)
forall z,y € H.

We start with the following observation, concerning theRipotentials commonly studied
in metric measure theory (see for instafi¢g]).

Lemma 7.2. For all 0 < s < n, the integral

1
= Is(z,¢) !Z/dew,
is finite and independent 6, &).

Proof. To see that the integral is finite for fixdd, £), we only consider the case< s < n,
as the case > n is immediate. Choose points, on the geodesic from: to £ such that
d(x,xr) = k. We writedH as a disjoint union

- U ﬁr('ra'rk‘) \ ﬁr($,$k+1),
k=0

and expand the integral and then estimate using ProposYlIion

/( (67 ) dVaCn 2/7(1‘ TE)\Or (2, Tk41) dy (§ 77) dVJ:n Cr Z *dmmkﬂ n—s

<C, Z e(nfs)(kJrl)efnk = C,e"* Zefsk < 0.
k=0
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Thus the integral ;¥ (x, £) is finite for fixed(x, ). Forg € G, we have
1 1 1
() = [ ———dva(ng) = | v
| w2 = | gm0 = [ g e

and since,, acts transitively odH, we see thafs(x, £) is constant ir¢. Using this fact, we
can write forg € G:

1 1 1
[ e = | a0 = | gy

and since5 acts transitively o we see thaf(z, €) is independent of as well. O

Now we consider the spherical hypersingular operégr: Lip(0H) — L%(0H, 1) and the
projectionpy € B(L?(0H, 1)) given by

(73) o= [T Db, mi©) = [ rwavon

Operators of exponent+¢ in the denommator have been extensively studied by S46%64].

Lemma 7.3. The operatorD, mapsLip(0H) C L?(0H, vy) into bounded functions ofiH, is
essentially self-adjoint 06! (0H) C Lip(6H) and has compact resolvent. Moreoker Dy =
Im po and Dy + pg is strictly positive.

Proof. Observe that fof € Lip(0H) , by Holder’s inequality and Lemma2we have

f(€ QO =fml R S |
[ %én ‘ [ %5, "\me/%@mnlmn 1 £ e,

so Dy f is a bounded function and thus,f € L?(0H, ). In particular, any orthonormal
family of spherical harmonics;,, , € C''(6H) is in the domain ofD,. Using the the method of
Samko[64, Lemma 6.25]we see that the multiplier dD, on spherical harmonics is given by

1

Yorse = AmYimks Am :/ 1+ (1 =) 11 = Pu(t))dt.
-1

Here P, (t) = 31 (54)" () (™) (1 = t)* is them-th Legendre polynomial. In particular
we haveAO = 0 sincePy(t) = 1. Form > 0 We find

u—w*u—f%@>:§f(g§h%(Z)C”;?yl_aml

k=1
so we are concerned with the integrals
1 —2)k=122(k — 1)! n—3
1= (1 4 t)odt = — = .
/_1( A+ @+ (atk—1" “7 2
The proof of this equality follows by induction dn Thus we find, fomm > «

A = 2 ;:1 ((ZL) (m/jk> (a+ 1)(k_(;1k - 1)>

i (m + k)! k " m!
2¢ > 2¢ —_— =2%(2M -1
;(kﬂm k)! (a+1)---(a+k—1)> ;kz!(m—k)! ( )

(]
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This proves that,,, > 0 for all m > 0 and),, — oo for m — oo. HenceDy is essentially
self-adjoint on LigoH), and has compact resolvent irf (9H, vo). Moreover Dy is positive
with kernel the constant functions, on whigfprojects saDg + pg is strictly positive. O

We wish to extend the operatd?, to the moduleL?(T;H, Va)co(m) IN @ way compatible
with the action ofG = IsomH on this module.

Lemma 7.4. The map¥ — P"/2¥, whereP is the Poisson kerndB.8), extends to a unitary
isomorphism

(7.4) v: L*(TVH, vg) ooy — Co(H, L?(0H, 1p)) ~ L*(0H, 19) ® Co(H),
of right Cy(H)-modules.

Proof. Sincedv,(§) = P(x,&)"dry(§) it is straightforward thab is innerproduct preserving.
Since it mapg’,.(71H) into itself, it is surjective. O

In L2(T\H, Vz) oo () WE consider the operator

(7.5) DU(z,8) = / \I'(w,ci)(g—;ﬁxm)

which is initially defined on the dense subspat&TiH) C L*(T1H, v;) (1)
Lemma 7.5. The functionH : T1H — R given by

dvgn,

P(z,8)"/2
Ty P(z, -n/2 _ p , —n/2
.6 Hewo) = [ O v = PG )" JE= T n)ﬁx D o,

defines an element 6f' (H, L>°(0H, 1)) viaz — H,, H. (&) := H(x,¢&).

