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HECKE OPERATORS IN KK-THEORY AND
THE K-HOMOLOGY OF BIANCHI GROUPS

BRAM MESLAND AND MEHMET HALUK ŞENGÜN

Abstract. Let Γ be a torsion-free arithmetic group acting on its associatedglobal symmetric
spaceX. Assume thatX is of non-compact type and letΓ act on the geodesic boundary∂X of
X. Via general constructions inKK-theory, we endow theK-groups of the arithmetic mani-
fold X/Γ, of the reduced groupC∗-algebraC∗

r (Γ) and of the boundary crossed product algebra
C(∂X)⋊Γ with Hecke operators. TheK-theory andK-homology groups of theseC∗-algebras
are related by a Gysin six-term exact sequence. In the case whenΓ is a group of real hyperbolic
isometries, we show that this Gysin sequence is Hecke equivariant. Finally, in the case whenΓ is
a subgroup of a Bianchi group, we construct explicit Hecke-equivariant maps between the inte-
gral cohomology ofΓ and each of theseK-groups. Our methods apply to torsion-free finite index
subgroups ofPSL2(Z) as well. These results are achieved in the context of unbounded Fred-
holm modules, shedding light on noncommutative geometric aspects of the boundary crossed
product algebra.
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Introduction

The ordinary cohomology of arithmetic groups, endowed withthe action of Hecke operators,
plays an important rôle in the theory of automorphic forms and in the Langlands programme.
CouldK-theory, as an alternative to ordinary cohomology, offer new insight or reveal new phe-
nomena?
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2 B. MESLAND AND M.H. ŞENGÜN

Let G be a semi-simple algebraic group overQ andΓ ⊂ G(Q) be an arithmetic group. Let
X denote the symmetric space associated to the real Lie groupG(R). Assume thatX is of non-
compact type and let∂X denote the geodesic boundary ofX. We consider threeC∗-algebras
that are naturally associated toΓ, namely, the algebraC0(X/Γ) of functions on the arithmetic
manifoldX/Γ, the reduced groupC∗-algebraC∗

r (Γ) and the boundary crossed product algebra
C(∂X)⋊ Γ, which we call thearithmeticC∗-algebrasassociated toΓ.

In this paper, via general constructions inKK-theory, we endow theK-groups of arithmetic
C∗-algebras with Hecke operators and show that whenΓ is a torsion-free finite index subgroup
of a Bianchi group, theintegral cohomology ofΓ and theK-homology of the arithmeticC∗-
algebras associated toΓ capture the same ‘arithmetic information’. This is achieved by exhibit-
ing Hecke equivariant isomorphisms between cohomology andK-homology. Our results also
apply to the case ofPSL2(Z).

Our motivation to focus on the case of Bianchi groups is twofold. Firstly, Bianchi groups
are among the simplest generalizations of the classical modular groupPSL2(Z), yet from the
perspective of the Langlands programme, many fundamental questions are still wide open ([68])
and moreover new phenomena ([67, 9, 15, 66]) that are not present in the setting ofPSL2(Z)
(or, more generally, in the setting of Shimura varieties) arise. Secondly, from the perspective
of algebraic topology, Bianchi groups are advantageous to work with as their associated locally
symmetric spaces are low dimensional, namely3, allowing us to construct explicit maps be-
tween cohomology groups andK-homology. The case ofPSL2(Z) can be treated by the same
methods.

The explicit nature of our maps allows, in principle, for thetransfer of questions of arithmetic
nature from cohomology of congruence subgroups of Bianchi groups (or ofPSL2(Z)) to the
K-homology of the associated arithmeticC∗-algebras. As such, ideas and tools fromK-theory
(both topological and analytic) and noncommutative geometry can be employed in their study.
For example, one of our results implies that, in a sense, a period of a Bianchi (or classical)
modular form can be interpreted as the index of a Fredholm operator that we construct explicitly.

Our work is inspired by the works of Manin and Marcolli[46, 47, 48] which pursue number
theoretic questions around the ‘noncommutative modular curves’ via tools of Connes’ noncom-
mutative geometry[18, 19]. TheK-theory ofC∗-algebras associated to Kleinian and Fuchsian
groups has been studied by several authors[2, 10, 17, 23], withK-homology receiving attention
only recently[24, 25, 60, 61]. Indeed, the first step in our project was obtaining a description of
theK-homology of what Manin and Marcolli would call, the ‘noncommutative Bianchi mani-
folds’ by employing aKK-theory spectral sequence of Kasparov. This spectral sequence, see
Section1, shows that there are abstract isomorphisms

K0(C0(M)) ≃ H1(Γ,Z), K1(C∗
r (Γ)) ≃ H

1(Γ,Z), K1(C(∂H3)⋊ Γ) ≃ H1(Γ,Z)⊕2.

Our results provideexplicit isomorphisms between the above and explain whyK1(C(∂H3)⋊Γ)
is made of two copies ofH1(Γ,Z) in a conceptual way. Furthermore, we equip the above
K-groups with a Hecke module structure and show that our isomorphisms are in factHecke
equivariant.

Description of results and the plan of the paper.We first carry out a very general treatment
of Hecke operators as they are crucial for the link with arithmetic that we are aiming to establish.
This is done in Section2. A novelty of our treatment is the introduction of Hecke operators via
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KK-theory. This proves to be a powerful, and natural, way of treating Hecke operators that
allows us to establish various results related to Hecke operators in a robust and efficient manner.

LetG be a group acting on a locally compact Hausdorff spaceX. Given a subgroupΓ of G
which acts freely and properly onX, putM = X/Γ. For any elementg in the commensurator
group ofΓ in G, we define a bimoduleTM

g and let[TM
g ] ∈ KK0(C0(M), C0(M)) be its class.

Then we define the Hecke operator

Tg : K∗(C0(M))→ K∗(C0(M)), x 7→ [TM
g ]⊗ x,

to be the Kasparov product with this class. Now letB an arbitraryΓ-C∗-algebra. Similarly we
define a class[TΓ

g ] ∈ KK0(B ⋊r Γ, B ⋊r Γ) and define the Hecke operator

Tg : K∗(B ⋊r Γ)→ K∗(B ⋊r Γ), x 7→ [TΓ
g ]⊗ x,

as the Kasparov product with this class. Of course, in both cases, we obtain Hecke operators on
K-theory as well. These two constructions allow us to define Hecke operators on theK-groups
of arithmeticC∗-algebras.

Next, in Section3, we study the Hecke equivariance of a certain Gysin exact sequence,
which shall play an important role in our investigation. Similar exact sequences were stud-
ied by Emerson-Meyer[23] in K-theory and later by Emerson-Nica[24] in K-homology. Our
treatment is again general here. LetΓ be a group acting freely and properly on hyperbolicn-
spaceHn via isometries such that the hyperbolic manifoldM = Hn/Γ has finite volume. Let
C∗
r (Γ) denote the reduced groupC∗-algebra ofΓ. Starting from theΓ-equivariant short exact

sequence ofC∗-algebras

0→ C0(Hn)→ C(Hn ∪ ∂Hn)→ C(∂Hn)→ 0,

we show the following in Theorem3.10below.

Theorem A. TheK-homology Gysin exact sequence takes the form

0 // K1(C0(M)) // K0(C(∂Hn)⋊ Γ) // K0(C∗
r (Γ))

��
0 K1(C∗

r (Γ))oo K1(C(∂Hn)⋊ Γ)oo K0(C0(M))oo

and isHecke equivariant.

This is done by representing the boundary extension as a Fredholm module constructed from
the field of harmonic measures on the boundary. Since we work within KK-theory, the results
of Section2 and Section3 have counterparts forK-theory groups as well.

At this point, we specialize to the case of Bianchi groups andstudy the above Hecke equi-
variant Gysin exact sequence in great detail. LetK be an imaginary quadratic field with ring
of integersZK . LetΓ be a torsion-free finite index subgroup of the Bianchi groupPSL2(ZK)
acting on the hyperbolic3-spaceH3 and its boundary∂H3. In this case, theK-homology Gysin
exact sequence splits into two exact sequences,

(⋆) 0→ Ki+1(C0(M))→ Ki(C(∂H3)⋊ Γ)→ Ki(C∗
r (Γ))→ 0,

with i = 0, 1, revealing thatK-homology ofC(∂H3)⋊Γ is ‘made of’ that ofC∗
r (Γ) and that of

M . We then study theK-groups of these two parts in Section4 and Section5, relating them to
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the ordinary (co)homology ofΓ andM . We do not considerK-theory groups anymore except
in Section4 where we prove the following result in Theorem4.10.

Theorem B. There are explicit Hecke equivariant isomorphisms

H1(Γ,Z) ≃ K1(C∗
r (Γ)), H1(Γ,Z) ≃ K1(C

∗
r (Γ)).

Moreover under these isomorphisms, the homological pairingH∗×H∗ → Z corresponds to the
index pairingK∗ ×K∗ → Z.

TheK-theory isomorphism comes from the results in[11, 50]. To obtain theK-homology
isomorphism, we give a construction of unbounded Fredholm modules from group cocycles.
The fact that Kasparov’sγ-element is equal to the identity inKKΓ

0 (C,C) (see[37, 38]) is a
vital ingredient in the construction.

In Section5 we exploit the equivalence between geometric and analyticK-homology ([7]) of
the non-compact manifoldM and in Theorem5.5establish the following:

Theorem C. There is an explicit Hecke equivariant isomorphism

H2(M,∂M,Z) ≃ K0(C0(M))

whereM denotes the Borel-Serre compactification ofM .

Note thatH1(Γ,Z) ≃ H2(M,∂M,Z). This result is proved by showing that every class in
K0(C0(M)) can be represented by a self-adjoint Dirac operator on the interior of a properly
embedded hypersurface in the Borel-Serre compactificationM .

Our methods above also apply to the case of torsion-free finite index subgroups ofPSL2(Z)
which we discuss in Section6.

With these results in place, we proceed to describe theK-homology of the boundary crossed
productC(∂H3)⋊Γ using the mapsK1(C(∂H3)⋊Γ)→ K1(C∗

r (Γ)), for which we construct
an explicit section in Section4, andK0(C0(M)) → K1(C(∂H3) ⋊ Γ) coming from (⋆). To
compute the latter map, we construct an unbounded representative for the extension class by
means of a hypersingular integral operator built from the harmonic measures and associated
metrics on∂H3 in Section7. In Section8 we then compute the unbounded Kasparov product
of this operator with the self-adjoint Dirac operators on embedded hypersurfaces from Section
5. The main result here can be found in Theorem8.8. The results in Sections4 and8 can be
summarized to describe the structure of theK-homology of the purely infinite simpleC∗-algebra
C(∂H3)⋊ Γ as in the following theorem.

Theorem D. There is an explicit Hecke equivariant isomorphism

H1(Γ,Z)⊕H2(M,∂M) ≃ K1(C(∂H3)⋊ Γ)

defined at the level of unbounded Fredholm modules.

The two pieces ofK1(C(∂H3)⋊Γ) give rise to very different unbounded Fredholm modules,
which by virtue of the Gysin sequence pair withK-theory in distinct ways.

Questions.
(1) Given an arithmetic groupΓ, we construct Hecke operators on theK-groups of arith-

meticC∗-algebras associated toΓ. In the case of Bianchi groups, we show that our
Hecke operators correspond to the classical Hecke operators on the cohomology groups
of Γ. While this convinces us that our construction is natural and correct, for generalΓ
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such a comparison is still to be made. A natural question to ask here is, does the Chern
character homomorphism

Ki(BΓ)→
⊕

n>0

H2n+i(BΓ,Q),

wherei = 0, 1 commute with the Hecke operators?
(2) Torsion in the homology of arithmetic groups has gained alot of interest in recent years.

What can we say about the torsion in theK-theory of arithmeticC∗-algebras? We
observe in Section1 that for Bianchi groups,H1 andK1 hold the same torsion. However
this is a coincidence of low dimensionality and in general the torsion on the two sides
will not agree. Note that it is natural expect thatp-torsion Hecke eigenclasses in the
K-homology of arithmeticC∗-algebras have associated modp Galois representations.

(3) Can theK-homology of the arithmeticC∗-algebras as Hecke modules be accounted
for by automorphic forms as is the case for cohomology? If so,what are these ‘K-
theoretic’ automorphic forms? Are they the same as cohomological ones? In the case
of PSL2(Z) and Bianchi groups, we show that they are the same. In these cases, can
we directly associate aK-homology class associated to a Bianchi (or classical) modular
form?

(4) What can we say about the summability properties of the (un)bounded Fredholm mod-
ules that we construct? Do their spectral zeta functions relate to the arithmetic of Bianchi
modular forms?

Acknowledgements.We gratefully acknowledge that we benefited from conversations with
Michael Atiyah, Alain Connes, Gunther Cornelissen, Robin Deeley, Nathan Dunfield, Magnus
Goffeng, Paul Gunnells, Joel Hass, Matilde Marcolli, Sergey Neshveyev, Ryszard Nest, Bogdan
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was partially supported by EPSRC grant EP/J006580/2, Simons Foundation grant 346300 and
the Polish Government MNiSW 2015-2019 matching fund. The second author was a Marie
Curie Intra-European Fellow during the preparation of a significant part of this work.

1. Prelude: Kasparov’s spectral sequence

Let Γ be a torsion-free cofinite discrete subgroup ofPSL2(C) acting on the hyperbolic3-
spaceH3 and its boundary∂H3. The limit set ofΓ is all of ∂H3 on which it acts with dense
orbits. We can identify∂H3 with S2 ≃ P

1(C) and the action ofΓ with the usual Möbius
action. LetM denote the hyperbolic3-manifold H3/Γ. In this section, we employ aKK-
theory spectral sequence and get a description ofK-groups ofC(∂H3)⋊Γ,C∗

r (Γ) andC0(M)
in terms of the cohomology ofΓ.

The abstract isomorphisms that will come out of the spectralsequence will motivate the main
task we accomplish we address in the present paper: Can we equip the respectiveK-groups
with a Hecke module module structure and findexplicit Hecke equivariantisomorphisms from
(co)homology toK-groups?

We letD be aC∗-algebra with aΓ-action andD⋊r Γ be the reduced crossed product algebra
of Γ andD. Let γ ∈ KKΓ(C,C) denote the Kasparov idempotent. A spectral sequence
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of Kasparov (see[38, Section 6.10.], see also[65]) calculates theγ-parts of the K-groups of
D ⋊r Γ out of those ofD. For discrete subgroups of Isom(Hn), it holds thatγ = 1, a fact that
will be of importance in several places in the present paper (see for instance[71, Chapter 9]
and[37, 38]). For our groups, theγ-part of a K-group ofD ⋊r Γ is itself.

Theorem 1.1. There is a cohomological spectral sequence(Er, dr) with differentialsdp,qr :

Ep,q
r → Ep+r,q−r+1

r and the termEp,q
2 = Hp(Γ,Kq(D)) converging to the K-homology groups

of D ⋊r Γ. There is an analogous homological spectral sequence converging to the K-theory
groups ofD ⋊r Γ.

By settingD equal toC = C(pt), C0(H3) andC(∂H3), we shall use the above spectral se-
quence to obtain information on theK-groups ofC(∂H3)⋊rΓ,C∗

r (Γ) andC0(M) respectively.
We first setD = C(∂H3), and note that the action ofΓ on ∂H3 is amenable so the full and
reduced crossed products coincide (see[45, Lemma 3.8]). The following well known lemma
computes theK-homology groups ofD asΓ-modules in this case.

Lemma 1.2. We have

K0(C(∂H3)) ≃ Z2, K1(C(∂H3)) = {0},

where the action ofΓ onK0(C(∂H3)) is trivial.

Proof. TheK-homology of the two-sphereS2 ≃ ∂H3 is well-known. The triviality of the
action ofΓ on K0(C(∂H3)) follows from the facts that it is the restriction of the action of
PSL2(C), which is a connected group, andK-homology is homotopy invariant. �

Proposition 1.3. There is a short exact sequence

(1.1) 0→ H0(Γ,Z2)→ K0(C(∂H3)⋊ Γ)→ H2(Γ,Z2)→ 0

and an isomorphism

(1.2) H1(Γ,Z2) ≃ K1(C(∂H3)⋊ Γ)

where the action ofΓ onZ2 is trivial.

Proof. We apply Theorem1.1 with D = C(∂H3) and use Lemma1.2. The cohomological
dimension ofΓ is two. As Γ is torsion-free, all its integral cohomology above degree two
vanishes and we see that theE2 page of the spectral sequence looks like this:

...
...

...
...

...
... . .

.

0 0 0 0 0 0 . . .

H0(Γ,Z2) H1(Γ,Z2) H2(Γ,Z2) 0 0 0 . . .

0 0 0 0 0 0 . . .

H0(Γ,Z2) H1(Γ,Z2) H2(Γ,Z2) 0 0 0 . . .

TheE2 page of the spectral sequence.
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�

Note that since the action ofΓ is trivial on Z2, we haveH∗(Γ,Z2) ≃ H∗(Γ,Z) ⊗ Z2. In
particular,H1(Γ,Z2) ∼= H1(Γ,Z)⊕2 and thusK1(C(∂H3)⋊Γ) holds two copies ofH1(Γ,Z).
Moreover,H0(Γ,Z2) ≃ Z2. As H2(Γ,Z) typically has a lot of torsion (see[67, 9]), the se-
quence1.1does not split.

Next, we apply Theorem1.1 to the caseD = C = C(pt). Note thatC(pt) ⋊ Γ ≃ C∗
r (Γ).

SinceK0(C) ≃ Z,K1(C) = {0}. and theΓ-action is trivial, we find

Proposition 1.4. There is a short exact sequence

(1.3) 0→ H0(Γ,Z)→ K0(C∗
r (Γ))→ H2(Γ,Z)→ 0

and an isomorphism

(1.4) H1(Γ,Z) ≃ K1(C∗
r (Γ)),

where the action ofΓ onZ is trivial.

Lastly, we apply Theorem1.1 to the caseD = C0(H3). Note thatC0(H3) ⋊ Γ is Morita
equivalent toC0(M) as the action ofΓ on H3 is free and properly discontinuous. In par-
ticular, they have the sameK-groups. It is well known thatK0(C0(H3)) ≃ {0} and that
K1(C0(H3)) = Z with trivial Γ-action.

Proposition 1.5. There is a short exact sequence

(1.5) 0→ H0(Γ,Z)→ K1(C0(M))→ H2(Γ,Z)→ 0

and an isomorphism

(1.6) H1(Γ,Z) ≃ K0(C0(M))

where the action ofΓ onZ is trivial.

We summarize the results of the homological spectral sequence and omit the details as they
are the same as the above.

Proposition 1.6. There are isomorpshisms

(1.7) H1(Γ,Z
2) ≃ K1(C(∂H3)⋊ Γ),

and

(1.8) H1(Γ,Z) ≃ K1(C
∗
r (Γ)),

and

(1.9) H1(Γ,Z) ≃ K0(C0(M)),

and short exact sequences

(1.10) 0→ H0(Γ,Z
2)→ K0(C(∂H3))⋊ Γ)→ H2(Γ,Z

2)→ 0,

(1.11) 0→ H0(Γ,Z)→ K0(C
∗
r (Γ))→ H2(Γ,Z)→ 0,

(1.12) 0→ H0(Γ,Z)→ K1(C0(M))→ H2(Γ,Z)→ 0.

where the actions ofΓ onZ2 and onZ are trivial.
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With these abstract isomorphisms in hand, we set ourselves two tasks. The first is to equip the
K-groups of the above arithmeticC∗-algebras with natural Hecke module structures. Secondly,
we would like to compare theK-groups and (co)homology groups as Hecke modules. For
this purpose, the abstract isomorphism coming from Kasparov’s spectral sequence above cannot
help, so we need to construct explicit isomorphisms betweenthe respective groups appearing in
this section. In the rest of the paper, we accomplish both of our tasks. However it should be
noted that while our treatment of the first task is general, our treatment of the second task is very
specific to the case of Bianchi groups (see Question 2 in the Introduction).