Proof. For fixedz, P, : £ — P(x,&) is nonvanishing and Lipschitz h Therefore the function
H,:0H — 0H, H,: & H(w,§) = Po(€)"?Do(P;"?)(€)

is bounded by Lemma 3and thus defines an elementlof(0H, ). Forz,y € H, the function

P PJ”/Q : OH — R is defined on an open neighbourhoodd# c R™*!. Denote by

grad the Euclidean gradient by ah(, y) := sup; lgrad Py "2 (¢) — P, ™2 (€))|l, which is a

continuous function ofz, y) that vanishes on the diagonal. The mean value theorem gives

|P: (&)~ = Py(&)™™% = Pul(n) ™™ + Py(n) "?|| < hlz,y)lI§ —nll.
Thus, withI; as in Lemma&’.2we can estimate

n

/awf—awf—%w$+%©2
dO(g’ 77)”

-_n
2

|1 Do (P

_PyT)Hoo < dvon

o0
1
<h%y/ ——————dvon = Ih(z,y).
(@y) or do (&, m)nt )
Then the estimate
|1PR/2 Do Py 2 — PR Do Py |l < |IPR2 = P/?||os || Do Py ™2 lo + 1Py 2 loc i h(z, ),

shows thatlim,_,, 1PE2 Do Py ™ — P2 DyPy ™3| = 0, SOz — H, is a continuous
mapH — L*°(0H,1p). The partial derivative®),, H(z,&) are continuously differentiable



HECKE OPERATORS ANDK-HOMOLOGY OF BIANCHI GROUPS 37

in &, and so a similar argument shows that the maps> 0., H(x, ) are continuous maps
H — L>*(H, 1) as well. O

For a Banach spacg, we denote byC!(H, F) the space of compactly supported contin-
uously differentiable functions ofI with values inE. We will always consider Donb,
as a Hilbert space in the graph norm. Using the injection Dyn— L2(0H, 1) we view
C1(H,Dom Dy) as a subspace 6t (H, L?(0H, vy)), which both areC(H)-bimodules

Proposition 7.6. Letv be as in Lemm&.4and D as in(7.5. The operatorD is essentially
self-adjoint and regular on*C; (H, C' (8H)) C L*(T1H, v;:) ¢, m) and satisfies

D : v*CL(H,Dom Dy) — v*CL(H, L*(0H, 1p)).
It has Cy(H) locally compact resolvent in?(7T;H, Vi )coem)- IN particular, for all f € Co(H)
we havef(1 + D)~! € K(L*(T1H, vz) ¢, (1) )-
Proof. Using the map7.4), it suffices to show that the operatebv* with domain
C!(H,Dom D) C v(CH(TyH)),
is essentially self-adjoint, regular and l@gH)-compact resolvent ity (H, L?(0H, vy)). We
see that it is given by

n/2 z,
P — U(a,n)

¥ (z,§)
7.7) va*\I’(ac,ﬁ):/ o)

where H(z,¢) € CY(H, L>(0H, 1)) is the function from T7.6). In particular,vDv* maps
CL(H,Dom Dy) into C}(H, L?(6H, 1y)). It follows that D is a map

D :v*CL(H,Dom Dy) — v*CL(H, L?(0H, 1)) C L*(T\H, Vi) Co(H)

and thusD is a densely defined symmetric operator. [BY, Theoréme 1.18] vDv* is self-
adjoint and regular if and only if for alt € H the localisation(vDv*), is self-adjoint in
L?(0H, vp). But (vDv*), is a bounded perturbation @, by (7.7), and therefore self-adjoint.
ThusvDv* is self-adjoint and regular. By the same argument, becéyskas compact resol-
vent, (vDv*), has compact resolvent and thuBv* hasCy(H)-compact resolvent. Sineeis
unitary, it follows thatD is self-adjoint and regular, witt,(H)-compact resolvent. 0

dl/()?’] = (DO ®1+ H(ﬁ,g))\l’(ﬁ,g),

Proposition 7.7. The operatorD is positive and>-equivariant. Moreover, fop the projection
of TheorenB.4, D + p is strictly positive andDp = pD = 0.

Proof. By Proposition7.6 Dy is positive andDy + pg is strictly positive. Now considef with
0 = zg and for¥ € C.(H,C'(0H)), which is a core forD, write U5 (¢) = W(x,£g71), so
U{ € C*(0H). Then compute

(DU, W)( // ¥z, OF () DY) 4y, edvn
/ |‘I’9E£|2 U (z,n)¥(z,§)
do(§9,m9)"

2 _W(r.po-1) -1
- [ et PR VT g i = Dy w3,

dvo(€g9)dvo(ng)
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and similarly one shows thdpV, ¥)(z) = (po¥%, ¥%). It thus follows thatD is positive
and D + p is strictly positive. A simple change of variables estdi#is(G-equivariance. The
equality Dp = 0 follows because V¥ (z, ) is constant ir¢, andpD = 0 thus follows by taking
adjoints. O

7.2. An unbounded Kasparov module for the extension clasdn Section4.2 the function
p(x) = du (0, z) was introduced, and ofi.(H, Dom Dy) we consider the multiplication opera-
tor p¥ (z, &) = p(x)¥(x,£). Itis straightforward to show thdd andp commute on this domain
and thatD + p is essentially self-adjoint and regular.

Proposition 7.8. The positive self-adjoint regular operat@» + p has compact resolvent in the
C*-moduleL?(TyH, v;) ¢ (1)

Proof. Because botlD andp are positive regular operatord, + D + p)~', (1 + D)~! define
adjointable operators and the functioh+ p)~! is an element ot’s(H). Hence ifu, is an
increasing approximate unit ity (H), for n > m we have the operator inequalities

0 < (tn — U)X+ D+ p) Lty — um) < (tn — ) (L + p) " (n — upm) = 0.
Thus the sequenag,(1 4+ D + p)~! is Cauchy. On the other hand
un(l + D+ p)ilun < un(l + D)ilun S KC@(H)(Lz(Tle Vx))7

because:, (1 + D)~ € K by Proposition7.6. SinceK is an ideal, it is a hereditary subalgebra,
and thus the operatar, (14 D+ p)~'u,, € K from which it follows thatu,, (1+D+p)~'/? € K,

and since this sequence is Cauchy, its limit iskiras well. Because the sequence converges
pointwise to(1 + D + p)~1/2, it follows that(1 + D + p)~! € K, as desired. O

Next we address the commutator propertie®aind p with functions f € Lip(0H).
Lemma 7.9. For f € Lip(0H), the operatof{ D, f] extends to a bounded operator.

Proof. This commutator can be computed using the explicit formatavDv* from Equation

(7.7) to find:
D0 f10(a,6) = [ LTI gy,

Using Hoélder’s inequality, the fact tha’tis Lipschitz and Lemmad.2we estimate

R Tl e e e UL

< I1f e / / ¥, 2 'fff)'dmmduo(a

|9 : @ (x,6)]? :
< Il (/ [ et Mnl (n)dﬂo(@) (/ Wduom)duo(@)
< Iflup i@l ],

which is independent of. Thus[vDv*, f] extends to an adjointable operator. O

Next we recall the functiop(x) = dgz(0, x) and the projectiom from Theorens3.4.

Lemma 7.10. For f € Lip(0H), the operatorip, f]p extends to a bounded operator.
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Proof. The proof consists of pointwise estimatescire H:

(o 117, B)(x)] < / / U, ), [ F(€) — ()| (€) v (1)

< £l / / W, )@, )€ — nlldvs(€)dvs ()

<rlptt = el [ [ 19 mow o= =10, 6

@8 <l = lolP) [ [ 9@ (Pt + Pla) v (v

Thus we estimate

[ [ 1 vl e v < 21291 ( /] Pl@@)dumgduxn)

Using Holder’s inequality, the fact that, is a probability measure antl, = P"dy, we find

n—1

n

[P = [P gane < ([ Prwas) T <1
Combining this with {.8) we obtain the estimate

[, /19, @) (2)] < 2| flluipll®ll2¥(l2(1 — ]?).
An elementary computation using the explicit distance fdeon the hyperbolic ball (sdé4,

Section 1.6.7) shows thap(z) = log (}fH;Hf It thus follows thatp[p, f] is bounded. O

This leads us to consider the operator= —D + pF,, as a candidate for the unbounded
representative of the Fredholm module constructed in Hmar4. We arrive at the main result
of this section.