2. Hecke operators andKK-theory

The various (co)homology groups associated with an arithmetic groupΓ come equipped with
so calledHecke operators. These arise from elements in the commensuratorCG(Γ) of Γ in its
ambient real Lie groupG:

CG(Γ) := {g ∈ G : Γ ∩ gΓg−1 has finite index in bothΓ andgΓg−1}.

We start by quickly recalling the definition of Hecke operators on the (co)homology groups that
we deal with in the paper. Afterwards, for each element inCG(Γ), we construct elements in
KK-ringsKK0(A,A) of the arithmeticC∗-algebrasA associated toΓ. The elements that we
construct will give rise to endomorphisms which play the rôle of Hecke operators onK-groups
of A.

2.1. Homological definitions.LetΓ ⊂ PSL2(C) =: G be a torsion-free finite-index subgroup
of a Bianchi groupPSL2(ZK), acting onH3 freely and proper discontinuously. In this case,
we haveCG(Γ) = PGL2(K) ⊂ PGL2(C) ∼= G. For our purposes, the main distinction to
be made is that between algebraically defined Hecke operators onH∗(Γ,Z) and topologically
defined Hecke operators onH∗(M,∂M,Z) whereM is the associated hyperbolic3-manifold
H3/Γ andM is its Borel-Serre bordification.

2.1.1. On Group Homology.For a subgroup∆ ⊂ Γ of finite index d, any choice of coset
representatives

γi ∈ Γ, Γ =

d⊔

i=1

γi∆,

gives a maps : Γ → ∆d determined byγγi = γγ(i)si(γ), wheresi(γ) ∈ ∆ andγ(i) is a
permutation of1, · · · , d. This determines thetransferor corestriction map

cores: H1(∆,Z)→ H1(Γ,Z), coresc(γ) =
d∑

i=1

c(si(γ)),

which is independent of the choice of coset representativesγi. For g ∈ CG(Γ), write Γg :=
Γ ∩ gΓg−1 and the Hecke operator on group cohomology is given by

(2.1) Tg : H
1(Γ,Z)

res
−→ H1(Γg,Z)

Adg
−−→ H1(Γg−1 ,Z)

cores
−−−→ H1(Γ,Z).
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OperatorsTg : H1(Γ,Z) → H1(Γ,Z) are defined analogously. To compute the operatorTg,
one uses the disjoint union decomposition of the double coset

(2.2) Γg−1Γ =
d⊔

i=1

giΓ, gi = δig
−1 ∈ G, δi ∈ Γ.

The elementsδi form a complete set of coset representatives forΓ/Γg−1. The groupΓ acts on
the double cosetΓg−1Γ, and thus permutes the cosetsgiΓ. As above there are indicesγ(i) and
group elementsti(γ) ∈ Γ such thatγgi = gγ(i)ti(γ), determining a mapΓ→ Γd

g−1 . The Hecke

operatorsTg : H1(Γ,Z) → H1(Γ,Z) andTg : H1(Γ,Z)→ H1(Γ,Z) are then given explicitly
by

(2.3) (Tgc)(γ) :=
d∑

i=1

c(ti(γ)), Tg([γ]) =
d∑

i

[ti(γ)]

which is independent of the choice of coset representativesδi.

2.1.2. On Simplicial Homology.We start with the manifoldMg := H3/Γg and the associated
finite coveringπg : Mg → M. This finite covering induces a corestriction mapπ∗g : H∗(M) →
H∗(Mg) by mapping a simplex to the sum of its inverse images. Similarly there is a covering
πg−1 : Mg−1 → M , and the isometryg : H3 → H3 induces a homeomorphismg∗ : Mg →

Mg−1 becauseg−1Γgg = Γg−1. Thus we obtain a second coveringτg := πg−1 ◦ g∗ :Mg →M .
Forg ∈ CG(Γ), we define Hecke operators, both denotedTg, on homology and on cohomology
as the group homomorphisms

Tg := τg∗ ◦ π
∗
g : H∗(M,Z)→ H∗(M,Z),

Tg := τ∗g ◦ πg∗ : H∗(M,Z)→ H∗(M,Z).

We shall need Hecke operators also on the homology of the Borel-Serre compacitifications. In
our low-dimensional cases, these compactifications can be described concretely as follows (see
[13] and also[12, III.5.15] , [8, §2.8] ). We first construct a partial compactification̂H3 of H3

by adding a copy of the complex planeC to every boundary point inP1(K) ⊂ P
1(C) = ∂H3,

more precisely

Ĥ3 = H3

⊔

z∈P1(K)

P
1(C)\{z}.

The copyP1(C)\{z} = C is the parameter space of all geodesics inH3 converging to the
boundary pointz ∈ P

1(K). The action ofPGL2(K), but not ofG, onH3 extends to an action
on Ĥ3 by sendingω ∈ P

1(C)\{z} to ωγ ∈ P
1(C)\{zγ}. One can topologizêH3 in such a

way that the action ofPGL2(K) is continuous. The action ofΓ on Ĥ3, unlike its action on the
geodesic completionH3, is free and proper. The quotient̂H3/Γ can be shown to be a compact
3-manifold with boundary which we call the Borel-Serre compactification ofM and denote by
M . The connected components of its boundary are2-tori, attached at ‘infinity’ to each cusp of
M . Note thatM is the interior ofM and thus they are homotopy equivalent.

Just as before, we obtain finite coveringsπg, τ g : Mg → M , extendingπg, τg : Mg → M ,
and construct the Hecke operator

Tg := (πg−1)∗ ◦ g∗ ◦ π
∗
g : H∗(M,Z)→ H∗(M,Z).
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As πg, τ g restrict to finite coverings on the boundaries, we also obtain Hecke operators on the
relative homology groups

Tg : H∗(M,∂M,Z)→ H∗(M,∂M,Z).

These Hecke operators are compatible with the Lefschetz duality isomorphism

H∗(M,∂M,Z) ∼= Hn−∗(M,Z),

see[3, Lemma 1.4.3], and the isomorphisms

H∗(M,Z) ∼= H∗(M,Z) ∼= H∗(Γ,Z),

see, for example,[44, Section 6].

2.2. Hecke operators inKK-theory. LetX be a locally compact Hausdorff space and assume
thatG acts onX and thatΓ ⊂ G acts freely and properly onX. Suggestively, denote by
M := X/Γ the quotient space which is locally compact and Hausdorff.

The finite coveringsM
τg
←−Mg

πg
−→M form acorrespondencein the sense of[20] and define

a class[TM
g ] ∈ KK0(C0(M), C0(M)). The conditional expectation and right module structure

ρg : C0(Mg)→ C0(M), ρ(ψ)(m) =
∑

x∈π−1
g (m)

ψ(x), ψ · f(x) := ψ(x)f(πg(x))

give a rightC0(M)-module denoted byTM
g . Because the mapτg : Mg →M is proper, there is

a left action by compact operators

C0(M)→ K(TM
g ), f · ψ(x) = f(τg(x))ψ(x).

The class[TM
g ] ∈ KK0(C0(M), C0(M)) coincides with the class of this bimodule.

Definition 2.1. LetM = X/Γ as above. For any separableC∗-algebraC, theHecke operators

Tg : KK∗(C0(M), C)→ KK∗(C0(M), C), Tg : KK∗(C,C0(M))→ KK∗(C,C0(M)),

are defined to be the Kasparov product with the class[TM
g ] ∈ KK0(C0(M), C0(M)).

For the moment, we denote byB an arbitraryΓ-C∗-algebra and byγ : b 7→ γ(b) theΓ-action.
LetCc(Γ, B) denote the compactly supportedB-valued functions onΓ. TheΓ-C∗-module

ℓ2(Γ, B) := {ψ : Γ→ B :
∑

γ∈Γ

ψ(γ)∗ψ(γ) <∞},

of ℓ2 functions onΓ with values inB is constructed as a completion ofCc(Γ, B). Theconvolu-
tion productand involution given by (see[39])

(2.4) f ∗ ψ(γ) =
∑

δ∈Γ

f(δ)δ(ψ(δ−1γ)), f∗(γ) := γf(γ−1)∗

makeCc(Γ, B) into a ∗-algebra and define a∗-representationCc(Γ, B) → End∗B(ℓ
2(Γ, B)).

Thereduced crossed productB⋊r Γ is defined as the closure ofCc(Γ, B) in this representation.
For a subgroup∆ ⊂ Γ, restriction of functionsCc(Γ, B)→ Cc(∆, B) ⊂ Cc(Γ, B) defines a

projectionp∆ ∈ End∗B(ℓ
2(Γ, B)). This gives a contractive conditional expectation

ρ∆ : B ⋊r Γ→ B ⋊r ∆, a 7→ p∆ap∆,
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extending the restriction mapCc(Γ, B) → Cc(∆, B). Thus, forg ∈ CG(Γ) we obtain the
expectationρg−1 : B ⋊r Γ→ B ⋊r Γg−1 and a(B ⋊r Γ, B ⋊r Γg−1) bimodule(B ⋊r Γ)ρg−1 .
Using the *-homomorphism

B ⋊r Γg−1

Adg
−−→ B ⋊r Γg →֒ B ⋊r Γ, Adg(f)(γ) := gf(g−1γg),

we form the interiorC∗-module tensor product

TΓ
g := (B ⋊r Γ)ρg−1 ⊗Adg B ⋊r Γ,

which is aB ⋊r Γ-bimodule.

Definition 2.2. LetB be a separableΓ-C∗-algebra andC a seperableC∗-algebra. TheHecke
operators

Tg : KK∗(B ⋊r Γ, C)→ KK∗(B ⋊r Γ, C), Tg : KK∗(C,B ⋊r Γ)→ KK∗(C,B ⋊r Γ).

are defined to be the Kasparov product with the class[TΓ
g ] ∈ KK0(B ⋊r Γ, B ⋊r Γ).

LetA be any of theC∗-algebras andTg any of theKK-theoretic Hecke operators discussed
above. If〈x, y〉 denotes the index pairing of elementsx ∈ K∗(A) andy ∈ K∗(A), associativity
of the Kasparov product gives〈Tgx, y〉 = 〈x, Tgy〉. That is, the Hecke action is self-adjoint with
respect to the index pairing betweenK-theory andK-homology.

2.3. Explicit formulae for the reduced crossed product.To describe theB ⋊r Γ-bimodule
TΓ
g , let δi be as in (2.2) andχi ∈ Cc(Γ,M(B)) be the function that is1 atδi and0 elsewhere. It

is straightforward to check that
∑d

i=1 χi ∗ρ(χ
∗
i ∗f) = f , andρ(χ∗

i ∗χj) = δij . This implements
a unitary isomorphism of right modules

(2.5) u : TΓ
g = (B ⋊r Γ)ρg−1 ⊗Adg B ⋊r Γ→ (B ⋊r Γ)

d, f ⊗ k 7→ (ρ(χ∗
i ∗ f) ∗ k),

whered = [Γ : Γg−1 ]. To describe the leftB ⋊r Γ action onTΓ
g ≃ (B ⋊r Γ)

d we consider the
dense submoduleCc(Γ, B

d), the elements of which we view as columnsΨ := (Ψi)
d
i=1 of maps

Ψi : Γ→ B. First we collect some useful facts and relations for the elementsti(γ).

Lemma 2.3. We have the relations:

1.) ti(γ) = gδ−1
γ(i)γδig

−1 = g−1
γ(i)γgi;

2.) ti(γ1γ2) = tγ2(i)(γ1)ti(γ2);
3.) ti(γ−1) = tγ−1(i)(γ)

−1.

Proof. All relations are checked by direct computation using the defintions in section2.1 �

For γ ∈ Γ denote byuγ ∈ Cc(Γ,M(B)) the function which is1 at γ and0 elsewhere. We
identifyB ⊂ Cc(Γ, B) with the function that takes the valueb ate ∈ Γ and0 elsewhere.

Proposition 2.4. The leftB ⋊r Γ module structure onTΓ
g ≃ (B ⋊r Γ)

d is given by

(2.6) (tg(f)Ψ)i(δ) =
∑

γ

g−1
i f(γ)ti(γ

−1)−1Ψγ−1(i)(ti(γ
−1)δ).

Equivalently, we have the covariant representation

(2.7) (tg(b) ·Ψ)i(δ) := g−1
i (b)Ψi(δ), (tg(uγ)Ψ)i(δ) := ti(γ

−1)−1(Ψγ−1(i)(ti(γ
−1)δ)).
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Moreover, forγ ∈ Γ we have a factorisationtg(uγ) = τ(γ)diag(utk(γ)), whereτ(γ) ∈
Md(C) is a permutation matrix.

Proof. By right B ×r Γ linearity, it suffices to prove (2.6) for elementsΨ with suppΨ ⊂ Γg.
Usingu as in (2.5) and the relations in Lemma2.3one computes, forh ∈ Cc(Γ, B) andδ ∈ Γg:

(tg(h)Ψ)i(δ) = (u(h ∗ u∗Ψ))i(δ) = Adgρ(χ
∗
i ∗ h ∗ u

∗Ψ)(δ)

= gρ(χ∗
i ∗ h ∗ u

∗Ψ)(g−1δg) = gδ−1
i (h ∗ u∗Ψ)(δig

−1δg)

=
∑

j,γ

gδ−1
i (h(γ)γδjg

−1Ψj(gδ
−1
j γ−1δig

−1δ))(2.8)

=
∑

γ

gδ−1
i h(γ)gδ−1

i γδγ−1(i)g
−1Ψγ−1(i)(gδ

−1
γ−1(i)

γ−1δig
−1δ)(2.9)

=
∑

γ

g−1
i h(γ)ti(γ

−1)−1Ψγ−1(i)(ti(γ
−1)δ).

The step from (2.8) to (2.9) follows sincegδ−1
j γ−1δig

−1δ ∈ Γg ⇔ j = γ−1(i). Thus we have
established (2.6) and (2.7) follows. Letτ(γ) ∈Md(C) be the permutation matrix corresponding
to (τ(γ)Ψ)i = Ψγ−1(i). To prove the last statement we compute

(τ(γ)diag(utk(γ))Ψ)i(δ) = (diag(utk(γ))Ψ)γ−1(i)(δ) = tγ−1(i)(γ)
−1(Ψγ−1(i)(tγ−1(i)(γ)δ))

= ti(γ
−1)−1(Ψγ−1(i)(ti(γ

−1)δ)) = (tg(uγ)Ψ)i(δ),

as required. �

3. Gysin sequence and Hecke operators

The paper[23] is an extensive study of the Gysin sequence inK-theory arising from a group
action on a spaceX and the associated boundary action on∂X, e.g. the Furstenberg or Gromov
boundary. In[24, Section 10], theK-homological version is described for hyperbolic groupsΓ
with cocompact classifying space for proper actionsEΓ. We will describe the Gysin sequence
in the setting of hyperbolicn + 1-spaceH, the geodesic compactificationH and its boundary
sphere∂H = Sn.

3.1. TheK-homology exact sequence.Let G = Isom(H) andH := H ∪ ∂H the geodesic
compactification ofH on whichG acts as well. We consider theG-equivariant extension

(3.1) 0→ C0(H)→ C(H)→ C(∂H)→ 0,

defining a class inKKG
1 (C(∂H), C0(H)). Thus, for any subgroupΓ ⊂ G we obtain a class

in KKΓ
1 (C(∂H), C0(H)) through restriction, and a long exact sequence in equivariant K-

homology:

(3.2) · · · → Ki
Γ(C0(H))→ Ki+1

Γ (C(∂H))→ Ki+1
Γ (C(H))→ · · ·

Lemma 3.1. SupposeΓ ⊂ G is discrete and torsion-free. Then the inclusioni : C→ C(H) as
constant functions induces an isomorphismi∗ : Ki

Γ(C(H))→ Ki
Γ(C).

Proof. BecauseΓ is torsion-free andH is contractible,H-equivariant contractibility[53] of
H for finite subgroupsH ⊂ Γ follows trivially. Then the argument of[24, Lemma 10.6]
applies. �
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The extension (3.1) induces an extension of crossed products

(3.3) 0→ C0(H)⋊ Γ→ C(H)⋊ Γ→ C(∂H)⋊ Γ→ 0,

as theΓ-action on either of the algebras in (3.1) is amenable, and the full and reduced crossed
products coincide. LetL2(∧∗H) be the Hilbert space ofL2-sections of the exterior algebra
bundle ofH, and /DHR the Hodge-DeRham operator. The triple[(C, L2(∧∗H), /DHR)] defines
an element inKKG

0 (C,C) and thus inKKΓ
0 (C,C) for any subgroupΓ ⊂ G. We will refer to

each of these elements as theEuler class(cf. [23, 24]). We obtain the following Proposition.

Proposition 3.2. For a discrete torsion-free subgroupΓ ⊂ G there is an exact hexagon

(3.4) K1(C0(M))
∂ // K0(C(∂H)⋊ Γ)

i∗ // K0(C∗
r (Γ))

Eul0
��

K1(C∗
r (Γ))

Eul1

OO

K1(C(∂H)⋊ Γ)
i∗oo K0(C0(M)),

∂oo

wherei∗ is induced from the inclusioni : C → C(H) and the mapsEul∗ are induced from the
Kasparov product with the Euler class[(C, L2(∧∗H), /DHR)].

Proof. This follows from the arguments in[23, 24]. Sinceγ = 1 ∈ KKΓ
0 (C,C), there is an

isomorphismKi
Γ(C) ∼= Ki(C∗

r (Γ)), by descent in the first variable. Thus, Lemma3.1 gives
isomorphisms

K∗(C(H)⋊ Γ)
∼
−→ K∗

Γ(C)
∼
−→ K∗(C∗

r (Γ)).

Because the action ofΓ onH is free and proper, we have isomorphisms

K∗
Γ(C0(H))

∼
−→ K∗(C0(H)⋊ Γ)

∼
−→ K∗(C0(M)).

Lastly, [45, Lemma 3.8]andγ = 1 give

K∗
Γ(C(∂H))

∼
−→ K∗(C(∂H)⋊ Γ).

Via these isomorphisms, the sequence (3.2) can be identified with the six-term exact sequence
associated to the extension (3.3). The identification of the mapsK∗(C∗

r (Γ)) → K∗(C0(M))
as induced by taking the Kasparov product with the Euler class now follows by combining the
argument in[23, Proposition 9] with [23, Theorem 38], yielding (3.4). �

The exact sequence (3.4) simplifies further. We denote by[pt] ∈ K0(C0(M)) the class given
by the homomorphismC0(M) → C, f 7→ f(x), for somex ∈ M . SinceM is connected this
does not depend on the choice ofx. Furthermore we denote by

χ(M) :=
dimM∑

k=0

(−1)krankHk(M,Z),

the Euler characteristic ofM . The following result uses the method of[24, Theorem 10.7].

Theorem 3.3. For a discrete torsion-free subgroupΓ ⊂ Isom(H), the homomorphism
Eul1 : K1(C∗

r (Γ))→ K1(C0(M)) vanishes andEul0 is given by

Eul0 : K
0(C∗

r (Γ))→ K0(C0(M)), [(C∗
r (Γ),H ,D)] 7→ χ(M)Ind(D+)[pt].

In particular, if Γ is noncocompact orH has odd dimension, there are short exact sequences

(3.5) 0→ K1(C0(M))
∂
−→ K0(C(∂H)⋊ Γ)

i∗
−→ K0(C∗

r (Γ))→ 0,
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(3.6) 0→ K0(C0(M))
∂
−→ K1(C(∂H)⋊ Γ)

i∗
−→ K1(C∗

r (Γ))→ 0.

Proof. The exact sequences (3.5) and (3.6) are derived directly from Proposition3.4. We now
prove the statements about the maps Eul∗. Let x ∈ M , π : H → M the quotient map and
ρx : C0(H) ⋊ Γ → B(ℓ2(π−1(x))) the induced representation. By[23, Example 24]and[23,
Theorem 30]we find that

(3.7) [(C0(H), L2(∧∗H), /DHR)] = χ(M)[πx] ∈ KK
Γ
0 (C0(H),C).

There is a factorisation[πx] = [ϕx] ⊗ [1] where[1] ∈ KKΓ
0 (C0(Γ),C) ≃ Z is the class of

the mapC0(Γ) → B(ℓ2(Γ)) andϕx : C0(H) → C0(Γ) is defined throughΓ → H, γ 7→
xγ. This yields the explicit form of Eul0. SinceKKΓ

1 (C0(Γ),C) = KK1(C0(Γ) ⋊ Γ,C) =
KK1(K(ℓ2(Γ),C) = 0, the statement Eul1 = 0 follows. �

In particular the Gysin sequence simplifies for all Bianchi groups and some Fuchsian groups.

3.2. The extension class.For a subgroupH ⊂ G, we denote the class defined through the exact
sequence (3.1) by [Ext] ∈ KKH

1 (C(∂H), C0(H)). We now construct an equivariant Kasparov
module representing[Ext], and then employ Kasparov descent and Morita equivalence toobtain
an explicit representative[∂] ∈ KK1(C(∂H) ⋊ Γ, C0(M)) for torsion-free discrete subgroups
Γ ⊂ G.

In the Poincaré ball model of hyperbolicn+ 1 spaceH, the boundary∂H is the unit sphere
in Rn+1. For an elementg ∈ G, write |g′(ξ)| = |det Jg(ξ)|, the determinant of the Jacobian of
the conformal transformationg. ConsiderT1H := H×∂H, which can be thought of as the unit
tangent bundle ofH. ThePoisson kernelis the map

(3.8) P : T1H→ (0,∞), P (x, ξ) :=
1− ‖x‖2

‖x− ξ‖2
,

which for g ∈ G satisfies the transformation rule

(3.9) P (xg, ξg) = |g′(ξ)|−1P (x, ξ)

(see[54, Equation 5.1.2]). Theharmonic measureνx on ∂H based atx ∈ H is defined to be
unique probabiltity measure on∂H that is invariant under the action of the stabiliserGx of x.
Thenν0 is normalised Lebesgue measure on∂H and the measuresνx satisfy

(3.10) dνx(ξ) = P (x, ξ)ndν0(ξ), dνxg(ξg) = dνx(ξ).

We consider theG−C∗-algebraC0(H) as aG-equivariantC∗-module over itself. A secondC∗-
module is constructed using the harmonic measures on the boundary. The harmonic measures
give an expectation

Cc(T1H)→ Cc(H), ρ(Ψ)(x, ξ) :=

∫
Ψ(ξ, x)dνx(ξ),

and hence aC0(H)-moduleL2(T1H, νx)C0(H). This module carries a representation of the
boundary algebraC(∂H) by pointwise multiplication.

Theorem 3.4. Letp = ww∗ be the projection defined from the adjointable isometry

w : C0(H)→ L2(T1H, νx)C0(H), wΨ(x, ξ) := Ψ(x).
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Thenp commutes withG and has compact commutators with theC(∂H)-representation. The
triple (C(∂H), L2(T1H)C0(H), Fp), with Fp := 2p − 1 is a G-equivariantKK-cycle for
(C(∂H), C0(H)) representing the class of the boundary extension(3.1)

Proof. To see thatw is adjointable definew∗f(x) :=
∫
∂H f(ξ, x)dνxξ. A quick computation

shows thatw andw∗ are mutually adjoint:

〈wΨ,Φ〉 =

∫
wΨ(ξ, x)Φ(ξ, x)dνx(ξ) =

∫
Ψ(x)Φ(ξ, x)dνx(ξ) = 〈Ψ, w

∗Φ〉.

Then computing the compositionw∗wf(x) =
∫
wf(ξ, p)dνx(ξ) =

∫
f(x)dνx(ξ) = f(x), that

is w∗w = 1 andw is an isometry. Forf ∈ C(∂H), the radial extensionfr(x) := f( x
‖x‖) de-

fines a completely positive linear, multiplicative, but non-G-equivariant splitting of the extension
(3.1). Consider the difference

(3.11) (w∗fw − fr)Ψ(x) =

(∫
f(ξ)dνxξ − fr(x)

)
Ψ(x).

The functionx 7→
∫
f(ξ)dνxξ is hyperbolically harmonic and continuous up to the boundary

with limit f by [1, page 69](see also[54, Theorem 5.1.5]). Thus the function (3.11) is an
element ofC0(H) = K(C0(H)). The remainder of the proof is modelled on[27, Lemma 3.7].
Since[p, f ] = pf(1 − p) + (1 − p)fp, to show that[p, f ] ∈ K(L2(T1H, νx)C0(H)), it suffices
to show thatpf(1− p)fp ∈ K(L2(T1H, νx)C0(H). We find

pf(1− p)fp = pffp− wfrfrw
∗ + wfrfrw

∗ − pfpfp

= w(w∗ffw − (ff)r)w
∗ + w((ff)r − f rfr)w

∗+

w(f r − w
∗fw)wfw∗ + pfw(w∗fw − fr)w

∗),

and since(ff)r − f rfr ∈ C0(H) = K(C0(H)), all elements on the righthand side are in
K(L2(T1H, νx)C0(H)). Thus (C(∂H), L2(T1H, νx)C0(H), Fp) is a G-equivariant Kasparov
module, and the usual Stinespring dilation argument shows that it represents the extension
(3.1). �

3.3. Kasparov descent and Morita equivalence.Consider the universal coverπ : H → M ,
and the associated expectation

(3.12) ρM : Cc(H)→ Cc(M), ρM (Ψ)(m) :=
∑

h∈π−1(m)

Ψ(h),

defining aCc(M)-valued inner product onCc(H) by 〈Φ,Ψ〉 := ρΓ(ΦΨ). Denote its completion
byL2

π(H)C0(M).The following result is a special case of the well known Morita equivalence for
free and proper actions.

Lemma 3.5. TheC∗-algebraK(L2
π(H)C0(M)) is isomorphic toC0(H) ⋊ Γ, implementing the

Morita equivalence withC0(M). TheC∗-algebraC(H)⋊ Γ acts faithfully onL2
π(H)C0(M).

The well known descent homomorphism[39, Theorem 6.1]is a map

(3.13) jΓ : KKΓ
∗ (A,B)→ KK∗(A⋊ Γ, B ⋊ Γ),

which can be explicitly defined on the level of cycles. We willdescribe the image of the cycle
(C(∂H), L2(T1H, νx)C0(H), Fp) from Theorem3.4under the mapjΓ as well as its composition
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with the Morita equivalence from Lemma3.5. This will furnish us with a representative of the
mappingK∗(C0(M)) → K∗+1(C(∂H) ⋊ Γ) appearing the in the exact sequences (3.5) and
(3.6).

Following [39, Section 6.1], the underlyingC0(H)⋊Γ module for the classjΓ([Ext]) is given
as the completion ofCc(T1H× Γ) in theCc(H)⋊ Γ-valued inner product

〈Φ,Ψ〉(x, γ) :=
∑

δ∈Γ

∫

∂H
Φ(ξ, x, δ)Ψ(ξδ−1, xδ−1, δγ)dνx(ξ),

and left and right module structures

(f ·Ψ)(ξ, x, γ) :=
∑

δ∈Γ

f(ξ, δ)Ψ(ξδ, xδ, δ−1γ), (Ψ · g)(ξ, x, γ) =
∑

δ∈Γ

Ψ(ξ, x, δ)g(xδ, δ−1γ).

The operatorFp is defined by viewingΨγ(ξ, x) := Ψ(ξ, x, γ) as an element ofCc(T1H) for
eachγ ∈ Γ. The product with the Morita equivalenceL2

π(H)C0(M) is now easily described. The
map

m : Cc(T1H× Γ)⊗Cc(H×Γ) Cc(H)→ Cc(T1H), m(Ψ⊗Φ)(ξ, x) =
∑

δ∈Γ

Ψ(ξ, x, δ)Φ(xδ),

is surjective and compatible with the balancing relation. The resultingC0(M)-valued inner
product onCc(T1(H)) is given by

〈Ψ,Φ〉(m) :=
∑

x∈π−1(m)

∫

∂H
Ψ(ξ, x)Φ(ξ, x)dνxξ.

The left representation and the operatorFp = 2p−1 are induced from tensoring with the identity
operator. We summarize the above findings:

Corollary 3.6 (of Theorem3.4). The class

[∂] := jΓ([Ext])⊗C0(H)⋊Γ [L2
π(H)C0(M)] ∈ KK1(C(∂H)⋊ Γ, C0(M)),

is represented by the bounded Kasparov module(C(∂H)⋊ Γ, L2
π(T1H)C0(M), Fp).

Consequently the boundary map∂ : K0(C0(M))→ K1(C(∂H)⋊Γ) is implemented by the
Kasparov product with(C(∂H)⋊ Γ, L2(T1H, νx)C0(M), Fp).

3.4. Hecke equivariance.Our purpose is now to show that the exact hexagon (3.4) is equivari-
ant for the action of the Hecke operatorTg on the various algebras appearing in (3.4). We first
consider compatibility of the Hecke operators with Morita equivalences arising from free and
proper actions.

Let X be aG-space such thatΓ acts freely and properly onX, π : X → M := X/Γ the
covering map andL2

π(X)C0(M) the associatedC0(X)⋊Γ-C0(M) Morita equivalence bimodule.
There is a well-known unitary isomorphism

(3.14) TΓ
g ⊗C0(X)⋊Γ L

2
π(X)C0(M) → L2

π(X)dC0(M), (Φi)⊗Ψ 7→ (ΦiΨ),

of right C0(M)-modules. We show that the same is true forL2
π(X) ⊗C0(M) T

M
g and then

compare the left actions. Consider thefiber productwith its natural covering maps

X ×τg Mg := {(x,m) ∈ X ×Mg : π(x) = τg(m)}, M
π
←− X ×τg Mg

πg
−→M,
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makingCc(X ×τg Mg) into aCc(M) inner product bimodule. There is a well-defined map

w : Cc(X)⊗Cc(M) Cc(Mg)→ Cc(X ×τg Mg), w(Ψ⊗ Φ)(x,m) = Ψ(x)Φ(m),

of right Cc(M)-modules preserving the inner product. By standard supportarguments,w is
shown to be surjective, andL2

π(X) ⊗C0(M) T
M
g is obtained as a completion ofCc(X ×τg Mg).

Lemma 3.7. Let δi be a set of right coset representatives forΓg−1, Γ =
⊔d

i=1 δiΓg−1 . The
continuous open maps

ϕi : X → X ×τg Mg, x 7→ (xgδ−1
i , [x]), i = 1, · · · , d,

assemble to a homeomorphismϕ :
⊔d

i=1X → X ×τg Mg.

Proof. Sinceτg([x]) = π(xg) = π(xgδ−1
i ), eachϕi is well-defined and injective. Moreover,

theϕi assemble to an injective map on the disjoint union

ϕ :

d⊔

i=1

X → X ×τg Mg.

This can be seen by assuming thatϕi(x) = ϕj(x
′) for somex, x′ ∈ X. Then

xgδ−1
i = x′gδ−1

j , [x] = [x′]⇔ ∃γ ∈ Γg xγ = x′,

which givesxgδ−1
i = xγgδ−1

j = xgg−1γgδ−1
j .

Now g−1γgδ−1
j ∈ Γ becauseγ ∈ Γg and freeness of theΓ action onX givesg−1γgδ−1

j =

δ−1
i . Hence we findδ−1

i δj = g−1γg ∈ Γg−1, which givesi = j and hencex = x′ as well, as
desired.

It remains to show thatϕ is surjective, so let(x′, [x]) ∈ X ×τg Mg. Sinceπ(x) = π(x′g),
there isγ′ ∈ Γ such thatxg = x′γ′ = x′δiγ

−1 for some uniquei andγ ∈ Γg−1 . Hence, we find
x′ = xgγδ−1

i = xgγg−1gδ−1
i . Now inMg it holds that[x] = [xgγg−1], becausegγg−1 ∈ Γg.

Therefore
(x, [x′]) = (xgγg−1gδ−1

i , [xgγg−1]) = ϕi(xgγg
−1),

proving thatϕ is surjective. �

Proposition 3.8. LetX be aG-space such thatΓ acts freely and properly onX, M := X/Γ
andL2

π(X)C0(M) the associatedC0(X) ⋊ Γ-C0(M) Morita equivalence bimodule. For each
g ∈ CG(Γ) there is a unitary isomorphism ofC0(X)⋊ Γ-C0(M)-bimodules

TΓ
g ⊗C0(X)⋊Γ L

2
π(X)

∼
−→ L2

π(X)⊗C0(M) T
M
g .

In particular we have the identity

[TΓ
g ]⊗C0(H)⋊Γ [L2

π(X)] = [L2
π(X)]⊗C0(M) [T

M
g ] ∈ KK0(C0(X)⋊ Γ, C0(M)).

Proof. The homeomorphismϕ from Lemma3.7induces a unitary isomorphism of rightC0(M)-
modules

L2
π(X)⊗C0(M) T

M
g
∼= L2

π(X)d ∼= TΓ
g ⊗C0(X)⋊Γ L

2
π(X)C0(M).

As before we write elements of the moduleL2
π(
⊔d

i=1X)C0(M) as columnsΨ = (Ψi)
d
i=1. The

action of a functionf ∈ C0(X) is given by

ϕ∗fϕ∗−1(Ψ)i(x) = fϕ∗−1(Ψ)((xδig
−1, [x])) = (f(xgδ−1

i )Ψi(x)),
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which equals the action coming from the identificationL2
π(X)d ∼= TΓ

g ⊗C0(X)⋊Γ L
2
π(X). The

action of a group elementγ is given by

ϕ∗uγϕ
∗−1(Ψ)i(x) = uγϕ

∗−1(Ψ)(xgδ−1
i , [x]) = ϕ∗−1(Ψ)(xgδ−1

i γ, [x]).

We compute further by using Lemma2.3and observing that

xgδ−1
i γ = xti(γ

−1)−1gδ−1
γ−1(i)

,

and sinceti(γ−1)−1 ∈ Γg we find [x] = [xti(γ
−1)−1] so

ϕ∗−1(Ψ)(xgδ−1
i γ, [x]) = ϕ∗−1(Ψ)(xti(γ

−1)−1gδ−1
γ−1(i)

, [xti(γ
−1)−1])

= Ψγ−1(i)(xti(γ
−1)−1) = Ψγ−1(i)(xtγ−1(i)(γ)).

As above, this equals the action coming from the identification

L2
π(X)d ∼= TΓ

g ⊗C0(X)⋊Γ L
2
π(X).

This completes the proof. �

As a rightC(∂H)⋊ Γ-module,TΓ
g is free of rankd. Therefore, as in (3.14) the map

(3.15) u : TΓ
g ⊗C(∂H)⋊Γ L

2(T1H⋊ Γ, νx)→ L2(T1H⋊ Γ, νx)
d, (Ψi)⊗ f 7→ (Ψif),

defined through coordinatewise product, is a unitary right module map. Using this map we can
define the operatoru∗diag(p)u onTΓ

g ⊗C(∂H)⋊ΓL
2(T1H⋊Γ, νx). By a slight abuse of notation,

we denote this operator by1⊗ p.

Theorem 3.9. There is a unitary isomorphism of(C(∂H)⋊ Γ, C0(H)⋊ Γ)-bimodules

L2(T1H⋊ Γ, νx)⊗C0(H)⋊Γ T
Γ
g

∼
−→ TΓ

g ⊗C(∂H)⋊Γ L
2(T1H⋊ Γ, νx),

intertwining the operatorsp⊗ 1 and1⊗ p. We have the identity

[TΓ
g ]⊗ [∂] = [∂]⊗ [TM

g ] ∈ KK1(C(∂H)⋊ Γ, C0(M)).

In particular, the boundary map∂ : K0(C0(M))→ K1(C(∂H)⋊ Γ) is Hecke equivariant.

Proof. By Corollary3.6and Lemma3.8, the second statement follows from the first because it
implies that

jΓ([Ext])⊗ [TΓ
g ] = [TΓ

g ]⊗ jΓ([Ext]),

and the classjΓ([Ext]) is represented by the Kasparov module(L2(T1H⋊ Γ, νx)C0(H)⋊Γ, Fp).
First we compare the bimodulesL2(T1H⋊ Γ, νx)⊗C0(H)⋊Γ T

Γ
g andTΓ

g ⊗C(∂H)⋊Γ L
2(T1H⋊

Γ, νx). The rightC0(H) ⋊ Γ-moduleL2(T1H ⋊ Γ, νx)
d
C0(H)⋊Γ is a leftB ⋊r Γ module for

either of theΓ-C∗-algebrasB = C(∂H), C0(H), C0(T1H) via Equation (2.7). The mapu in
Equation (3.15) is readily seen to be a leftC(∂H)⋊ Γ module map.

We now construct a unitary isomorphism of(C(∂H)⋊ Γ, C0(H)⋊ Γ)-bimodules

α : L2(T1H⋊ Γ, νx)⊗C0(H)⋊Γ T
Γ
g

∼
−→ L2(T1H⋊ Γ, νx)

d
C0(H)⋊Γ.

To achieve this we viewL2(T1H⋊Γ, νx) as a completion ofCc(T1H×Γ) and we consider the
embedding of rightC0(H)⋊ Γ bimodules

β : TΓ
g = (C0(H)⋊ Γ)d → L2(T1H⋊ Γ, νx)

d, β(Ψi)(x, ξ, γ) := (Ψi(x, γ)).
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We viewL2(T1H⋊ Γ, νx)
d as a leftCc(X ⋊ Γ)-module, whereX = T1H orX = ∂H, via

Cc(X ⋊ Γ)× L2(T1H⋊ Γ, νx)
d → L2(T1H⋊ Γ, νx)

d, f · (Ψi) := tg(f)(Ψi),

using Equation (2.7) in Proposition2.4. Now define a map

α : Cc(T1H× Γ)⊗Cc(H⋊Γ) T
Γ
g → L2(T1H× Γ, νx)

d, α(f ⊗ (Ψi)) := f · β(Ψi),

which respects the(Cc(∂H× Γ), Cc(H× Γ)) bimodule structures because

α(f ∗ h⊗ (Ψi)) = tg(f ∗ h)(β(Ψi)) = tg(f)tg(h)β(Ψi) = tg(f)α(h⊗ (Ψi)),

and the right module structure is respected becauseβ is a right module map. We find

α(pf ⊗ (Ψi))(δ) = tg(pf)β(Ψi)(δ) =
∑

γ

g−1
i pf(γ)ti(γ

−1)−1βΨγ−1(i)(ti(γ
−1)δ)

= p

(
∑

γ

g−1
i f(γ)ti(γ

−1)−1βΨγ−1(i)(ti(γ
−1)δ)

)
= p(tg(f)β(Ψi)),

by Proposition2.4using thatp(Φβ(Ψi)) = (pΦ)(β(Ψ))i andp isG-invariant. Thus,

diag(p)α(f ⊗ (Ψi)) = α(pf ⊗ (Ψi)), (diag(p)) ◦ α = α ◦ (p⊗ 1).