Theorem 7.11.The triple(C(0H), L*(T\H, v;) ¢, (1), S) is an unbounded:-equivariant Kas-
parov module representing thié-equivariant extension

0 — Co(H) — C(H) — C(0H) — 0.

Proof. We haveS = —D + pF,, = F,(D + p) = F,(1+ D + p) — F}, by Proposition7.7. Now
1 + D + p commutes with#}, and has compact inverse by Propositio, so.S has compact
resolvent inL?(T1H) ¢, z). We note that since

[S’f] = [p,f]Fp—[D,f]+2[P,f]p,

it follows by Lemmas7.9and7.10that[S, f] extends to a bounded adjointable operator when-
ever f € Lip(0H). The operatord and F,, are G-invariant by Theoren8.4 and Proposition
7.7, and the functiorp commutes boundedly wity. ThusS defines a5-equivariant cycle, and
by construction, the bounded transform defines the sams atds,, so we are done. O

8. Embedded surfaces and the boundary map itk’-homology

In this section we explicitly compute the boundary n@apKO(CO(M)_) —>_I(1(C(8H) xT)
for classes ) ;] € K°(Co(M)) attached to a surfaceV,0N) c (M,0M). For Bianchi
groups, this gives an exhaustive description of the g Theorenb.5.
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8.1. Hyperbolic Dirac operator and Poisson kernel.We now prove several technical Lem-
mas concerning the commutation relations of the hypersangategral operatoD (7.5), the
projectionp from Theorem3.4 and the hyperbolic Dirac operatdby. In the next section we
use these results to compute the Kasparov product of thedaopextension with Dirac opera-
tors on embedded surfaces.

We set some conventions. Following Patter§dh Page 294]jwe view H as the unit ball
in R"*! as before, with the Riemannian metrig® = %. Let.¥ — H be the spinor
bundle and consider the internal tensor product'efH )-C*-modules

Co(H, L*(9H, 1)) ®co(m) Co(H,.#) ~ L*(0H, 1) @ Co(H, %),
and the dense subspace

(8.1) W = Wy = CL(H,Dom Do) &8 ) CL(H,.7).

Let ¥ € C!(H,.”) be a compactly supported-section andx a tangent vector field. We
denote the Clifford representation associated to the lbgliermetric onH by ¢ — ¢(x). Let
e; € R denote the-th standard basis vector. The vector fietdsr) = ¢;(1 — ||=||?) define
a global orthonormal frame for the the tangent bundl@orThe hyperbolic Dirac operatdbyy
can be computed by elementary methods (see for ins{@éc& heorem 5.3.5) and is given by

Du:CHH,.Z) = C(H,.%), > (1—|z]*)c(e:)dsnp + Lic(e;)y.
=0

Here theL; are bounded functions df. It induces an operator

Ty : CL(H, L2(0H, 1)) alg ClH, ) — Co(H, L*(0H, 1)) ®2[g

D1 m) Co(H, ),

(H)

Ta(V @) =V @ P+ 0¥ © c(e;)y

= (1 - Jl|*) (Z U ® c(e)(9) + (0:;¥) @ C(ez)zZ)) + L0 @ c(e;),
=0

Fors € R, the powers of the Poisson kernel define multiplication afmes
Ps:CHH,L*(0H,1p)) — CL(H, L?(0H, 1)), ¥+ P°T,
Lemma 8.1. Lets € R and V¥ ® ¢ € Wy. The operatord”® and Ty satisfy

Ta : W — C.(H, Dom Dy) @‘é‘f(H) C.(H,.7),

s |
PS: Wy — CHH, L*(0H, 1)) ®gg(H) CHH,.7).

There are functions; € C,(TyH) with Y7, u? = 1 such that

n

[T, PP @) = 25P° ) c(e;)us(¥ @ 1))
i=0

Proof. The domain mapping properties are straightforward to claeckguarantee that commu-
tator [Ty, P*] is well-defined. By the derivation property ®f;, we need to compute

i — Ly —||z|I? —z;lE—x 2
(1= 12l2)0 (P(, £)°) = 25P(z, ) S0 u:’n’ —HE)IIQ € = ol
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so we have
(8.2)

[T, Pl (@) = 25P° > cle))u (¥ @Y), ui(w,§) =

7

(& — ) (1 — [|2]?) — ill€ — =]?
[l — &7

Now since

ISEEARS (Z(ﬂck - Ek)2> <lle—¢€ll, 1= 2l < (@ + flzlDllz — €]

k=0
we find |u;(z,€)| < 1+ ||z|| — 2; which is a bounded function. The proof tig}u? = 1 is an
elementary computation which we omit. O

The operatow Dv* from (7.7) induces and operator

(vDv*) ® 1: Wy — CL(H, L*(6H, 1)) ®g'§(H) CMH,.7),

which we will denote by Dv* as well.