To complete the proof, we now show thatα is unitary. To this end we compute the inner product
onL2(T1H⋊ Γ, νx)⊗C0(H)⋊Γ T

Γ
g :

〈f1 ⊗ (Ψ1,i), f2 ⊗ (Ψ2,i)〉(x, γ) = 〈(Ψ1,i), 〈f1, f2〉 · (Ψ2,i)〉(x, γ)

=

d∑

i=1

Ψ∗
1,i ∗ (〈f1, f2〉 ·Ψ2)i(x, γ) =

d∑

i=1

∑

δ

Ψ1,i(xδ, δ−1)(〈f1, f2〉Ψ2)i(xδ, δ
−1γ)

=

d∑

i=1

∑

δ,ε

Ψ1,i(xδ, δ−1)〈f1, f2〉(xδg
−1
i ε, ε−1)Ψ2,ε−1(i)(xδti(ε

−1), ti(ε
−1)−1δ−1γ)

=
d∑

i=1

∑

δ,ε,ζ

Ψ1,i(xδ, δ−1)

∫ (
f1(ξζ, xδg

−1
i εζ, ζ−1)f2(ξζ, xδg

−1
i εζ, ζ−1ε−1) ×

(3.16)

Ψ2,ε−1(i)(xδti(ε
−1), ti(ε

−1)−1δ−1γ)

)
dνxδg−1

i εξ

=

d∑

i=1

∑

δ,ε,ζ

Ψ1,i(xδ, δ−1)

∫ (
f1(ξδg

−1
i εζ, xg−1

i εζ, ζ−1)f2(ξδg
−1
i εζ, xδg−1

i εζ, ζ−1ε−1) ×

(3.17)

Ψ2,ε−1(i)(xδti(ε
−1), ti(ε

−1)−1δ−1γ)

)
dνxξ
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=

d∑

i=1

∑

δ,ε

∫
Ψ1,i(xδ, δ−1)(f∗1 ∗ f2)(ξδg

−1
i ε, xδg−1

i ε, ε−1)×

Ψ2,ε−1(i)(xδti(ε
−1)−1, ti(ε

−1)δ−1γ)dνxξ

=
d∑

i=1

∑

δ

∫
Ψ1,i(xδ, δ−1)((f∗1 ∗ f2) · β(Ψ2))i(ξδ, xδ, δ

−1γ)dνxξ

= 〈β(Ψ1), (f
∗
1 ∗ f2) · β(Ψ2)〉(x, γ) = 〈f1 · β(Ψ1), f2 · β(Ψ2)〉(x, γ).

Here we have only used a change of variablesξ 7→ ξδg−1
i ε and the invariance property

dνxδg−1
i εξδg

−1
i ε = dνxξ between line (3.16) and (3.17). �

We arrive at the main general result of this section, expressing the compatibility of the of the
various Hecke operators we construct.

Theorem 3.10.The Gysin-sequences inK-homology

0 // K1(C0(M))
∂ // K0(C(∂H)⋊ Γ) // K0(C∗

r (Γ))

��
0 K1(C∗

r (Γ))oo K1(C(∂H)⋊ Γ)oo K0(C0(M))
∂oo

andK-theory

0 // K1(C
∗
r (Γ))

∂ // K1(C(∂H)⋊ Γ) // K0(C0(M))

��
0 K1(C0(M))oo K0(C(∂H)⋊ Γ)oo K0(C

∗
r (Γ))

∂oo

are Hecke-equivariant.

Proof. This follows by combining Proposition3.8, 3.9 and the observation that the inclusion
K∗(C

∗
r (Γ)) → K∗(C(∂H) ⋊ Γ)) and restrictionK∗(C(∂H) ⋊ Γ) → K∗(C∗

r (Γ)) are Hecke
equivariant by construction. Hecke equivariance of the Euler mapsK∗(C0(M))→ K∗(C∗

r (Γ))
follows from the commutative diagram

K∗(C∗
r (Γ))

Eul
��

(ι∗)−1

// K∗(C(H)⋊ Γ)

��
K∗(C0(M)) K∗(C0(H)⋊ Γ)oo

and sinceTgι∗ = ι∗Tg implies (ι∗)−1Tg = Tg(ι∗)
−1, the map Eul is a composition of Hecke

equivariant maps, whence Hecke equivariant. The argument for theK-theory sequence is iden-
tical. �
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4. K-homology of the reduced Bianchi groupC∗-algebra

We will describe a naturally defined maps : H1(Γ,Z)→ K1(C∗
r (Γ)) for a discrete groupΓ

of hyperbolic isometries and show that in the special case whenΓ is a torsion-free finite index
subgroup of a Bianchi group, our explicit maps is a Hecke equivariant isomorphism.

It is well known that for a general discrete groupΓ, there is a homomorphismt : H1(Γ,Z)→
K1(C

∗
r (Γ)). This homorphsim has been studied for instance by Matthey[50] in the context of

the Baum-Connes conjecture. We show that whenΓ is a torsion-free finite index subgroup of
a Bianchi group,t is an isomorphism and that the homological pairingH1 ×H1 → Z and the
index pairingK1 ×K1 → Z commute with the isomorphismss andt.

4.1. Group cocycles and index theory.In this subsection,Γ is an arbitrary countable discrete
group. Letc : Γ→ Z be an integral group cocycle, simply a group homomorphism, and denote
by Γc its kernel. The multiplication operator

Dc : Cc(Γ)→ Cc(Γ),

defined through(Dcf)(γ) := −c(γ)f(γ) extends to a selfadjoint regular operator in theC∗-
completionEc of Cc(Γ) over Γc. This gives an unbounded Kasparov module(Ec,Dc) and
an element in the groupKK1(C

∗
r (Γ), C

∗
r (Γc)), as a special case of the construction in[51,

Theorem 3.2.2, Lemma 3.4.1],
To describe the pairing of this cycle withK1(C

∗
r (Γ)), we need a concrete description of the

latter group. First note that here we use the surjective (Hurewicz) mapΓ → Γab ≃ H1(Γ,Z),
we can represent homology classes by elementsδ ∈ Γ. A group elementδ ∈ Γ defines a unitary
uδ in the reducedC∗-algebraC∗

r (Γ), and thus a class[uδ] ∈ K1(C
∗
r (Γ)) via the standard picture

of K1. This gives us a homomorphismH1(Γ,Z)→ K1(C
∗
r (Γ)), for any discrete groupΓ.

Definition 4.1. We define thenormof a cocyclec : Γ→ Z to be the nonnegative integer

|c| := min{|c(γ)| : γ ∈ Γ, γ /∈ Γc}.

A cocyclec is is normalisedif 1 ∈ c(Γ) ⊂ Z. The norm of the0-cocycle is defined to be∞.

Sincec(Γ) = |c|Z, the statement thatc is normalised is equivalent to saying thatc(Γ) = Z.
Any cocycle is an integral multiple of a normalised cocycle,and thusH1(Γ,Z) is generated by
normalised cocycles. Ifc is normalised, the short exact sequence of groups

0→ Γc → Γ→ Z→ 0,

admits a non canonical splitting by choosingg ∈ c−1(1) and defines : Z → Γ, n 7→ gn.
Any such splitting determines a group is isomorphismΓ ∼= Γc ⋊s Z (semidirect product) and a
C∗-algebra isomorphismC∗

r (Γ)
∼= C∗

r (Γc)⋊ Z.

Proposition 4.2. Let c : Γ→ Z be a normalised cocycle. The Kasparov product

K1(C
∗
r (Γ))×KK1(C

∗
r (Γ), C

∗
r (Γc))→ K0(C

∗
r (Γc)),

maps the pair([uδ ], [Dc]) to the class

sgn(c(δ))[C∗
r (Γc)

|c(δ)|] = c(δ)[1C∗
r (Γc)].
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Proof. Choosingg ∈ c−1(1) gives a generating set{egn}n∈Z for the moduleE and a decompo-
sition

(4.1) E ∼=
⊕

n∈Z

C∗
r (Γc), eγ 7→ egc(γ)ug−c(γ)γ ,

under which the operatorDc becomes multiplication by−n ∈ Z. Denote bypc : Ec → Ec the
projection onto the positive spectrum ofDc, which is adjointable by the decompisition (4.1). The
Fredholm operator given byFc := Dc(1 +D2

c )
− 1

2 is a compact perturbation of the adjointable
operatorSc = 2pc − 1 and defines the same class as[Dc] = [Fc] ∈ KK1(C

∗
r (Γ), C

∗
r (Γc)). For

δ ∈ Γ, sinceuδegn = egn+c(δ)ug−n−c(δ)δgn it follows that

impcuδpc = span{egn : n 6 min{0,−c(δ)}},

which is a complemented submodule, and hence so isimpcu
∗
δpc. Thus by [43, Ch. 3] the

operatorpcuδpc + 1 − pc admits a polar decomposition and by[35, Theorem 7.8] and the
argument in[35, Lemma 2.1], the Kasparov product maybe computed as a higher index, thatis

[uδ ]⊗ [(Ec,Dc)] = [kerpcuδpc]− [cokerpcuδpc] ∈ K0(C
∗
r (Γc)).

As above we have

ker pcuδpc = span{egn : −c(δ) < n 6 0},

and sincec is normalised, this module is isomorphic to the free module of rank |c(δ)| over
C∗
r (Γc) if c(δ) > 0 and0 otherwise. Since

cokerpcuδpc = ker pcuδ−1pc,

the statement follows. �

In order to obtain a genuine unbounded Fredholm module from acocycle, we need to get
rid of the algebraC∗

r (Γc) in Proposition4.2. It is not clear how to do this without making
more assumptions onΓ. In the next subsection, we achieve this whenΓ is a discrete group of
hyperbolic isometries.

4.2. The unboundedγ-element. In caseΓ is a group of isometries of a simply connected,
complete Riemannian manifoldX with nonpositive sectional curvature, Kasparov’s Dirac/dual-
Dirac construction[38] gives a canonical element[γX ] ∈ K0(C∗

r (Γc)). In this section we work
with the real hyperbolicn+1-spaceX = H, but this is not necessary. Letρ denote the function
ρ(x) := dH(0, x), L2(∧∗H) the Hilbert space ofL2-sections of the exterior algebra bundle of
H, /DHR the Hodge-DeRham operator,ĉ the Clifford multiplication and d the exterior derivative.

The following lemma is well-known in the cases = 1 and we state it for convenience.

Lemma 4.3 ([38]). For 0 < s 6 1 the triple
(
C, L2(∧∗H), /Dρ,s := /DHR + ρsĉ(d(ρ))

)
is a

G-equivariant unbounded Fredholm module representing the class [γH] = 1 ∈ KKG(C,C).
In particular, for any discrete subgroupΓ ⊂ G the triple

(
C∗
r (Γ), L

2(∧∗H), /Dρ,s

)
,

is an unbounded Fredholm module andInd( /D
+
ρ,s) = 1.
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Proof. The statement follows from the observation that(1+ρ)sĉ(dρ) a bounded perturbation of
ρsĉ(dρ) and is a representative for Kasparov’s dual Dirac element. The graded commutator

[ /DHR, (1 + ρ)sĉ(dρ)] = [ /DHR, (1 + ρ)s]ĉ(dρ) + (1 + ρ)s[ /DHR, ĉ(dρ)],

is relatively bounded to(1+ρ)s, so /Dρ,s represents the Kasparov product of the Dirac and dual-
Dirac element and is hence in the class of[γH]. For a discrete subgroupΓ ⊂ G its action onH
defines a representation ofC∗

r (Γ) onL2(∧∗H). The statement about the index is immediate.�

Lemma 4.4. For 0 < s 6 1 and any elementg ∈ G we have the estimate

‖ρs[ĉ(dρ), ug]‖ 6 2ds
H
(0, 0g).

Proof. By the proof of[38, Lemma 5.3], for x 6= 0 it holds that

‖[ĉ(dxρ), ug]‖ 6 2dH(0, 0g)(dH(0, x) + dH(0, xg))−1,

so we assume0g 6= 0 as well. This yields the estimate

‖ds
H
(0, x)[ĉ(dxρ), ug]‖ 6 2dH(0, 0g)ds

H
(0, x)(dH(0, x) + dH(0, xg))−1

6 2dH(0, 0g)(dH(0, x) + dH(0, xg))s−1

6 2dH(0, 0g)dH(0, 0g)s−1 = 2dH(0, 0g)s,

which produces the claimed norm estimate. �

Lemma 4.5. Let0 < s 6 1, γ1, · · · , γk ∈ Γ andx ∈ H. Then

dsH(x, xγk · · · γ1) 6

(
k∑

i=1

dH(x, xγi)

)s

6

k∑

i=1

dsH(x, xγi).

Proof. This is a straightforward induction. Fork = 1 there is nothing to prove. Then fork > 1
we write

dsH(x,xγk · · · γk) 6 (dH(x, xγk−1 · · · γ1) + dH(xγk−1 · · · γ1, xγk · · · γ1))
s

= (dH(x, xγk−1 · · · γ1) + dH(x, xγk))
s
6

(
k∑

i=1

dH(x, xγi)

)s

6

k∑

i=1

dsH(x, xγi),

which are the desired inequalities. �

We wish to construct the Kasparov product of the element[Dc] ∈ KK1(C
∗
r (Γ), C

∗
r (Γc))

and [γH] ∈ K1(C∗
r (Γc)) in order to obtain an unbounded Fredholm module and a class in

K1(C∗
r (Γ)). In order to do this we define, forg ∈ c−1(|c|)

(4.2) 1⊗∇g
/Dρ,s(eγ ⊗ ψ) := egc(γ) ⊗ /Dρ,s(ug−c(γ)γψ)

which is a densely defined symmetric operator with initial domainCc(Γ)⊗Cc(Γc)Dom /Dρ,s.We
then consider the densely defined symmetric operator

(4.3) Dc ⊗ σ + 1⊗∇ /Dρ,s =

(
c 1⊗∇g

/D
+
ρ,s

1⊗∇g
/D
−
ρ,s −c

)
,

on the Hilbert spaceE ⊗C∗
r (Γc) L

2(∧∗H) with grading operatorσ, decomposed according to
even and odd formsL2(∧∗H) = L2(∧+H)⊕ L2(∧−H).
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We recall from the appendix to[28], that the notion of unbounded Fredholm module can be
loosened.

Definition 4.6. Anunbounded Fredholm moduleis a triple (A ,H,D), where

(1) A is a∗-algebra represented on theZ/2-graded Hilbert spaceH;
(2) D is a self-adjoint operator such thata(D ± i)−1 ∈ K(H);

(3) for all a ∈ A , aDomD ⊂ DomD and there existsε > 0 such that[D, a](1+D2)−
1−ε
2

and(1 +D2)−
1−ε
2 [D, a] extend to bounded operators.

If ε can be chosen independent ofa ∈ A then(A ,H,D) is called anε-unbounded Fredholm
module.

Theorem 4.7. LetΓ ⊂ Isom(H) be a discrete group,0 < s < 1 andc : Γ→ Z be a normalised
cocycle. The Kasparov product of the classes[(Ec,Dc)] and [γH] is represented by the(1 − s)
unbounded Fredholm module

(
C∗
r (Γ), E ⊗C∗

r (Γc) L
2(∧∗H), /Dc,s := Dc ⊗ σ + 1⊗∇g

/Dρ,s

)
,

and in particular is independent of the choice ofg ∈ c−1(1).

Proof. Essential self-adjointness and compact resolvent of the operator /Dc,s in (4.3) follows
from general considerations in[52]. It remains to show condition 3 of Definition4.6 is satisfied
for the unitariesuγ generatingC∗

r (Γ) andε = 1− s. For the operatorDc ⊗ σ this follows from
the fact that[Dc, uγ ] defines an adjointbale operator onEc.

For1⊗∇g
/Dρ,s, Equation (4.2) shows that the commutator can be expressed as

[1⊗∇g
/Dρ,s, uγ ](egn ⊗ ψ) = egn+c(γ) ⊗ [ /Dρ,s, ug−n−c(γ)γgn ]ψ.

The Hilbert spaceE ⊗ L2(∧∗H) decomposes as a direct sum

E ⊗C∗
r (Γc) L

2(∧∗H) ∼=
⊕

n∈Z

egn ⊗ L
2(∧∗H),

and it suffices to control the supremum of the norms‖ · ‖n of the operators

[1⊗∇g
/Dρ,s, uγ ](1 +D2

c + (1⊗∇ /Dρ,s)
2)−

s
2 : egn ⊗ L

2(∧∗H)→ egn+c(γ) ⊗ L2(∧∗H).

To compute the commutator[ /Dρ,s, ug−n−c(γ)γgn ], we observe that/Dρ,s = /DHR + ρsĉ(dρ), and
/DHR commutes withuδ for all δ. So we need only concern ourselves with the dual Dirac part.
To this end we expand

[ρsĉ(dρ), ug−n−c(γ)γgn ] = [ρs, ug−n−c(γ)γgn ]ĉ(dρ) + ρs[ĉ(dρ), ug−n−c(γ)γgn ].

Since‖ĉ(dρ)‖ = 1, the norm of the first term is controlled by

sup
x∈H
|(ds

H
(0, x) − ds

H
(0, xg−n−c(γ)γgn))| 6 ds

H
(0, 0g−n−c(γ)γgn),

whereas Lemma4.4takes care of the second term with the estimate

‖ρs[ĉ(dρ), ug−n−c(γ)γgn ]‖ 6 2ds
H
(0, 0g−n−c(γ)γgn).
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Thus the size of the commutator is determined by the distanceds
H
(0, 0g−n−c(γ)γgn). Using

lemma4.5we can estimate

ds
H
(0, 0g−n−c(γ)γgn) 6 2ds

H
(0, 0gn) + ds

H
(0, 0γ) + ds

H
(0, 0gc(γ))

6 2nsds
H
(0, 0g) + ds

H
(0, 0γ) + ds

H
(0, 0gc(γ)).

Thus, the norm of the operator

[1⊗∇g
/Dρ,s, uγ ] : egn ⊗ L

2(∧∗H)→ egn+c(γ) ⊗ L2(∧∗H),

satisfies‖[1⊗∇g
/Dρ,s, uγ ]‖n 6 Cγ + 2ns. Since we also have the estimate

‖(1 +D2
c ⊗ 1 + (1⊗∇ /Dρ,s)

2)−
s
2‖n 6 (1 + n2)−

s
2 ,

we find that

sup
n
‖[1 ⊗∇g

/Dρ,s, uγ ](1 +D2
c + (1⊗∇ /Dρ,s)

2)−
s
2‖n 6 2ds

H
(0, 0g) + Cγ .