Proposition 8.2. The operator§vDv*) @ 1 and (vpv*) ® 1 satisfy

(wDv") @1, (vpv*) @ 1: Wit — CL(H, L*(9H, 1)) @ ) CH(H,.7).

For ¥ ® ¢ € Wy it holds that

[T, vpv* (T @) =n Z(v(uzp + pu;))v*)U ® c(e;),

)

oDy Tl & 0) = n Y gt @ cles. ang) = ([ LI g )

Moreover, the functiong; : T1H — R satisfysup, ¢) >~ gi(z, £)?2 < o0.

Proof. The operatowpv™ can be written as

opv*U(z,€) = P(z, )" / (e, ) P (2, ) v,

from which the domain mapping property follows readily. Tieemula for commutator is
a direct application of EquatioB.2. We turn to the operatosDv*. Recall from Equation
(7.7) that the operator Dv* can be written as Dv* = Dy ® 1 + H, with H as in Equation
(7.6). By Lemma7.5 H € C'(H, L?(0H,v)) and thusH multiplies C}(H, Dom Dy) into

CHH, L*(0H,1y)). Clearly Dy ® 1 mapsCL(H,Dom Dy) into C}(H, L?(0H, vy)) as well.

Therefore

(wDv*) @1 : Wi — CL(H, L*(9H, 1)) @3S ) CL(H,.7),

and the commutatdy, (vDv*) ® 1] is well defined and equal§y, H ® 1]. By Lemmas.1
and the Leibniz rule

[Tex, P, )" P(2,6) "2 = nP(x,n)"* P(a, )"/ Z c(ei)(ui(z,§) — uiz,n)).

2
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It now follows that onlW/g

x n/2 I n/2u T 2
Tia,H @ 1) =n 3 (o) [z £>d0(£’<n)z< O — )

— ul X f ul(g; 77)) .
nz A /P .7; § n/2p .YJ é‘)n/ZdO(g n)P(ﬂU,U) dl/OT}

ui(z,§) — ui(x,m))
_nz el / d2(&,n) Wall

as claimed. To prove thatip(, ¢) > gi(z, ¢ €)% < oo, it suffices to show that
(8.3)

o S ([ e i) < e 5 ([ e )

is finite. By Hélder’s inequality we have, f(ﬁ]r< s<1 that

(8.4)
’uz z E ul x 77)’ >2 (ul(x7§) _ui(wvn))z v 1 U
(/ ) < | St [ Gt
A Iengthy but elementary calculation shows that
(85) Z(ul(x7§) - U,Z‘(.YJ,U))Q - Hg - 77”2]3(9575)13(35777) = dm(§7n)2

i=0
Combining 8.3, (8.4) and 8.5), we find

(U,Z(I',f) - ui(wvn)) 2 (Uz(w,E) — ui(xjn)y
S ey ) <1 X [ SRS

B dy (€, m)? _ 1 _
- IS/WCM(") - IS/WCZ%(”) = lslos,

which proves boundedness by Lemiha O

8.2. Kasparov products with embedded surfacesBy Theoremb.5, any element of the group
K°(Co(M)) of a Bianchi manifold)M can be represented by the self-adjoint Dirac operator on
a closed embedded hypersurfalﬁfe—> M. Throughout we will use that the spinor bundle on
a closed embedded hypersurface is the restriction of tm@spundle of the ambient manifold
(cf. [5, 31)).

We will consider the embedded hypersurfate= w*l(sz) C Hinside the universal covéd
of M and denote by the unit normal vector field of C H. Let.” — H be the spinor bundle
of H, which is the pullback of the spinor bundle &f under the covering map : H — M.
The Clifford module structure o¥’|x, is given by

cn(x) = c(x)e(n),
with x a vector field or.. We denote bys, : C(X,.7|x) — C.(%,.|s) the Dirac operator
on.”|y. associated to this Clifford module structure. The map

(8.6) o: SNy — Ly, Y ic(n)y
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is self-adjoint for the Riemannian inner product sfiand squares td. As sucho induces a
grading on¥|s;, giving a decomposition” |\, & .#|5;. Moreover, since? | is G-equivariant,
|, is T-equivariant. Similar relations hold for the spinor bursdég M/ andN.

Let (¢, p) » denote the inner product on the spinor bundle éhdX,.”) the associated
Co (%) module of sections. Moreover, we wrifé (3,.7|5;) for the Cy(IV)-module obtained as
the completion of”.(%, .) in the inner product norm given by

Wp)(n)i= D (¥,9)r(x) € Co(N).
zem—1(n)

Proposition 8.3. The rightC.(/N) module map
v: Ce(Ti(H)) @2 ) Ce(N, Fy) = Ce(, LHOH, 1)) 85y CelS, . |5),
U@ (PY20)|s @ 1%
is well-defined and extends to a unitary isomorphisr@g(fV) modules
v L2(TiH, vp) @cyan) Co(N, Fy) = Co(B, L (0H, 10)) ¢y () La (S 15) oy ()0
and to a unitary isomorphism of Hilbert spaces
v L2(TH, v,) @y LAN, Fy) — Co(E, L2(0H, 1)) ®cy(s) LA(Z, S |5).
Here the latter Hilbert space is the completion@f(3, L?(0H, 1y)) ®ac'f(2) C.(%,.|x)inthe
inner product
6.7) (V6000 )= [ (106,20 bl (@),

where(¥ ® 1, ® ® ¢) ¢, (s;) denotes the inner product @ty (X, L?(9H, 1)) @y (s) Co(E, ).
The algebraC'(0H) acts by pointwise multiplication and the I&firepresentation is given by

(8.8) v(uy @ D" (T @) =172 (o ) ® (you).
Proof. First note thatv is well defined for ify € C.(X) is a function such that = 1 on
supp¥|s, then

(P2 W) g @m*p = (P2 0)|g @ x7*¢ € Co(S, L2(OH, 1)) @, (x) Ce(S, -7 5).
The balancing relation is respectedbfor if g € Cyp(M) andy is as above then
v(¥ - g @) = v(Wxm*(g) @) = P Uxr*(g) @ 7 (1))
= P2 0@ xr*(g)lsmy = P2 U @ x7*(glne) = (¥ ® g ).
Compatibility of the inner products follows by
(0(T @ ),0(® @ ¢))(n) = (7", (P**T, P*2®) (s 127" ) (n)
= Y (T, (P"PU,PP®) gy 5 12T 0) 4, (1)

zen—1(n)
- Z <¢(n)7 <\Ilv ®>L2(T1H,Vw)(x)(p(n)>§”1§,
zem—1(n)

= (¢(n), (¥, (I)>L%(T1H,VZ)CO(M) (n)p(n)).s, = (¥ @Y, ®®p)(n),
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so it remains to show thathas dense range. Choose a pre-compact open ¢bygiof 3 with
the property that/;y N U; = () whenevery # e and lety? be a partition of unity subordinate to
{U;}. Then for eachy;, v € C.(%,.|s) and¥ € C.(%, L?(0H, 1)) there is a sectiony; €
CC(ZV,Y) such thaty;¢ = 7*;|y,, and a functionl; € C.(T1H) such thatly; = P2y,
Now choose functiong; € C.(X) with f; = 1 onU;, so that

U@y = Z‘I’Xz'fz‘ ® XY = Z‘I’Xz‘ ® fim* i = Z‘I’Xz' ® T = ZU(‘I’z’ ® ©i),

which shows that is surjective and thus extends to unitary isomorphism ofthe&ompletions.
To see that extends to the Hilbert space completions, we need only ebdkatr : 31 — Nis
alocal isometry, sd?(%, |5, i) ~ Co(%,.7|x) B o () L2(N, ). The statements about the
algebra representations follow by straightforward caltiah. O

Similar to 8.1) we consider the subspatis, := C}(3, Dom D) ®21?(2) Cl(%,S|s). The
restriction maps
CYH) - Ccl¥®), CYH,7)—Cl®,7|s), CLH,Dom D) — CL(Z,Dom Dy),

are all surjective and we conclude that restriction givesrgstion Wy — Wx.