The operator(1 + D2
c + (1 ⊗∇ /Dρ,s)

2)−
s
2 [1 ⊗∇g

/Dρ,s, uγ ] is shown to be bounded by noting
thatuγ = u∗γ−1 . �

Our next result says that the index pairing betweenK1 andK1 when applied to theK-cycles
constructed from group cocycles in Theorem4.7 and unitaries[uδ] ∈ K1(C

∗
r (Γ)) recovers the

pairing betweenH1 andH1. This result will play an important rôle in what follows.

Proposition 4.8. LetΓ ⊂ Isom(H) be a discrete group andc : Γ → Z a normalised cocycle.
The index pairing

K1(C
∗
r (Γ))×K

1(C∗
r (Γ))→ Z

maps the pair([uδ ], [ /Dc,s]) to the integerc(δ), and thus recovers the (co)homology pairing

H1(Γ,Z)×H
1(Γ,Z)→ Z.

Proof. We use that the Kasparov product is associative:

[uδ ]⊗ [ /Dc,s] = [uδ ]⊗ [ /Dc,s]⊗ [γH],

and apply Proposition4.2and Lemma4.3to obtain that this equals

c(δ)[1C∗
r (Γc)]⊗ [γH] = c(δ)Ind( /D

+
ρ,s) = c(δ).

This proves the proposition. �

4.3. A Hecke equivariant isomorphism. We return to the specific setting of Bianchi groups in
dimension 3. We saw in Propositions1.4 and1.6 that for a Bianchi groupΓ there are isomor-
phisms

K1(C∗
r (Γ)) ≃ H

1(Γ,Z), K1(C
∗
r (Γ)) ≃ H1(Γ,Z).

However for our purposes, these isomorphism are not useful as they are only given abstractly.
In this subsection we set out to show that the construction ofthe previous section gives explicit
isomorphisms between the above. We prove their the Hecke equivariance and construct a section
for the restriction mapK1(C(∂H3)⋊ Γ)→ K1(C∗

r (Γ)) in the Gysin sequence.
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Proposition 4.9. Let Γ ⊂ PSL2(C) be a noncocompact torsion-free discrete subgroup. The
map

H1(Γ,Z)→ K1(C
∗
r (Γ)), [δ] 7→ [uδ],

is an isomorphism.

Proof. The quotient manifoldM = H3/Γ is a model forBΓ. SinceH3(Γ,Z) = 0, by [50,
Propositon 2.1.ii)] there is an isomorphismβM1 : H1(Γ,Z) → K

geo
1 (M), which we compose

with the Novikov assembly mapνΓ1 : K
geo
1 (M) → K1(C

∗
r (Γ)). Since the Baum-Connes con-

jecture holds forΓ, νΓ1 is an isomorphism. The compositionνΓ1 ◦ β
M
1 is shown to coincide with

the map[δ] 7→ [uδ] in [11, Theorem 10.4]. �

Theorem 4.10. Let Γ ⊂ PSL2(C) be a noncocompact torsion-free discrete subgroup. The
maps

H1(Γ,Z) −→ K1(C
∗
r (Γ)) and H1(Γ,Z) −→ K1(C∗

r (Γ))
[δ] 7→ [uδ] [c] 7→ |c| · [ /Dc,s]

are isomorphisms compatible with the pairings of the respective groups.

Proof. Proposition4.9gives theK-theory isomorphism. To show that theK-homology map is
a homomorphism, we use thatC∗

r (Γ) isKK-equivalent toC(H3)⋊Γ which is in the bootstrap
class. By the Universal Coefficient Theorem (UCT)[62, Theorem 1.17, Corollary 1.18]there
is a short exact sequence

0→ Ext1Z(K0(C
∗
r (Γ)),Z)→ K1(C∗

r (Γ))
⊗
−→ Hom(K1(C

∗
r (Γ)),Z)→ 0,

where⊗ denotes the map induced by the Kasparov product. By (1.11) K0(C
∗
r (Γ)) is finitely

generated and torsion-free, so the Ext group vanishes andK1(C∗
r (Γ))

∼= Hom(C∗
r (Γ),Z). That

is classes in theK-homologyK1(C∗
r (Γ)) are determined by the index pairing. For an arbitrary

cocyclec : Γ→ Z, c
|c| is normalised andD c

|c|
= |c|Dc is a scalar mutliple ofDc. Thus

[Dc] = [D c
|c|
] ∈ KK1(C

∗
r (Γ), C

∗
r (Γc)).

Theorem4.8and theK-theory isomorphism show that the classes|c|[Dc]+ |c
′|[Dc′ ] and|c+

c′|[Dc+c′ ] have the same index pairing and hence are equal, proving thatthe mapc 7→ |c|[ /Dc,s]
is a homomorphism. Injectivity follows in the same way. For surjectivity, let (H,F ) be an odd
Fredholm module andp+ the positive spectral projection ofF . Thenc : γ 7→ Indp+uγp+ is a
1-cocycle onΓ, and|c|[ /Dc,s] is an unbounded Fredholm module whose index pairing coincides
with F . Therefore[(H,F )] = |c|[ /Dc,s] proving surjectivity. �

We now show that the explicit isomorphism of abelian groupsH1(Γ,Z))
∼
−→ K1(C∗

r (Γ)) is
Hecke equivariant and construct an explicit section for therestriction mapKi(C(∂H3)⋊Γ)→
Ki(C∗

r (Γ)) in the Gysin sequence.

Proposition 4.11. Let [TΓ
g ] ∈ KK0(C

∗
r (Γ), C

∗
r (Γ)) be the Hecke class from Definition2.2,

c : Γ→ Z a cocycle andδ ∈ Γ. We have the identities

[uδ]⊗ [TΓ
g ] = [uTg(δ)] ∈ K1(C

∗
r (Γ)), [TΓ

g ]⊗ |c|[ /Dc,s] = |Tg(c)|[ /DTg(c),s] ∈ K
1(C∗

r (Γ)).

In particular the isomorphismsH1(Γ,Z) → K1(C
∗
r (Γ)) andH1(Γ,Z) → K1(C∗

r (Γ)) are
Hecke equivariant.
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Proof. By Proposition2.4 we havetg(uδ) = τ(δ)diag(uχk(δ)) and sinceτ(δ) ∈ Mn(C) we
have[τ(γ)] = 0 ∈ K1(C

∗
r (Γ)). So together with (2.3) we find

[Tg(uδ)] = [tg(uδ)] = [τ(γ)diag(χi(γ))] = [diag(uχi(γ))] =

d∑

i=1

[uχi(γ)] = [uTg([δ])].

Thus Hecke equivariance of the map[δ] 7→ [uδ] is proved. ForK-homology, by the UCT, it
suffices to show that for allγ ∈ Γ it holds that

(TΓ
g ⊗ |c|[Dc], uγ) = (|Tg(c)|[DTg(c)], uγ).

By Theorem4.8, we can compute the right handside to equalTg(c)(γ). For the left handside,
observe that the classTΓ

g ⊗ [ /Dc,s] is represented by(
⊕d

i=1E ⊗C∗
r (Γc) L

2(∧∗H3),diag( /Dc,s)).
The representation of a unitaryuγ is given byαg(uγ)(hi) = (χi(γ)hγ(i)). The positive spectral
projection of diag( /Dc,s) is p̃+ = diag(p+) and thus the index pairing becomes

(TΓ
g ⊗ |c|[Dc], uγ) = |c|Indp̃+αg(uγ)p̃+ = |c|

d∑

i=1

Indp+uχi(γ)p+ =
d∑

i=1

c(χi(γ)) = Tg(c)(γ),

as required. �

Unlike the previous results in this section, the following theorem is valid for discrete subs-
groupsΓ ⊂ IsomH in any dimension.

Theorem 4.12. The(1 − s)-unbounded Fredholm modules in Theorem4.7 extend to(1 − s)-
unbounded Fredholm modules forC(∂H) ⋊ Γ such thatC(∂H) commutes with/Dc,s. The
extension is compatible with the restriction mapK1(C(∂H)⋊ Γ)→ K1(C∗

r (Γ)).

Proof. LetX = XΓ ⊂ H be an open connected fundamental domain forΓ. The disjoint union⋃
γ∈ΓXγ is dense inH and

τ : H→ Γ, τ(x) = τX(x) = g ⇔ xg−1 ∈ X,

is an almost everywhere defined equivariant measurable map.
The tensor productE⊗L2(∧∗H) can be identified with the Hilbert space

⊕
n∈Z L

2(∧∗H) by
choosingg ∈ g−1(|c|) and using Equation (4.1). By choosing a pointξ ∈ ∂H, representations
of C∗

r (Γ) andC(∂H) are defined, forψ = (ψn)n∈Z, by

uδ(ψ)n(h) = ψn−c(δ)(hg
−nδgn−c(δ)), (πX,ξ(f)ψ)n(h) := f(ξτ(h)g−n)ψn(h),

and form a covariant pair. Thus we obtain a representation ofC(∂H)⋊Γ onE⊗C∗
r (Γc)L

2(∧∗H).
The representationπX,ξ clearly commutes with the multiplication operatorsρ andc. Because

πX,ξ(f) is constant on eachXγ, it also commutes with the Dirac operator/D. Therefore the
(1 − s) spectral triples from Theorem4.7 extend toC(∂H) ⋊ Γ. Since∂H is connected, the
choice ofξ ∈ ∂H does not affect the homotopy class of the spectral triple. IfY is another open
connected fundamental domain forΓ, there existsδ ∈ Isom(H) such thatX = Y δ and thus
τX(x) = δτY (x). This implies thatπY,ξ = πX,ξδ. Therefore the representationsπX,ξ andπY,ξ
are homotopic as well. �
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5. K-homology of Bianchi manifolds

Let Γ be a torsion-free finite-index subgroup of a Bianchi group and M be the associated
hyperbolic3-manifold. We already know from Propositions1.5and1.6 that there is an abstract
isomorphism

K0(C0(M)) ≃ H1(Γ,Z).

In this section, we shall construct an explicit Hecke equivariant isomorphism

K0(C0(M)) ≃ H2(M,∂M,Z),

whereM is the Borel-Serre compactification ofM (see Section2.1.2). Recall that

H2(M,∂M,Z) ∼= H1(M,Z) ∼= H1(Γ,Z)

and these isomorphisms are Hecke equivariant. Our approachuses geometricK-homology and
employ work of Matthey[50] on geometricK-homology of low-dimensionalCW -complexes.

5.1. Complex spin structures.Spin structures onM are in bijection with lifts of the holonomy
representationΓ →֒ PSL2(C) to SL2(C) ≃ Spin(3, 1) (see, e.g.[56, Section 2.7]). It is known
that such lifts exist and thusM admits a spin structure. Let us fix a lift of the holonomy map of
M and denote the corresponding spin structure onM by σ. It is well known that any compact
oriented3-manifold admits a spin structure (see[40, Section IV]), in particular, the Borel-Serre
compactificationM of M admits a spin structure. It turns out that, see[40, Proposition 1,
Section IV], we can choose a spin structure onM so that the induced spin structure onM
agrees with our fixedσ. We fix such a spin structureδ onM .

A spin structure induces a complex spin (or spinc) structure, in a canonical way. We denote
the corresponding spinc-structures onM andM with the same symbolsσ andδ respectively.
This will not cause confusion as we shall only consider spinc structures. In the rest of the paper,
we will endow all codimension0 and codimension1 submanifolds ofM with the canonical
spinc structure arising fromδ.

5.2. GeometricK-homology. Let us describeK0(C0(M)) as a relative group in the Baum-
Douglas model forK-homology of manifolds[6]. For a CW-pair(X,Y ), ageometric cycleis a
triple (N,E,ϕ) consisting of a compact spinc manifoldN with boundary∂N , a vector bundle
E → N and a continuous mapϕ : N → X such thatϕ(∂N) ⊂ Y . The parity∗ = 0, 1
corresponds to the dimension ofN being even or odd. Modulo a suitable equivalence relation,
such cycles generate thegeometricK-homologyKgeo

∗ (X,Y ) of the pair(X,Y ). By taking
Y = ∅, we obtain the geometricK-homology groupKgeo

∗ (X) := K
geo
∗ (X, ∅). For details see

[7, 32].
The paper[50] describes explicit relationships between ordinary homology and geometric

K-homology of low dimensionalCW -complexes. Recall the Hurewicz homomorphismh :
π1(M) → H1(M,Z), which sends the class of a mapϕ : S1 → M to ϕ∗([S

1]), where[S1] ∈
H1(S

1,Z) ≃ Z is the fundamental class. By a slight abuse of notation, we denoteh([ϕ]) ∈
H1(M,Z) by [ϕ]. By surjectivity ofh, the groupH1(M,Z) is exhausted by the elements[ϕ].
Similarly, any nontrivial classz ∈ H2(M,Z) can be represented by an embedded surface, that
is, there is a compact oriented surfaceN and an embeddingϕ : N →M such thatϕ∗([N ]) = z
where[N ] ∈ H2(N,Z) ≃ Z is the fundamental class,[70, Corollaire III.7.] . We shall denote
ϕ∗([N ]) by [N,ϕ].
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Proposition 5.1 ([50]). LetX be a connectedCW -complex such thatHk(X,Z) = 0 for all
k > 3. There are explicit natural isomorphisms

βodd : H1(X,Z)→ K
geo
1 (X), [ϕ] 7→ [S1, 1S1 , ϕ]

βev : H0(X,Z) ⊕H2(X,Z)→ K
geo
0 (X), ([pt], [N,ϕ]) 7→ [pt, 1pt, i] + [N, 1N , ϕ],

where[ϕ] ∈ H1(X,Z) and [N,ϕ] ∈ H2(X,Z) are as above, andi : pt→ X is any choice of
inclusion.

Proof. This result follows by Theorem 2.1 and Propositions 3.2, 3.3, 3.4 and 3.6 in[50]. �

Given a geometric cycle(N,E,ϕ) for a CW-pair(X,Y ), let SN → N be the spinor bundle
andDE the associated symmetric Dirac operator on the bundleE ⊗ S. The restriction ofϕ to
N \ ϕ−1(Y ) gives a continuous mapϕ : N \ ϕ−1(Y )→ X \ Y , which by the Tietze extension
theorem gives a *-homomorphismC0(X \ Y ) → C0(N̊). HereN̊ = N \ ∂N ⊂ N denotes
the interior ofN . We so obtain a representationC0(X \ Y ) → B(L2(N̊ , S)). The symmetric
operatorDE then defines aK-homology class by[30, Theorem 3.2]. The relation between
geometric and analyticK-homology is given by the following result.

Lemma 5.2. Let M denote a topological compactification ofM and ∂M := M \ M . If
(M,∂M ) is aCW -pair, then the map

K
geo
0 (M,∂M )

∼
−→ K0(C0(M)) (N,E,ϕ) 7→ (C0(M), L2(N̊ , E ⊗ S),DE)

is a natural isomorphism.

Proof. This is the statement of[7, Theorem 6.2]. �

In view of the last lemma, we consider the Borel-Serre compactificationM ofM , see Section
2.1.2. The pair(M,∂M ) form aCW -pair. In view of Proposition5.1and Lemma5.2, we aim
to construct a relative version of the mapβev. We begin with a relative version of Steenrod
representability forH2, which can be found in[49, Proposition 1.7.16](see also[36, Lemma
2.9] and the remark after its proof).

Lemma 5.3. Any nontrivial classz ∈ H2(M,∂M,Z) can be represented by a properly em-
bedded surface, that is, there is a compact oriented surfaceN and an embeddingϕ : N → M
such thatϕ(∂N) = ϕ(N) ∩ ∂M andϕ∗([N ]) = z where[N ] ∈ H2(N, ∂N,Z) ≃ Z is the
fundamental class. MoreoverN can be chosen so that all its components have negative Euler
characteristic.

As before, we denoteϕ∗([N ]) by [N,ϕ]. For convenience we will write(N, ∂N) ⊂ (M,∂M )
to mean thatN is a compact surface with boundary that is properly embeddedinto M as in
Lemma5.3.

As N ⊂ M is an embedded hypersurface, the spin structure onM descends toN and
(N, 1N , ϕ) is a geometricK-cycle for (M,∂M ). We now show that these cycles exhaust the
groupKgeo

0 (M,∂M).

Proposition 5.4. There is a natural isomorphism

(5.1) βrel
2 : H2(M,∂M,Z)

∼
−→ K

geo
0 (M,∂M ), [N,ϕ] 7→ [N, 1N , ϕ],

whereM is the Borel-Serre compactification ofM andϕ : (N, ∂N)→ (M,∂M ) is an embed-
ding.
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Proof. The notationβrel
2 is in accordance with[50] and Proposition5.1, as the mapsβev =

β0 ⊕ β2 andβodd = β1.
To show thatβrel

2 is well-defined, let[N1, ϕ1], [N2, ϕ2] represent the same homology class.
Consider the oriented bordism groupΩSO

2 (M,∂M ) (see[16, Section 4]). Noting thatΩSO
0 ≃ Z

andΩSO
1 = ΩSO

2 = 0, and thatH2(M,∂M,Z) is finitely generated and is torsion-free (as
it is isomorphic toH1(Γ,Z) = Hom(Γ,Z)), we conclude by Theorem 15.2 of[16] that the
representation mapµ : Ω2(M,∂M ) → H2(M,∂M,Z) is an isomorphism. This implies that
[N1, ϕ1] and[N2, ϕ2] are bordant in(M,∂M ). As we consider codimension0 and codimension
1 submanifolds ofM with the spinc structure inherited from that ofM , it follows immediately
that the cycles[N1, 1N1 , ϕ1] are [N2, 1N2 , ϕ2] are spinc-bordant and thus represent the same
geometricK-homology class. As the addition operation on both groups isgiven by disjoint
union, it is now clear that we have a homomorphismH2(M,∂M,Z)→ K

geo
0 (M,∂M).

As group operations on both sides amount to taking disjoint unions of manifolds representing
classes, it is clear thatβ2 is a homomoprhism.