The closed embedded surface— H admits unit normal vector field, which we can extend
locally to a vector field orH. Forz € ¥ let {x;}7", be a local orthonormal frame atfor the
tangent bundle oH, with x,, = n. We defineTy; : Wg — Co(%, L?) ®cy(m) Co(X, S |x) by

T(¥ @ y)(x) = (1 — |lz|*) (Zax,ﬂ’ ® ex(xk)Y(z )) +¥(2) ® (Ds)(2).

Lemma 8.4. The operatorT; is essentially self-adjoint of’s, C Co(2, L?(0H, 1)) ®cy(x)
L?(%,.7). MoreoverTs, commutes with functions € C(0H) and thel -representatior(8.8).

Proof. The operatorldy. : CL1(X,.7) — C.(%,.7) is essentially self-adjoint becauseis a
complete manifold. The subspaﬁé(@H vy) @9 C.(X) € Co(%, L2(0H, 1)) is dense and

L*(0H, v9) @*9Ce (%) ®¢, () Ce(B, ) = LX(0H, 1) © C(E,.7),  fog@y = fogy,

extends to a unitary isomorphism

(8.9) a: Co(3, L*(0H, 1)) ®cy sy L*(3,.7) — L*(0H, 1) ® L*(S,.7).

For f € L?(0H, 1), g € C}(X) andy € CX(Z,.7) we havef ® g ® ¢ € Wy and
(aoTy)(fRgev) =f® Ds(gy), oTva ' =1® Py.

While the elementgy span the cor€'}(3,.7) on which s, is essentially selfadjoint it follows
thata o (Tx; £7) has dense range, and hence so dées . Lastly, it is clear thafsy, commutes
with functions f € C(0H). For thel'-representationg(8), it is enough to observe that under
the mapo above we have

o[ Ty, vuyo'la™ f @ ¢ = [1® Py, |y [“2u,|f @9 =0,
because¥ is I'-equivariant and’ does not depend on O



HECKE OPERATORS ANDK-HOMOLOGY OF BIANCHI GROUPS 45

Lety € C}(H,.) andz € . By [5, Proposition 2.2]the hyperbolic Dirac operatdpy;
and the surface Dirac operatf, are related by the formulae

c(n)Puy(x) = Psp(x) — Kip(x) + Vy(e),  (Pucn) - cn)Pu)p(z) = 2Ps(x).
Here ) is a section of the spinor bundle @& defined in a neighbourhood &f, VH is the
spin connection in the spinor bundle Hf and K is themean curvatureof the surface®. For
¥ ® 1 € Wi andz € ¥ we find the simple formula
(8.10) (Trae(n) — c(n)Ter) (¥ © ¥)(z) = 2T5(¥ @ o) ().

Choose)i, € C.(H) such thake; = >, i xy, in a neighbourhood aof. The following Lemma
allows us to exploit the commutator computations of the ioeyv section.

Lemma 8.5. Let R : Wi — CL(H, L*(9H, 1)) @29
[Ta, R] =i, c(e;)R;, where

CL(H) C}(H,.7) be an operator such that

|
Ri: Wi — Ci(H, L*(9H, 1)) € ) Ce (H,.7)

are operators that commute with the Clifford action. Than¥o ¢ € Wy

n—1 n

(8.12) ([T, R]) (¥ @) (@) =Y Y NRies(xi) (¥ @ ¢)(x),

k=0 i=0
locally atz. If the R; define bounded operators 61y (3, L?(0H, 1)) @ ¢, () L* (2, |s) then
[Tx, R] extends to a bounded operator 6i(2, L*(0H, 1)) @y (s) L* (2,7 |5).
Proof. Equation 8.11) is obtained by linear algebra using Equati8rL() and the local relations
c(xx)? = 1for 0 < k < nande(x;)e(x;) = —c(x;)c(x;) for i # j. To see thatTy,, R defines
a bounded operator whenever tRe are bounded we first compute tli§ (X)-valued inner
product(:, -) ¢, (s from Equation8.7, and do a pointwise estimate:

((Tey(z), Rlw, [Ts, Rlw)cy(s)(z Z (ZAZ ) (Riw, Ryw) oy sy ()
=0 \k=1

< Z(sz, Riw>00 (%) ('I)

=0
Therefore, integration against the measuyéor the inner product§.7) we find

([Ts, Rlw, [T, Rlw), < Y _(Riw, Riw),, (ZIIR | )

=0
which proves boundedness |k, R] on Co (2, L?(0H, 1)) @cy(s) L (5,7 |5). O

We write o := ic(n), which satisfiesr* = o ando? = 1 and commutes with he operatsr
constructed in Theorem 11

Proposition 8.6. The operatoroSv* + Tx : Wx — Co(E, L?(8H, 1)) @cy(s) L* (2, |x)
is essentially self-adjoint.
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Proof. Write t := )y, ands := voSv*. OnWsx, C Dom s N Domt we can write
st +ts = TxvoSv* + voSv* Ty, = o(TxvSv* — vSV*Ty) = o[Tx, vDv*] + op[Tx, vpv*].

It is straightforward to check that formul&.{) holds for the isometry from Proposition3.3.
By Proposition3.2and LemmaB.5, the operator$ls;, v Dv*] and [Ty, vpv*] extend to bounded
operators. The unbounded multiplication operatoommutes with the other operators involved.
Now since

S% = (=D —p+2pp)* =D’ +2Dp+p* > p°,
it follows thatp?(1+52)~! < p?(1+p?)~! < 1 and hence(vSv* +i)~! extends to a bounded
operator. The operatofs+i)~! preserve the coré’s and we have shown thét +ts)(s+i)
extends to a bounded operator. Thusnd¢ satisfy[52, Definition A.1] (see alsd33]) and by
[52, Theorem A.4]the sum operatos + ¢ is self-adjoint on Dons N Dom . O

Fory € C.(H) andf € L?(0H, 1) we denote byf - x the functionf - x(z, &) := x(z)f(£).
Using thaty has compact support, it is straightforward to check that € L?(T:H, Vi) Co(M)-

Lemma 8.7. For any functiony € C!(H) for whichr : suppxy — M is injective andf €
L?(0H, 1y), the operator

V=0 Teo(f - x®@¢) — f-x @ Dy,
extends to a bounded operatb?(N,.7) — L2(T1H, v,) @,y L2(N, 7).
Proof. As in the proof of Propositios.6, there existg € CL(M) such thaty = (7*¢)|y. Then
Tso(f - X ®¢) = o(f - x @ Pyop) = Te(P"2f - x @ ') = PP f - x @ n* P
= [Tg, P"?)f - x @'Y + PP2f - (Tox @ 7'y — x @ m* P g9)

and we consider both summands separately. Wriinépr the vector fields omv, satisfying
c(xk)(z) = 7*c(Xg) (z), Lemmas3.2and8.5 give the local expression

n—1
[Ts, PP f - x @ 7(x) = nP"? Y > " N f - x @ es(xp)7* ()
k=0

n—1

=nv (Z D Nuif x® CN(fk)lﬁ) ().

k=0 i

This is shown to be a bounded operator as in the proof of Lethfd-or the second summand,
n—1

PRf (Tor* ¢ @ny —n*¢@m* Pyp)lu = Y P2 f -7 (0%,Q)lu ® (T en (Ri)¥)lu
k=0

n—1
= (Zf 7 (0%,C) U @ CN(fk)dJ) ;
k=0

which defines a bounded operator as in Proposkién O

Theorem 8.8. The triple (C(9H) x T', L2(T1H, v,) ®cyary LAH(N, Fy), 08 + v*Txv) is a
spectral triple representing the clag$lp ] € K'(C(0H) x T').
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Proof. The operatots S + v*Txv is self-adjoint by Propositior8.6. By Theorem7.11 and
Proposition8.4the operator S + v*Txv has bounded commutators with functiohs C(0H)
and with group elements,. By Lemmas8.7 and combining arguments |62, Lemma 4.3] [34,
Theorem 6.7]and[52, Theorem 4.4] it follows that the triple(C (0H)x T, L2 (T H, Vi )®co (M)

L*(N, %), 08 +v*Txw) is aK-cycle representing the produé @ (1] = 9[- O
It should be noted that under the isomorphisirdy,
a: Co(%, L*(0H, 1)) ®cy(x) LA (E,.) — L*(0H, 1) ® L*(S,.7),

the spectral triple in Theorer@.8 admits a simple description. It can be represented on the
moduleL?(0H, vp) ® L*(X,.#) using thel-representation

uy (f @ )€ 2) = [V (§)If (&) ® (@),

and the operatos(Dy ® 1 + H + pF,) + 1 ® P5. However, proving that this operator is
self-adjoint with compact resolvent requires the analgsésented above.
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