To show that the mapβrel
2 is an isomorphism, recall the long exact sequence in homology

associated to the pair(M,∂M ) which takes the form

0 H0(M)oo H0(∂M )oo H1(M,∂M )oo H1(M)oo H1(∂M )oo

0 // H3(M,∂M ) // H2(∂M ) // H2(M) // H2(M,∂M )

OO

due to the facts thatH0(M,∂M ) ≃ 0 ≃ H3(∂M ). Next, consider the six-term exact sequence
of geometricK-homology groups (see for instance[7, 32]):

K
geo
0 (∂M ) // K

geo
0 (M) // K

geo
0 (M,∂M )

∂
��

K
geo
1 (M,∂M )

∂

OO

K
geo
1 (M)oo K

geo
1 (∂M)oo

Writing Hev(X) = H0(X) ⊕ H2(X), and ι : (M, ∅) → (M,∂M ) for the inclusion of
CW-pairs, Proposition5.1yields a diagram with exact rows

Hev(∂M) //

βev

��

Hev(M)
ι∗ //

βev

��

H2(M,∂M )
∂ //

βrel
2

��

H1(∂M ) //

βodd
��

H1(M )

βodd
��

K
geo
0 (∂M ) // K

geo
0 (M )

ι∗ // K
geo
0 (M,∂M)

∂ // K
geo
1 (∂M) // K

geo
1 (M),

whose outer squares commute. If we show that the inner squares commute as well, then the five
Lemma and the fact thatβev, βodd are isomorphisms, implies thatβrel

2 is an isomorphism as well.
To show thatβrel

2 ◦ ι∗ = ι∗ ◦βev, observe that theH0(M ) summand ofHev(M) is annihilated
by ι∗, as is the class of a point inKgeo

0 (M ). For a surface class[(N,ϕ)] ∈ H2(M ) we find that

βrel
2 ◦ ι∗[(N,ϕ)] = βrel

2 [(N,ϕ)] = [(N, 1N , ϕ)] = ι∗[(N, 1N , ϕ)] = ι∗ ◦ βev[(N,ϕ)],

as desired. We now prove thatβodd ◦ ∂ = ∂ ◦ βrel
2 . By Lemma5.3 all classes inH2(M,∂M )

are of the form[(N,ϕ)]. The boundary∂N is a compact 1-dimensional manifold, and therefore
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decomposes as a disjoint union∂N =
⊔k

i=1 S
1 of circlesS1. Denote byϕi the restriction ofϕ

to thei-th circle in this decomposition. We compute the composition

βodd◦ ∂[(N,ϕ)] = βodd[(∂N,ϕ|∂N )] =

k∑

i=1

βodd[(S
1, ϕi)]

=

k∑

i=1

[(S1, 1S1 , ϕi)] = [(∂N, 1N , ϕ)] = ∂[(N, 1N , ϕ)] = ∂ ◦ βrel
2 [(N,ϕ)].

This completes the proof thatβrel
2 is an isomorphism. �

Note that Lemma5.3implies thatN̊ = N ∩M ⊂M is a closed embedded hypersurface. We
equipN̊ with the metric inherited from the hyperbolic metric onM as well as with the inherited
spinc structure. The Riemannian distancesdN̊ , dM satisfydM (x, y) 6 dN̊ (x, y) for x, y ∈ N̊ .
SinceN̊ carries the relative topology as a subset ofM andM is complete, it follows that̊N is
complete. The spinor bundleSN̊ → N̊ is the restriction of the spinor bundleSM → M to N̊
(see[5, 31]). ThusN̊ is a complete Riemannian spinc manifold and we denote by/DN̊ its Dirac
operator, which is essentially self-adjoint onC1

c (N̊ ,SN̊ ), the compactly supportedC1-sections.

Theorem 5.5. LetΓ ⊂ PSL2(C) be a noncocompact torsion-free discrete subgroup. There is
a natural isomorphism

(5.2) H2(M,∂M )
∼
−→ K0(C0(M)), [(N,ϕ)] 7→ (C0(M),ϕ L

2(N̊ ,SN̊ ), /DN̊ ),

whereN̊ is viewed as a spinc surface with associated Dirac operator/DN̊ .

Proof. By Lemma5.2, we obtain a map(N, 1N , ϕ) → (C0(M), L2(N̊ , S),DN̊ ) whereDN̊ is
the symmetric operator obtained from the manifold with boundaryN . Since we have chosen the
spin structure onM to be compatible with that onM , the spin structure thatN inherits from
M is compatible with the spin structure that̊N inherits fromM . By [29, Proposition 11.27]it
follows that

[(C0(M), L2(N̊ , S),DN̊ )] = [(C0(M), L2(N̊ ,S |N̊ ), /DN̊ )] ∈ K0(C0(M)).

Combining Lemmas5.2, 5.3and Proposition5.4, it thus follows that the map (5.2) is an isomor-
phism. �

5.3. Hecke equivariance.Given a class[N,ϕ] ∈ H2(M,∂M,Z) and a Hecke operatorTg, it
can be seen that the classTg([N,ϕ]) is represented by

(5.3) Tg([N,ϕ]) = [(π−1
g (N), τg)] = [(Ng, τg)]

whereπg, τg are as in Section2.1.2andNg is a compact surface with boundary∂Ng ⊂ ∂M g

given by the fiber product

(5.4) Ng := (Mg)πg ×ϕ N ≃ π
−1
g (N) ⊂Mg.

The reader should compare this with the discussion in[22, Section 3].

Proposition 5.6. The isomorphismH2(M,∂M,Z) → K0(C0(M)) (cf. (5.2)) is Hecke equi-
variant.
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Proof. Take a class[N,ϕ] ∈ H2(M,∂M,Z). Comparing5.3 and the isomorphism (5.2), we
see that we need to show that

[(C0(M),τg L
2(N̊g,SN̊g

), /DNg
)] = [TM

g ]⊗ [(C0(M),ϕ L
2(N̊ ,SN̊ ), /DN̊ )],

in the groupKK0(C0(M), C0(M)). Viewing N̊g as the inverse imageπ−1
g (N̊) ⊂ Mg using

(5.4) it is straightforward to show that

w : TM
g ⊗C0(M) L

2(N̊ ,SN̊ )→τg L
2(N̊g,SN̊g

), w(χ⊗ ψ)(n) = χ(n)π∗gψ(n),

is a unitary isomorphism intertwining the leftC0(M)-representations. To prove that/DN̊g

represents the Kasparov product we need to check conditionsi-iii in [41, Theorem 13], of
which ii and iii are trivial since the moduleTM

g carries the0 operator. Now suppose that

χ ∈ C1
c (M̊g) is such that suppχ ⊂ U , with U an open set such thatπg|U is injective. Then we

can chooseζ ∈ C1
c (M̊ ) with χ = (π∗gζ)|U . Then forψ ∈ L2(N̊ ,SN̊ ) we have /DN̊g

χπ∗gψ =

/DN̊g
π∗g(ζψ)|U = π∗g( /DN̊ ζψ)|U . Thus we find

/DN̊g
χπ∗gψ − χπ

∗
g /DN̊ψ = π∗g( /DN̊ ζψ − ζ /DN̊ψ)|U = π∗g(c(dN̊ (ζ|N̊ ))ψ)|U

wherec denotes Clifford multiplication of forms. Since

‖π∗g(c(dN̊ (ζ|N̊ ))ψ)|U‖L2(N̊g,SN̊g
) = ‖c(dN̊ (ζ|N̊ ))ψ)‖L2(N̊,S ) 6 ‖c(dN̊ (ζ|N̊ ))‖‖ψ‖L2(N̊ ,S )

it follows thatψ 7→ /DN̊g
χπ∗gψ − χπ

∗
g /DN̊ψ extends to a bounded operator. The submodule of

TM
g generated by elementsχ ∈ C1

c (M̊g) of small support is dense inTM
g . Hence condition i of

[41, Theorem 13]is satisfied and we are done. �

6. The case ofPSL2(Z)

Let Γ be a torsion-free finite index subgroup ofPSL2(Z). Then it acts properly discontin-
uously on the hyperbolic planeH2 and the quotientM = H2/Γ is a finite volume hyperbolic
surface with cusps. The boundary ofH2 can be identified withP1(R).

The analogue of Proposition1.3 in this case is the following (note that the cohomological
dimension ofΓ is one). Fori = 0, 1, we have

Ki(C(P1(R))⋊ Γ) ≃ H0(Γ,Z)⊕H1(Γ,Z)

and

Ki(C(P1(R))⋊ Γ) ≃ H0(Γ,Z)⊕H1(Γ,Z).

This is actually well known, it is a special case of the work ofAnantharaman-Delaroche (see[2])
who treated cofinite discrete subgroups ofPSL2(R). Note thatH0(Γ,Z) ≃ Z andH1(Γ,Z) ≃
Z2g+c−1 whereg is the genus ofΓ andc ≥ 1 is the number of cusps ofM .

In [47], Manin and Marcolli describe the above isomorphisms in terms of Manin symbols us-
ing Pimsner’s 6-term exact sequence[58] of which Kasparov’s spectral sequence can be viewed
as a generalization.
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Much of Section3 carries through and we obtain the Hecke equivariant exact hexagon

(6.1) K1(C0(M)) // K0(C(P1(R))⋊ Γ) // K0(C∗
r (Γ)

��
K1(C∗

r (Γ))

OO

K1(C(P1(R))⋊ Γ)oo K0(C0(M))oo

AsM is non-compact, this hexagon (6.1) breaks apart into two short exact sequences (see[23])

(6.2) 0→ K1(C0(M))→ K0(C(P1(R))⋊ Γ)→ K0(C∗
r (Γ))→ 0,

(6.3) 0→ K0(C0(M))→ K1(C(P1(R)) ⋊ Γ)→ K1(C∗
r (Γ))→ 0

as in the Bianchi case.
It is well-known thatΓ is a free group on2g + c − 1 generators. It follows, for example,

from work of Cuntz[21] and of Lance[42], thatK0(C∗
r (Γ)) ≃ Z andK1(C∗

r (Γ)) ≃ Z2g+c−1.
As a result, the sequences (6.2) and (6.3) split and also we getK1(C0(M)) ≃ Z2g+c−1 and
K0(C0(M)) ≃ Z.

The analogue of Proposition1.4reads as follows. Fori = 0, 1, we have

Ki(C∗
r (Γ)) ≃ H

i(Γ,Z),

Ki(C
∗
r (Γ)) ≃ Hi(Γ,Z).

The map we constructed in Section4 is defined here as well and we get

Theorem 6.1. The maps

H1(Γ,Z) −→ K1(C
∗
r (Γ)) and H1(Γ,Z) −→ K1(C∗

r (Γ))
[δ] 7→ [uδ] [c] 7→ |c| · [D c

|c|
,H]

are Hecke equivariant isomorphisms compatible with the pairings of the respective groups.

Our results in Section5 adapt straightforwardly to the case ofPSL2(Z). The1-dimensional
analogue of Lemma5.3holds and we get the following (using the notation of Section5):

Theorem 6.2. There is a Hecke-equivariant isomorphism

H1(M,∂M,Z)→ K1(C0(M))

sending the homology class[N,ϕ] to the class[(C0(M), L2(N̊ , E⊗S),DE)] whereM denotes
the Borel-Serre compatification ofM .

Note thatH1(M,∂M,Z) ≃ H1(Γ,Z) as Hecke modules.

7. The extension class as a hypersingular integral operator

In section3.2we used the harmonic measuresνx on the boundary∂H to represent the bound-
ary extension (3.1) as a Kasparov module. In order to compute theK-homology boundary map
∂ : K0(C0(M)) → K1(C(∂H) ⋊ Γ), we now construct an unbounded Kasparov module[4]
representing the extension class.
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7.1. Harmonic calculus onT1H. As before,H denotes the Poincaré ball model of hyperbolic
n + 1 space. To construct an unbounded representative for the boundary extension we discuss
hypersingular integral operators defined using the harmonic measuresνx and a family of metrics
dx on ∂H which we now describe For allx, y ∈ H andg ∈ G we have (cf. [54, Equation
1.3.2]):

(7.1) ‖xg − yg‖ = |g′(x)|
1
2 |g′(y)|

1
2‖x− y‖,

where‖ · ‖ denotes the Euclidean norm onRn+1. Using the Poisson kernel (3.8) the function

(7.2) dx(ξ, η) := P (x, ξ)1/2P (x, η)1/2‖ξ − η‖,

satisfiesdxg(ξg, ηg) = dx(ξ, η) by (3.9) and sodx is a metric on∂H, as this holds ford0 andg
acts transitively onH (compare[54, Lemma 3.4.2]and[59, Section 3.3]).

For a pair(x, ξ) ∈ T1H we denote byr(x,ξ) : R → H the geodesic ray withr(x,ξ)(0) = x
andlimt→+∞(r(x,ξ)(t) = ξ. Recall that forr > 0 andx, y ∈ H, theSullivan shadowis the set

Or(x, y) := {ξ ∈ ∂H : inf{dH(rx,ξ(t), y) : t ∈ [0,∞)} 6 r} ⊂ ∂H.

A proof of the following result can be found in[54, 59].

Proposition 7.1(Sullivan’s shadow lemma[69]). For all ξ, η ∈ Or(x, y) it holds that

e−red(x,y) 6 dx(ξ, η) 6 ed(x,y).

Moreover there existsr0 such that for allr > r0 there existsCr > 0 for which

C−1
r e−nd(x,y)

6 νx(Or(x, y)) 6 Cre
−nd(x,y),

for all x, y ∈ H.

We start with the following observation, concerning the Riesz potentials commonly studied
in metric measure theory (see for instance[72]).

Lemma 7.2. For all 0 < s < n, the integral

Is = Is(x, ξ) :=

∫
1

dx(ξ, η)n−s
dνxη,

is finite and independent of(x, ξ).

Proof. To see that the integral is finite for fixed(x, ξ), we only consider the case0 < s < n,
as the cases > n is immediate. Choose pointsxk on the geodesic fromx to ξ such that
d(x, xk) = k. We write∂H as a disjoint union

∂H =

∞⋃

k=0

Or(x, xk) \Or(x, xk+1),

and expand the integral and then estimate using Proposition7.1:
∫

1

(dx(ξ, η))n−s
dνxη =

∞∑

k=0

∫

Or(x,xk)\Or(x,xk+1)

1

dx(ξ, η)n−s
dνxη 6 Cr

∞∑

k=0

νx(Or(x, xk))

(e−d(x,xk+1))n−s

6 Cr

∞∑

k=0

e(n−s)(k+1)e−nk = Cre
n−s

∞∑

k=0

e−sk <∞.
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Thus the integralIsΨ(x, ξ) is finite for fixed(x, ξ). Forg ∈ Gx we have
∫

1

(dx(ξ, η))n−s
dνx(η) =

∫
1

(dx(ξg, ηg))n−s
dνx(ηg) =

∫
1

(dx(ξg, η))n−s
dνx(η),

and sinceGx acts transitively on∂H, we see thatIs(x, ξ) is constant inξ. Using this fact, we
can write forg ∈ G:∫

1

(dx(ξ, η))n−s
dνx(η) =

∫
1

dxg(ξg, ηg))n−s
dνxg(ηg) =

∫
1

(dxg(ξ, η))n−s
dνxg(η),

and sinceG acts transitively onH we see thatIs(x, ξ) is independent ofx as well. �

Now we consider the spherical hypersingular operatorD0 : Lip(∂H)→ L2(∂H, ν0) and the
projectionp0 ∈ B(L2(∂H, ν0)) given by

(7.3) D0f(ξ) =

∫
f(ξ)− f(η)

d0(ξ, η)n
dν0η, p0f(ξ) :=

∫
f(η)dν0η.

Operators of exponentn+ε in the denominator have been extensively studied by Samko[63, 64].

Lemma 7.3. The operatorD0 mapsLip(∂H) ⊂ L2(∂H, ν0) into bounded functions on∂H, is
essentially self-adjoint onC1(∂H) ⊂ Lip(∂H) and has compact resolvent. MoreoverkerD0 =
Im p0 andD0 + p0 is strictly positive.

Proof. Observe that forf ∈ Lip(∂H) , by Hölder’s inequality and Lemma7.2we have
∣∣∣∣
∫
f(ξ)− f(η)

d0(ξ, η)n
dµ0η

∣∣∣∣ 6
∫
|f(ξ)− f(η)|

d0(ξ, η)n
dν0η 6 ‖f‖Lip

∫
1

d0(ξ, η)n−1
dν0η = I1‖f‖Lip,

soD0f is a bounded function and thusD0f ∈ L2(∂H, ν0). In particular, any orthonormal
family of spherical harmonicsYm,k ∈ C

1(∂H) is in the domain ofD0. Using the the method of
Samko[64, Lemma 6.25]we see that the multiplier ofD0 on spherical harmonics is given by

Ym,k 7→ λmYm,k, λm =

∫ 1

−1
(1 + t)

n−3
2 (1− t)−1(1− Pm(t))dt.

HerePm(t) =
∑m

k=0

(
−1
2

)k (m
k

)(
m+k
k

)
(1 − t)k is them-th Legendre polynomial. In particular

we haveλ0 = 0 sinceP0(t) = 1. Form > 0 we find

(1− t)−1(1− Pm(t)) =

m∑

k=1

(
−1

2

)k−1(m
k

)(
m+ k

k

)
(1− t)k−1,

so we are concerned with the integrals
∫ 1

−1
(1− t)k−1(1 + t)αdt =

(−2)k−12α(k − 1)!

(α+ 1) · · · (α+ k − 1)
, α =

n− 3

2
.

The proof of this equality follows by induction onk. Thus we find, form > α

λm = 2α
m∑

k=1

((
m

k

)(
m+ k

k

)
(k − 1)!

(α+ 1) · · · (α+ k − 1)

)

= 2α
m∑

k=1

(
(m+ k)!

k!(m− k)!

k

(α+ 1) · · · (α+ k − 1)

)
> 2α

m∑

k=1

m!

k!(m− k)!
= 2α(2m − 1)



36 B. MESLAND AND M.H. ŞENGÜN

This proves thatλm > 0 for all m > 0 andλm → ∞ for m → ∞. HenceD0 is essentially
self-adjoint on Lip(∂H), and has compact resolvent inL2(∂H, ν0). MoreoverD0 is positive
with kernel the constant functions, on whichp0 projects soD0 + p0 is strictly positive. �

We wish to extend the operatorD0 to the moduleL2(T1H, νx)C0(H) in a way compatible
with the action ofG = IsomH on this module.

Lemma 7.4. The mapΨ 7→ Pn/2Ψ, whereP is the Poisson kernel(3.8), extends to a unitary
isomorphism

(7.4) v : L2(T1H, νx)C0(H) → C0(H, L
2(∂H, ν0)) ≃ L

2(∂H, ν0)⊗C0(H),

of right C0(H)-modules.

Proof. Sincedνx(ξ) = P (x, ξ)ndν0(ξ) it is straightforward thatv is innerproduct preserving.
Since it mapsCc(T1H) into itself, it is surjective. �

In L2(T1H, νx)C0(H) we consider the operator

(7.5) DΨ(x, ξ) :=

∫
Ψ(x, ξ)−Ψ(x, η)

dx(ξ, η)n
dνxη,

which is initially defined on the dense subspaceC1
c (T1H) ⊂ L2(T1H, νx)C0(H).

Lemma 7.5. The functionH : T1H→ R given by

H(x, ξ) =

∫ P (x,ξ)n/2

P (x,η)n/2 − 1

d0(ξ, η)n
dν0η = P (x, ξ)n/2

∫
P (x, η)−n/2 − P (x, ξ)−n/2

d0(ξ, η)n
dν0η,(7.6)

defines an element ofC1(H, L∞(∂H, ν0)) via x 7→ Hx,Hx(ξ) := H(x, ξ).

Proof. For fixedx, Px : ξ 7→ P (x, ξ) is nonvanishing and Lipschitz inξ. Therefore the function

Hx : ∂H→ ∂H, Hx : ξ 7→ H(x, ξ) = Px(ξ)
n/2D0(P

−n/2
x )(ξ)

is bounded by Lemma7.3and thus defines an element ofL2(∂H, ν0). Forx, y ∈ H, the function

P
−n/2
x − P

−n/2
y : ∂H → R is defined on an open neighbourhood of∂H ⊂ Rn+1. Denote by

grad the Euclidean gradient by andh(x, y) := supξ ‖grad(P−n/2
x (ξ) − P

−n/2
y (ξ))‖, which is a

continuous function of(x, y) that vanishes on the diagonal. The mean value theorem gives

‖Px(ξ)
−n/2 − Py(ξ)

−n/2 − Px(η)
−n/2 + Py(η)

−n/2‖ 6 h(x, y)‖ξ − η‖.

Thus, withI1 as in Lemma7.2we can estimate

‖D0(P
−n
2

x − P
−n
2

y )‖∞ 6

∥∥∥∥∥

∫
Px(η)

−n
2 − Px(ξ)

−n
2 − Py(η)

−n
2 + Py(ξ)

−n
2

d0(ξ, η)n
dν0η

∥∥∥∥∥
∞

6 h(x, y)

∫

∂H

1

d0(ξ, η)n−1
dν0η = I1h(x, y).

Then the estimate

‖Pn/2
x D0P

−n/2
x −Pn/2

y D0P
−n/2
y ‖∞ 6 ‖Pn/2

x −Pn/2
y ‖∞‖D0P

−n/2
x ‖∞+ ‖Pn/2

y ‖∞I1h(x, y),

shows thatlimx→y ‖P
n/2
x D0P

−n/2
x − P

n/2
y D0P

−n/2
y ‖∞ = 0, so x 7→ Hx is a continuous

mapH → L∞(∂H, ν0). The partial derivatives∂xiH(x, ξ) are continuously differentiable



HECKE OPERATORS ANDK-HOMOLOGY OF BIANCHI GROUPS 37

in ξ, and so a similar argument shows that the mapsx 7→ ∂xiH(x, ξ) are continuous maps
H→ L∞(H, ν0) as well. �

For a Banach spaceE, we denote byC1
c (H, E) the space of compactly supported contin-

uously differentiable functions onH with values inE. We will always consider DomD0

as a Hilbert space in the graph norm. Using the injection DomD0 → L2(∂H, ν0) we view
C1
c (H,DomD0) as a subspace ofC0(H, L

2(∂H, ν0)), which both areC0(H)-bimodules

Proposition 7.6. Let v be as in Lemma7.4 andD as in (7.5). The operatorD is essentially
self-adjoint and regular onv∗C1

c (H, C
1(∂H)) ⊂ L2(T1H, νx)C0(H) and satisfies

D : v∗C1
c (H,DomD0)→ v∗C1

c (H, L
2(∂H, ν0)).

It hasC0(H) locally compact resolvent inL2(T1H, νx)C0(H). In particular, for all f ∈ C0(H)

we havef(1 +D)−1 ∈ K(L2(T1H, νx)C0(H)).

Proof. Using the map (7.4), it suffices to show that the operatorvDv∗ with domain

C1
c (H,DomD0) ⊂ v(C

1
c (T1H)),

is essentially self-adjoint, regular and hasC0(H)-compact resolvent inC0(H, L
2(∂H, ν0)). We

see that it is given by

(7.7) vDv∗Ψ(x, ξ) =

∫ Ψ(x, ξ)P
n/2(x,ξ)

Pn/2(x,η)
−Ψ(x, η)

d0(ξ, η)n
dν0η = (D0 ⊗ 1 +H(x, ξ))Ψ(x, ξ),

whereH(x, ξ) ∈ C1(H, L∞(∂H, ν0)) is the function from (7.6). In particular,vDv∗ maps
C1
c (H,DomD0) intoC1

c (H, L
2(∂H, ν0)). It follows thatD is a map

D : v∗C1
c (H,DomD0)→ v∗C1

c (H, L
2(∂H, ν0)) ⊂ L

2(T1H, νx)C0(H),

and thusD is a densely defined symmetric operator. By[57, Theorème 1.18], vDv∗ is self-
adjoint and regular if and only if for allx ∈ H the localisation(vDv∗)x is self-adjoint in
L2(∂H, ν0). But (vDv∗)x is a bounded perturbation ofD0 by (7.7), and therefore self-adjoint.
ThusvDv∗ is self-adjoint and regular. By the same argument, becauseD0 has compact resol-
vent,(vDv∗)x has compact resolvent and thusvDv∗ hasC0(H)-compact resolvent. Sincev is
unitary, it follows thatD is self-adjoint and regular, withC0(H)-compact resolvent. �

Proposition 7.7. The operatorD is positive andG-equivariant. Moreover, forp the projection
of Theorem3.4,D + p is strictly positive andDp = pD = 0.

Proof. By Proposition7.6D0 is positive andD0 + p0 is strictly positive. Now considerg with
0 = xg and forΨ ∈ Cc(H, C

1(∂H)), which is a core forD, write Ψg
x(ξ) = Ψ(x, ξg−1), so

Ψg
x ∈ C1(∂H). Then compute

〈DΨ,Ψ〉(x) =

∫ ∫
|Ψ(x, ξ)|2 −Ψ(x, η)Ψ(x, ξ)

dx(ξ, η)n
dνxξdνxη

=

∫ ∫
|Ψ(x, ξ)|2 −Ψ(x, η)Ψ(x, ξ)

d0(ξg, ηg)n
dν0(ξg)dν0(ηg)

=

∫ ∫
|Ψ(x, ξg−1)|2 −Ψ(x, ηg−1)Ψ(x, ξg−1)

d0(ξ, η)n
dν0ξdν0η = 〈D0Ψ

g
x,Ψ

g
x〉0,
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and similarly one shows that〈pΨ,Ψ〉(x) = 〈p0Ψ
g
x,Ψ

g
x〉0. It thus follows thatD is positive

andD + p is strictly positive. A simple change of variables establishesG-equivariance. The
equalityDp = 0 follows becausepΨ(x, ξ) is constant inξ, andpD = 0 thus follows by taking
adjoints. �

7.2. An unbounded Kasparov module for the extension class.In Section4.2 the function
ρ(x) = dH(0, x) was introduced, and onCc(H,DomD0) we consider the multiplication opera-
tor ρΨ(x, ξ) = ρ(x)Ψ(x, ξ). It is straightforward to show thatD andρ commute on this domain
and thatD + ρ is essentially self-adjoint and regular.

Proposition 7.8. The positive self-adjoint regular operatorD + ρ has compact resolvent in the
C∗-moduleL2(T1H, νx)C0(H).

Proof. Because bothD andρ are positive regular operators,(1 +D + ρ)−1, (1 +D)−1 define
adjointable operators and the function(1 + ρ)−1 is an element ofC0(H). Hence ifun is an
increasing approximate unit inC0(H), for n > m we have the operator inequalities

0 6 (un − um)(1 +D + ρ)−1(un − um) 6 (un − um)(1 + ρ)−1(un − um)→ 0.

Thus the sequenceun(1 +D + ρ)−1 is Cauchy. On the other hand

un(1 +D + ρ)−1un 6 un(1 +D)−1un ∈ KC0(H)(L
2(T1H, νx)),

becauseun(1 +D)−1 ∈ K by Proposition7.6. SinceK is an ideal, it is a hereditary subalgebra,
and thus the operatorun(1+D+ρ)−1un ∈ K from which it follows thatun(1+D+ρ)−1/2 ∈ K,
and since this sequence is Cauchy, its limit is inK as well. Because the sequence converges
pointwise to(1 +D + ρ)−1/2, it follows that(1 +D + ρ)−1 ∈ K, as desired. �

Next we address the commutator properties ofD andρ with functionsf ∈ Lip(∂H).

Lemma 7.9. For f ∈ Lip(∂H), the operator[D, f ] extends to a bounded operator.

Proof. This commutator can be computed using the explicit formula for vDv∗ from Equation
(7.7) to find:

[vDv∗, f ]Ψ(x, ξ) =

∫
(f(ξ)− f(η))Ψ(x, η)

d0(ξ, η)n
dµ0(η).

Using Hölder’s inequality, the fact thatf is Lipschitz and Lemma7.2we estimate

|〈[vDv∗,f ]Ψ,Φ〉|(x) =

∣∣∣∣
∫ ∫

(f(ξ)− f(η))Ψ(x, η)

d0(ξ, η)n
dµ0(η)Φ(x, ξ)dµ0(ξ)

∣∣∣∣

6 ‖f‖Lip

∫ ∫
|Ψ(x, η)||Φ(x, ξ)|

d0(ξ, η)n−1
dµ0(η)dµ0(ξ)

6 ‖f‖Lip

(∫ ∫
|Ψ(x, η)|2

d0(ξ, η)n−1
dµ0(η)dµ0(ξ)

) 1
2
(∫ ∫

|Φ(x, ξ)|2

d0(ξ, η)n−1
dµ0(η)dµ0(ξ)

) 1
2

6 ‖f‖LipI1‖Φ‖2‖Ψ‖2,

which is independent ofx. Thus[vDv∗, f ] extends to an adjointable operator. �

Next we recall the functionρ(x) = dH(0, x) and the projectionp from Theorem3.4.

Lemma 7.10. For f ∈ Lip(∂H), the operator[p, f ]ρ extends to a bounded operator.
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Proof. The proof consists of pointwise estimates inx ∈ H:

|〈[p, f ]Ψ,Φ〉(x)| 6

∫ ∫
|Ψ(x, η)Φ(x, ξ)||f(ξ) − f(η)|dνx(ξ)dνx(η)

6 ‖f‖Lip

∫ ∫
|Ψ(x, η)Φ(x, ξ)|‖ξ − η‖dνx(ξ)dνx(η)

6 ‖f‖Lip(1− ‖x‖
2)

∫ ∫
|Ψ(x, η)Φ(x, ξ)|

‖x − ξ‖+ ‖x− η‖

1− ‖x‖2
dνx(ξ)dνx(η)

6 ‖f‖Lip(1− ‖x‖
2)

∫ ∫
|Ψ(x, η)Φ(x, ξ)|(P (x, ξ)−

1
2 + P (x, η)−

1
2 )dνx(ξ)dνx(η)(7.8)

Thus we estimate
∫ ∫

|Φ(x, ξ)Ψ(x, η)|P−1/2(x, ξ)dνxξdνxη 6 ‖Φ‖2‖Ψ‖2

(∫ ∫
P−1(x, ξ)dνxξdνxη

) 1
2

.

Using Hölder’s inequality, the fact thatνx is a probability measure anddνx = Pndν0 we find
∫
P−1(x, ξ)dνx(ξ) =

∫
Pn−1(x, ξ)dν0ξ 6

(∫
Pn(x, ξ)dν0ξ

)n−1
n

= 1.

Combining this with (7.8) we obtain the estimate

|[p, f ]Ψ,Φ〉(x)| 6 2‖f‖Lip‖Φ‖2‖Ψ‖2(1− ‖x‖
2).

An elementary computation using the explicit distance formula on the hyperbolic ball (see[14,
Section I.6.7]) shows thatρ(x) = log (1+‖x‖)2

1−‖x‖2
. It thus follows thatρ[p, f ] is bounded. �

This leads us to consider the operatorS := −D + ρFp, as a candidate for the unbounded
representative of the Fredholm module constructed in Theorem3.4. We arrive at the main result
of this section.

Theorem 7.11.The triple(C(∂H), L2(T1H, νx)C0(H), S) is an unboundedG-equivariant Kas-
parov module representing theG-equivariant extension

0→ C0(H)→ C(H)→ C(∂H)→ 0.

Proof. We haveS = −D+ ρFp = Fp(D+ ρ) = Fp(1+D+ ρ)−Fp by Proposition7.7. Now
1 + D + ρ commutes withFp and has compact inverse by Proposition7.8, soS has compact
resolvent inL2(T1H)C0(H). We note that since

[S, f ] = [ρ, f ]Fp − [D, f ] + 2[p, f ]ρ,

it follows by Lemmas7.9 and7.10that [S, f ] extends to a bounded adjointable operator when-
everf ∈ Lip(∂H). The operatorsD andFp areG-invariant by Theorem3.4 and Proposition
7.7, and the functionρ commutes boundedly withG. ThusS defines aG-equivariant cycle, and
by construction, the bounded transform defines the same class asFp, so we are done. �

8. Embedded surfaces and the boundary map inK-homology

In this section we explicitly compute the boundary map∂ : K0(C0(M))→ K1(C(∂H)⋊Γ)
for classes[ /DN̊ ] ∈ K0(C0(M)) attached to a surface(N, ∂N) ⊂ (M,∂M ). For Bianchi
groups, this gives an exhaustive description of the map∂ by Theorem5.5.
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8.1. Hyperbolic Dirac operator and Poisson kernel.We now prove several technical Lem-
mas concerning the commutation relations of the hypersingular integral operatorD (7.5), the
projectionp from Theorem3.4 and the hyperbolic Dirac operator/DH. In the next section we
use these results to compute the Kasparov product of the boundary extension with Dirac opera-
tors on embedded surfaces.

We set some conventions. Following Patterson[55, Page 294]we viewH as the unit ball
in Rn+1 as before, with the Riemannian metricdss = dx2

(1−‖x‖2)2
. Let S → H be the spinor

bundle and consider the internal tensor product ofC0(H)-C∗-modules

C0(H, L
2(∂H, ν0))⊗C0(H) C0(H,S ) ≃ L2(∂H, ν0)⊗C0(H,S ),

and the dense subspace

(8.1) W =WH = C1
c (H,DomD0)⊗

alg
C1

c (H)
C1
c (H,S ).

Let Ψ ∈ C1
c (H,S ) be a compactly supportedC1-section andx a tangent vector field. We

denote the Clifford representation associated to the hyperbolic metric onH by ψ 7→ c(x)ψ. Let
ei ∈ Rn+1 denote thei-th standard basis vector. The vector fieldsei(x) = ei(1 − ‖x‖

2) define
a global orthonormal frame for the the tangent bundle onH. The hyperbolic Dirac operator/DH

can be computed by elementary methods (see for instance[26, Theorem 5.3.5]) and is given by

/DH : C1
c (H,S )→ Cc(H,S ), ψ 7→

n∑

i=0

(1− ‖x‖2)c(ei)∂iψ + Lic(ei)ψ.

Here theLi are bounded functions onH. It induces an operator

TH : C1
c (H, L

2(∂H, ν0))⊗
alg
C1

c (H)
C1
c (H,S )→ C0(H, L

2(∂H, ν0))⊗
alg
C0(H) C0(H,S ),

TH(Ψ ⊗ ψ) = Ψ⊗ /DHψ + ∂iΨ⊗ c(ei)ψ

= (1− ‖x‖2)

(
n∑

i=0

Ψ⊗ c(ei)(∂iψ) + (∂iΨ)⊗ c(ei)ψ

)
+ LiΨ⊗ c(ei)ψ,

Fors ∈ R, the powers of the Poisson kernel define multiplication operators

P s : C1
c (H, L

2(∂H, ν0))→ C1
c (H, L

2(∂H, ν0)), Ψ 7→ P sΨ.

Lemma 8.1. Lets ∈ R andΨ⊗ ψ ∈WH. The operatorsP s andTH satisfy

TH : WH → Cc(H,DomD0)⊗
alg
Cc(H) Cc(H,S ),

P s :WH → C1
c (H, L

2(∂H, ν0))⊗
alg
C1

c (H)
C1
c (H,S ).

There are functionsui ∈ Cb(T1H) with
∑n

i=0 u
2
i = 1 such that

[TH, P
s](Ψ ⊗ ψ) = 2sP s

n∑

i=0

c(ei)ui(Ψ⊗ ψ).

Proof. The domain mapping properties are straightforward to checkand guarantee that commu-
tator [TH, P s] is well-defined. By the derivation property ofTH, we need to compute

(1− ‖x‖2)∂i (P (x, ξ)
s) = 2sP (x, ξ)s

(ξi − xi)(1 − ‖x‖
2)− xi‖ξ − x‖

2

‖x− ξ‖2
,
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so we have
(8.2)

[TH, P
s](Ψ⊗ψ) = 2sP s

∑

i

c(ei)ui(Ψ⊗ψ), ui(x, ξ) =
(ξi − xi)(1 − ‖x‖

2)− xi‖ξ − x‖
2

‖x− ξ‖2

Now since

|ξi − xi| 6

(
n∑

k=0

(xk − ξk)
2

) 1
2

6 ‖x− ξ‖, 1− ‖x‖2 6 (1 + ‖x‖)‖x − ξ‖

we find |ui(x, ξ)| 6 1 + ‖x‖ − xi which is a bounded function. The proof that
∑
u2i = 1 is an

elementary computation which we omit. �

The operatorvDv∗ from (7.7) induces and operator

(vDv∗)⊗ 1 :WH → C1
c (H, L

2(∂H, ν0))⊗
alg
C1

c (H)
C1
c (H,S ),

which we will denote byvDv∗ as well.

Proposition 8.2. The operators(vDv∗)⊗ 1 and(vpv∗)⊗ 1 satisfy

(vDv∗)⊗ 1, (vpv∗)⊗ 1 :WH → C1
c (H, L

2(∂H, ν0))⊗
alg
C1

c (H)
C1
c (H,S ).

For Ψ⊗ ψ ∈WH it holds that

[TH, vpv
∗](Ψ⊗ ψ) = n

∑

i

(v(uip+ pui)v
∗)Ψ⊗ c(ei)ψ,

[vDv∗, TH](Ψ⊗ ψ) = n
∑

i

giΨ⊗ c(ei)ψ, gi(x, ξ) :=

(∫
(ui(x, ξ)− ui(x, η))

dx(ξ, η)n
dνx(η)

)
.

Moreover, the functionsgi : T1H→ R satisfysup(x,ξ)
∑
gi(x, ξ)

2 <∞ .

Proof. The operatorvpv∗ can be written as

vpv∗Ψ(x, ξ) = P (x, ξ)n/2
∫

Ψ(x, η)Pn/2(x, η)dν0η,

from which the domain mapping property follows readily. Theformula for commutator is
a direct application of Equation8.2. We turn to the operatorvDv∗. Recall from Equation
(7.7) that the operatorvDv∗ can be written asvDv∗ = D0 ⊗ 1 + H, with H as in Equation
(7.6). By Lemma7.5, H ∈ C1(H, L2(∂H, ν0)) and thusH multipliesC1

c (H,DomD0) into
C1
c (H, L

2(∂H, ν0)). ClearlyD0 ⊗ 1 mapsC1
c (H,DomD0) into C1

c (H, L
2(∂H, ν0)) as well.

Therefore

(vDv∗)⊗ 1 :WH → C1
c (H, L

2(∂H, ν0))⊗
alg
C1

c (H)
C1
c (H,S ),

and the commutator[TH, (vDv∗) ⊗ 1] is well defined and equals[TH,H ⊗ 1]. By Lemma8.1
and the Leibniz rule

[TH, P (x, η)
n/2P (x, ξ)−n/2] = nP (x, η)n/2P (x, ξ)−n/2

∑

i

c(ei)(ui(x, ξ)− ui(x, η)).
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It now follows that onWH

[TH,H ⊗ 1] = n
∑

i

c(ei)

∫
P (x, η)n/2P (x, ξ)−n/2(ui(x, ξ) − ui(x, η))

d0(ξ, η)
dν0η

= n
∑

i

c(ei)

∫
(ui(x, ξ) − ui(x, η))

P (x, ξ)n/2P (x, ξ)n/2d0(ξ, η)
P (x, η)ndν0η

= n
∑

i

c(ei)

∫
(ui(x, ξ)− ui(x, η))

dx(ξ, η)
dνxη,

as claimed. To prove thatsup(x,ξ)
∑
gi(x, ξ)

2 <∞, it suffices to show that
(8.3)

sup
(x,ξ)

∑

i

(∫
(ui(x, ξ) − ui(x, η))

dx(ξ, η)n
dµx(η)

)2

6 sup
(x,ξ)

∑

i

(∫
|ui(x, ξ)− ui(x, η)|

dx(ξ, η)n
dµx(η)

)2

,

is finite. By Hölder’s inequality we have, for0 < s < 1 that
(8.4)(∫

|ui(x, ξ)− ui(x, η)|

dx(ξ, η)n
dνx(η)

)2

6

∫
(ui(x, ξ) − ui(x, η))

2

dx(ξ, η)n+s
dνx(η)

∫
1

dx(ξ, η)n−s
dνx(η).

A lengthy but elementary calculation shows that

(8.5)
n∑

i=0

(ui(x, ξ)− ui(x, η))
2 = ‖ξ − η‖2P (x, ξ)P (x, η) = dx(ξ, η)

2.

Combining (8.3), (8.4) and (8.5), we find

∑

i

(∫
(ui(x, ξ)− ui(x, η))

dx(ξ, η)n
dνx(η)

)2

6 Is
∑

i

∫
(ui(x, ξ)− ui(x, η))

2

dx(ξ, η)n+s
dνx(η)

= Is

∫
dx(ξ, η)

2

dx(ξ, η)n+s
dνx(η) = Is

∫
1

dx(ξ, η)n+s−2
dνx(η) = IsI2−s,

which proves boundedness by Lemma7.2. �

8.2. Kasparov products with embedded surfaces.By Theorem5.5, any element of the group
K0(C0(M)) of a Bianchi manifoldM can be represented by the self-adjoint Dirac operator on
a closed embedded hypersurface̊N → M . Throughout we will use that the spinor bundle on
a closed embedded hypersurface is the restriction of the spinor bundle of the ambient manifold
(cf. [5, 31]).

We will consider the embedded hypersurfaceΣ := π−1(N̊ ) ⊂ H inside the universal coverH
of M and denote byn the unit normal vector field ofΣ ⊂ H. Let S → H be the spinor bundle
of H, which is the pullback of the spinor bundle ofM under the covering mapπ : H → M .
The Clifford module structure onS |Σ is given by

cΣ(x)ψ := c(x)c(n)ψ,

with x a vector field onΣ. We denote by/DΣ : C1
c (Σ,S |Σ)→ Cc(Σ,S |Σ) the Dirac operator

onS |Σ associated to this Clifford module structure. The map

(8.6) σ : S |Σ → S |Σ, ψ 7→ ic(n)ψ
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is self-adjoint for the Riemannian inner product onS and squares to1. As suchσ induces a
grading onS |Σ, giving a decompositionS |+Σ ⊕S |−Σ . Moreover, sinceS |H isG-equivariant,
S |Σ is Γ-equivariant. Similar relations hold for the spinor bundles ofM andN̊ .

Let 〈ψ,ϕ〉S denote the inner product on the spinor bundle andC0(Σ,S ) the associated
C0(Σ) module of sections. Moreover, we writeL2

π(Σ,S |Σ) for theC0(N̊)-module obtained as
the completion ofCc(Σ,S ) in the inner product norm given by

〈ψ,ϕ〉(n) :=
∑

x∈π−1(n)

〈ψ,ϕ〉S (x) ∈ C0(N̊ ).

Proposition 8.3. The rightCc(N̊) module map

v : Cc(T1(H))⊗alg
Cc(M) Cc(N̊ ,SN̊ )→ Cc(Σ, L

2(∂H, ν0))⊗
alg
Cc(Σ) Cc(Σ,S |Σ),

Ψ⊗ ψ 7→ (Pn/2 ·Ψ)|Σ ⊗ π
∗ψ

is well-defined and extends to a unitary isomorphism ofC0(N̊) modules

v : L2
π(T1H, νx)⊗C0(M) C0(N̊ ,SN̊ )→ C0(Σ, L

2(∂H, ν0))⊗C0(Σ) L
2
π(Σ,S |Σ)C0(N̊),

and to a unitary isomorphism of Hilbert spaces

v : L2
π(T1H, νx)⊗C0(M) L

2(N̊ ,SN̊ )→ C0(Σ, L
2(∂H, ν0))⊗C0(Σ) L

2(Σ,S |Σ).

Here the latter Hilbert space is the completion ofCc(Σ, L
2(∂H, ν0))⊗

alg
Cc(Σ) Cc(Σ,S |Σ) in the

inner product

(8.7) 〈Ψ ⊗ ψ,Φ⊗ ϕ〉µ =

∫

Σ
〈Ψ ⊗ ψ,Φ⊗ ϕ〉C0(Σ)(x)dµ(x),

where〈Ψ⊗ψ,Φ⊗ϕ〉C0(Σ) denotes the inner product onC0(Σ, L
2(∂H, ν0))⊗C0(Σ)C0(Σ,S ).

The algebraC(∂H) acts by pointwise multiplication and the leftΓ-representation is given by

(8.8) v(uγ ⊗ 1)v∗(Ψ⊗ ψ) = |γ′|−
n
2 (γ ◦Ψ)⊗ (γ ◦ ψ).

Proof. First note thatv is well defined for ifχ ∈ Cc(Σ) is a function such thatχ = 1 on
suppΨ|Σ, then

(Pn/2 ·Ψ)|Σ ⊗ π
∗ψ = (Pn/2 ·Ψ)|Σ ⊗ χπ

∗ψ ∈ Cc(Σ, L
2(∂H, ν0))⊗Cc(Σ) Cc(Σ,S |Σ).

The balancing relation is respected byv for if g ∈ C0(M) andχ is as above then

v(Ψ · g ⊗ ψ) = v(Ψχπ∗(g) ⊗ ψ) = Pn/2 ·Ψχπ∗(g)⊗ π∗(ψ)

= Pn/2 ·Ψ⊗ χπ∗(g)|Σπ
∗ψ = Pn/2 ·Ψ⊗ χπ∗(g|Nψ) = v(Ψ⊗ g · ψ).

Compatibility of the inner products follows by

〈v(Ψ ⊗ ψ),v(Φ ⊗ ϕ)〉(n) = 〈π∗ψ, 〈Pn/2Ψ, Pn/2Φ〉C0(Σ,L2)π
∗ϕ〉(n)

=
∑

x∈π−1(n)

〈π∗ψ, 〈Pn/2Ψ, Pn/2Φ〉C0(Σ,L2)π
∗ϕ〉SΣ

(x)

=
∑

x∈π−1(n)

〈ψ(n), 〈Ψ,Φ〉L2(T1H,νx)(x)ϕ(n)〉SN̊

= 〈ψ(n), 〈Ψ,Φ〉L2
π(T1H,νx)C0(M)

(n)ϕ(n)〉S
N̊
= 〈Ψ⊗ ψ,Φ ⊗ ϕ〉(n),
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so it remains to show thatv has dense range. Choose a pre-compact open cover{Ui} of Σ with
the property thatUiγ ∩ Ui = ∅ wheneverγ 6= e and letχ2

i be a partition of unity subordinate to
{Ui}. Then for eachχi, ψ ∈ Cc(Σ,S |Σ) andΨ ∈ Cc(Σ, L

2(∂H, ν0)) there is a sectionψi ∈

Cc(N̊ ,S ) such thatχiψ = π∗ψi|Ui , and a functionΨi ∈ Cc(T1H) such thatΨχi = Pn/2Ψi.
Now choose functionsfi ∈ Cc(Σ) with fi = 1 onUi, so that

Ψ⊗ ψ =
∑

Ψχifi ⊗ χiψ =
∑

Ψχi ⊗ fiπ
∗ψi =

∑
Ψχi ⊗ π

∗ψi =
∑

v(Ψi ⊗ ϕi),

which shows thatv is surjective and thus extends to unitary isomorphism of theC∗-completions.
To see thatv extends to the Hilbert space completions, we need only observe thatπ : Σ→ N̊ is
a local isometry, soL2(Σ,S |Σ, µ) ≃ C0(Σ,S |Σ)⊗C0(N̊) L

2(N̊ , µ). The statements about the
algebra representations follow by straightforward calculation. �

Similar to (8.1) we consider the subspaceWΣ := C1
c (Σ,DomD0)⊗

alg
C1

c (Σ)
C1
c (Σ,S |Σ). The

restriction maps

C1
c (H)→ C1

c (Σ), C1
c (H,S )→ C1

c (Σ,S |Σ), C1
c (H,DomD0)→ C1

c (Σ,DomD0),

are all surjective and we conclude that restriction gives a surjectionWH →WΣ.
The closed embedded surfaceΣ ⊂ H admits unit normal vector fieldn, which we can extend

locally to a vector field onH. Forx ∈ Σ let {xi}
n
i=0 be a local orthonormal frame atx for the

tangent bundle ofH, with xn = n. We defineTΣ : WΣ → C0(Σ, L
2)⊗C0(Σ) C0(Σ,S |Σ) by

TΣ(Ψ⊗ ψ)(x) := (1− ‖x‖2)

(
n−1∑

k=0

∂xk
Ψ(x)⊗ cΣ(xk)ψ(x)

)
+Ψ(x)⊗ ( /DΣψ)(x).

Lemma 8.4. The operatorTΣ is essentially self-adjoint onWΣ ⊂ C0(Σ, L
2(∂H, ν0)) ⊗C0(Σ)

L2(Σ,S ). MoreoverTΣ commutes with functionsf ∈ C(∂H) and theΓ-representation(8.8).

Proof. The operator/DΣ : C1
c (Σ,S ) → Cc(Σ,S ) is essentially self-adjoint becauseΣ is a

complete manifold. The subspaceL2(∂H, ν0)⊗
algCc(Σ) ⊂ C0(Σ, L

2(∂H, ν0)) is dense and

L2(∂H, ν0)⊗
algCc(Σ)⊗Cc(Σ)Cc(Σ,S )→ L2(∂H, ν0)⊗Cc(Σ,S ), f ⊗ g⊗ψ 7→ f ⊗ gψ,

extends to a unitary isomorphism

(8.9) α : C0(Σ, L
2(∂H, ν0))⊗C0(Σ) L

2(Σ,S )→ L2(∂H, ν0)⊗ L
2(Σ,S ).

Forf ∈ L2(∂H, ν0), g ∈ C1
c (Σ) andψ ∈ C1

c (Σ,S ) we havef ⊗ g ⊗ ψ ∈WΣ and

(α ◦ TΣ)(f ⊗ g ⊗ ψ) = f ⊗ /DΣ(gψ), αTΣα
−1 = 1⊗ /DΣ.

While the elementsgψ span the coreC1
c (Σ,S ) on which /DΣ is essentially selfadjoint it follows

thatα ◦ (TΣ± i) has dense range, and hence so doesTΣ± i. Lastly, it is clear thatTΣ commutes
with functionsf ∈ C(∂H). For theΓ-representation (8.8), it is enough to observe that under
the mapα above we have

α[TΣ, vuγv
∗]α−1f ⊗ ψ = [1⊗ /DΣ, |γ

′|−
n
2 uγ ]f ⊗ ψ = 0,

becauseS is Γ-equivariant andγ′ does not depend onx. �
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Let ψ ∈ C1
c (H,S ) andx ∈ Σ. By [5, Proposition 2.2] the hyperbolic Dirac operator/DH

and the surface Dirac operator/DΣ are related by the formulae

c(n) /DHψ(x) = /DΣψ(x)−Kψ(x) +∇
H

n
ψ(x), ( /DHc(n)− c(n) /DH)ψ(x) = 2 /DΣψ(x).

Hereψ is a section of the spinor bundle onH defined in a neighbourhood ofΣ, ∇H is the
spin connection in the spinor bundle ofH andK is themean curvatureof the surfaceΣ. For
Ψ⊗ ψ ∈WH andx ∈ Σ we find the simple formula

(8.10) (THc(n)− c(n)TH)(Ψ ⊗ ψ)(x) = 2TΣ(Ψ⊗ ψ)(x).

Chooseλik ∈ Cc(H) such thatei =
∑

k λ
i
kxk in a neighbourhood ofx. The following Lemma

allows us to exploit the commutator computations of the previous section.

Lemma 8.5. LetR : WH → C1
c (H, L

2(∂H, ν0)) ⊗
alg
C1

c (H)
C1
c (H,S ) be an operator such that

[TH, R] =
∑n

i=0 c(ei)Ri, where

Ri :WH → C1
c (H, L

2(∂H, ν0))⊗
alg
C1

c (H)
C1
c (H,S )

are operators that commute with the Clifford action. Then for Ψ⊗ ψ ∈WH

(8.11) ([TΣ, R]) (Ψ ⊗ ψ)(x) =
n−1∑

k=0

n∑

i=0

λikRicΣ(xk)(Ψ ⊗ ψ)(x),

locally atx. If theRi define bounded operators onC0(Σ, L
2(∂H, ν0))⊗C0(Σ)L

2(Σ,S |Σ) then
[TΣ, R] extends to a bounded operator onC0(Σ, L

2(∂H, ν0))⊗C0(Σ) L
2(Σ,S |Σ).

Proof. Equation (8.11) is obtained by linear algebra using Equation (8.10) and the local relations
c(xk)

2 = 1 for 0 6 k 6 n andc(xi)c(xj) = −c(xj)c(xi) for i 6= j. To see that[TΣ, R] defines
a bounded operator whenever theRi are bounded we first compute theC0(Σ)-valued inner
product〈·, ·〉C0(Σ) from Equation8.7, and do a pointwise estimate:

〈[TC0(Σ), R]w, [TΣ, R]w〉C0(Σ)(x) =

n∑

i=0

(
n−1∑

k=1

λik(x)
2

)
〈Riw,Riw〉C0(Σ)(x)

6

n∑

i=0

〈Riw,Riw〉C0(Σ)(x).

Therefore, integration against the measureµ, for the inner product (8.7) we find

〈[TΣ, R]w, [TΣ, R]w〉µ 6

n∑

i=0

〈Riw,Riw〉µ 6

(
n∑

i=0

‖Ri‖
2

)
〈w,w〉µ,

which proves boundedness of[TΣ, R] onC0(Σ, L
2(∂H, ν0))⊗C0(Σ) L

2(Σ,S |Σ). �

We writeσ := ic(n), which satisfiesσ∗ = σ andσ2 = 1 and commutes with he operatorS
constructed in Theorem7.11.

Proposition 8.6. The operatorvσSv∗ + TΣ : WΣ → C0(Σ, L
2(∂H, ν0)) ⊗C0(Σ) L

2(Σ,S |Σ)
is essentially self-adjoint.
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Proof. Write t := /DΣ ands := vσSv∗. OnWΣ ⊂ Doms ∩ Dom t we can write

st+ ts = TΣvσSv
∗ + vσSv∗TΣ = σ(TΣvSv

∗ − vSv∗TΣ) = σ[TΣ, vDv
∗] + σρ[TΣ, vpv

∗].

It is straightforward to check that formula (7.7) holds for the isometryv from Proposition8.3.
By Proposition8.2and Lemma8.5, the operators[TΣ, vDv∗] and[TΣ, vpv∗] extend to bounded
operators. The unbounded multiplication operatorρ commutes with the other operators involved.
Now since

S2 = (−D − ρ+ 2pρ)2 = D2 + 2Dρ+ ρ2 > ρ2,

it follows thatρ2(1+S2)−1 6 ρ2(1+ρ2)−1 6 1 and henceρ(vSv∗±i)−1 extends to a bounded
operator. The operators(s±i)−1 preserve the coreWΣ and we have shown that(st+ts)(s±i)−1

extends to a bounded operator. Thuss andt satisfy[52, Definition A.1] (see also[33]) and by
[52, Theorem A.4] the sum operators+ t is self-adjoint on Doms ∩ Dom t. �

Forχ ∈ Cc(H) andf ∈ L2(∂H, ν0) we denote byf ·χ the functionf ·χ(x, ξ) := χ(x)f(ξ).
Using thatχ has compact support, it is straightforward to check thatf ·χ ∈ L2(T1H, νx)C0(M).

Lemma 8.7. For any functionχ ∈ C1
c (H) for whichπ : suppχ → M is injective andf ∈

L2(∂H, ν0), the operator

ψ 7→ v∗TΣv(f · χ⊗ ψ)− f · χ⊗ /DN̊ψ,

extends to a bounded operatorL2(N̊ ,S )→ L2
π(T1H, νx)⊗C0(M) L

2(N̊ ,S ).

Proof. As in the proof of Proposition5.6, there existsζ ∈ C1
c (M) such thatχ = (π∗ζ)|U . Then

TΣv(f · χ⊗ ψ)− v(f · χ⊗ /DN̊ψ) = TΣ(P
n/2f · χ⊗ π∗ψ)− Pn/2f · χ⊗ π∗ /DN̊ψ

= [TΣ, P
n/2]f · χ⊗ π∗ψ + Pn/2f · (TΣχ⊗ π

∗ψ − χ⊗ π∗ /DN̊ψ)

and we consider both summands separately. Writingxk for the vector fields on̊N , satisfying
c(xk)(x) = π∗c(xk)(x), Lemmas8.2and8.5give the local expression

[TΣ, P
n/2]f · χ⊗ π∗ψ(x) = nPn/2

n−1∑

k=0

∑

i

λikuif · χ⊗ cΣ(xk)π
∗ψ(x)

= nv

(
n−1∑

k=0

∑

i

λikuif · χ⊗ cN (xk)ψ

)
(x).

This is shown to be a bounded operator as in the proof of Lemma8.5. For the second summand,

Pn/2f · (TΣπ
∗ζ ⊗ π∗ψ − π∗ζ ⊗ π∗ /DNψ)|U =

n−1∑

k=0

Pn/2f · π∗(∂xk
ζ)|U ⊗ (π∗cN (xk)ψ)|U

= v

(
n−1∑

k=0

f · π∗(∂xk
ζ)|U ⊗ cN (xk)ψ

)
,

which defines a bounded operator as in Proposition5.6. �

Theorem 8.8. The triple (C(∂H) ⋊ Γ, L2
π(T1H, νx) ⊗C0(M) L

2(N̊ ,SN̊ ), σS + v∗TΣv) is a
spectral triple representing the class∂[ /DN̊ ] ∈ K1(C(∂H)⋊ Γ).
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Proof. The operatorσS + v∗TΣv is self-adjoint by Proposition8.6. By Theorem7.11 and
Proposition8.4the operatorσS+ v∗TΣv has bounded commutators with functionsf ∈ C(∂H)
and with group elementsuγ . By Lemma8.7and combining arguments in[52, Lemma 4.3], [34,
Theorem 6.7]and[52, Theorem 4.4], it follows that the triple(C(∂H)⋊Γ, L2

π(T1H, νx)⊗C0(M)

L2(N̊ ,SN̊ ), σS + v∗TΣv) is aK-cycle representing the product[∂]⊗ [ /DN̊ ] = ∂[ /DN̊ ]. �

It should be noted that under the isomorphism (8.9),

α : C0(Σ, L
2(∂H, ν0))⊗C0(Σ) L

2(Σ,S )→ L2(∂H, ν0)⊗ L
2(Σ,S ),

the spectral triple in Theorem8.8 admits a simple description. It can be represented on the
moduleL2(∂H, ν0)⊗ L

2(Σ,S ) using theΓ-representation

uγ(f ⊗ ψ)(ξ, x) = |γ
′(ξ)|f(ξγ)⊗ ψ(xγ),

and the operatorσ(D0 ⊗ 1 + H + ρFp) + 1 ⊗ /DΣ. However, proving that this operator is
self-adjoint with compact resolvent requires the analysispresented above.
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[67] M.H. Şengün,On the integral cohomology of Bianchi groups, Exp. Math. 20 (2011), 487–505.
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