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Abstract

Collecting very large amount of data from experimental measurement is a
common practice in almost every scientific domain. There is a great need to
have specific techniques capable of extracting synthetic information, which
is essential to understand and model the specific phenomena. The Proper
Orthogonal Decomposition (POD) is one of the most powerful data-analysis
methods for multivariate and nonlinear phenomena. Generally, POD is a pro-
cedure that takes a given collection of input experimental or numerical data
and creates an orthogonal basis constituted by functions estimated as the so-
lutions of an integral eigenvalue problem known as a Fredholm equation. By
utilising POD to identify flow structure in horizontal pipeline, specially, for
slag, plug and wavy stratified air-water flow regimes, this paper proposes a
novel approach, in which POD technique extends the current evaluation pro-
cedure of electrical impedance tomography applied on air-water flow measure-
ment [32] . This extension is provided by implementation of the POD as an
identifier of typical horizontal multiphase flow regimes. The POD snapshot
matrices are reconstructed for electrical thomography measurement domain
and specific flow conditions. Direct POD method introduced by Lumley and
Snapshot POD method introduced by Sirovich are applied. It is expected
that this study may provide new knowledge on two phase flow dynamics
in a horizontal pipeline and supportive information for further prediction of
multiphase flow regime.
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1. Introduction

1.1. Classification and applications

Considering a gas-liquid two phase flow [35], the liquid and gas are re-
garded as the continuous and dispersed phases respectively [7]. Gas-liquid
flows are commonly observed in many industrial processes such as oil and gas
[14, 33], chemical and pharmaceutical [10, 16, 19], transportation [20] and nu-
clear industries [11, 8]. The relative distribution of the gas and liquid phases
can take many different configurations depending on the process conditions,
such as the flow rates of the gas and liquid. The configuration of the gas and
liquid phases is known as the flow regime [38]. The flow regime describes the
pattern of the inner structure of the flow and important hydrodynamic fea-
tures such as volume fraction, phase and velocity distributions. Two phase
flow regimes are often determined subjectively using direct methods such as
the eyeballing method, high speed photography method and the radial at-
tenuation method [12]. Empirical flow regime maps such as the Baker chart
[2, 34] are commonly used for approximate and rapid identification of the
flow regime under specific operating conditions. However, due to their ap-
proximate and subjective nature these techniques are not able to identify
the prevalent multiphase flow regime with the required degree of accuracy.
Statistical analysis of the signal has also been used for identification of flow
regimes [13].

1.2. Flow pattern prediction

The prediction of flow patterns for fully developed gas-liquid flows typ-
ically employ mechanistic models that use different pressure drop and void
fraction estimation procedures for each flow pattern [17, 28] . Accurate pre-
diction of heat transfer, void fraction and pressure drop in gas-liquid flow is
important in the design and optimisation of the unit operations dealing with
such systems [21]. Therefore different flow regimes require specific modelling
equations to predict their respective transfer properties [4]. Hence in order to
produce a reliable design for a multiphase system it is imperative to be able
to accurately determine the prevalent flow regime. In the recognition of the
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prevalent flow pattern one must consider the relative quantities of the phases
and the topology of their interfaces [34]. In two phase flow many other flow
regimes are possible such as; stratified flow, bubbly flow, slug flow, plug flow
and annular flow among others. The flow regime that is active depends on a
number of factors; the fluid transport and material properties, flow rates, flow
direction (co-current or counter-current), the shape and size of the conduit
and the orientation (horizontal or vertical) [22]. Considering the orientation
of the flow, due to differences in the densities of the phases, vertical flow pat-
terns are different to those obtained in horizontal flow. An intrinsic difference
between the two orientations is that horizontal flow patterns are generally
not axisymmetric. Because of this the measurement of gas/liquid multiphase
flow in horizontal pipes is inherently more difficult than that in vertical pipes
due to the flow regimes experienced in the former configuration. Therefore,
this study focuses on horizontal gas-liquid flow in pipes.

1.3. Horizontal flow regimes

Typical flow regimes obtained in horizontal gas-liquid multiphase flows
are stratified flow, wavy stratified flow, slug flow, plug flow, bubble flow and
annular flow [41]. In the bubble flow regime the bubbles are located near the
top of the pipe due to buoyancy effects. Increasing the superficial velocity of
the gas will promote the coalescence of the bubbles resulting in plug flow. A
further increase in the superficial gas velocity will cause the gas plugs to form
a continuous layer of gas above liquid resulting in a smooth interface between
the gas and liquid which is termed stratified flow. In this flow regime the
gas will move at a higher velocity than the liquid due to the lower viscosity
and density of the gas phase. Once again increasing the superficial velocity
of the gas will increase the interfacial stress and create wave flow. A further
increase in the gas flow rate will result in waves that are able to bridge the
top of the pipe and hence produce large slugs of air in the top section of
the pipe and this is known as slug flow. At extremely high superficial gas
velocities annular flow is achieved whereby a thin liquid film flows along the
pipe wall surrounding a centralised core of gas. A further increase in the gas
flow rate will result in the formation of spray flow where the liquid phase is
distributed as small droplets within the gas phase [19].

1.4. Flow dynamics structure identification

In order to better understand the fluid dynamic nature of Gas-liquid flows
this paper focuses on flow regimes and pressure drop identification using
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statistical approaches based on Proper Orthogonal decomposition. POD is
used to identify the flow dynamics structure in the tomography dataset.
Fundamentals of physical, mathematical and numerical models of horizontal
flow regimes recognition are developed and presented. Developed statistical
method exploits the fact that specific flow condition of specific gas and liquid
phases thermophysical properties generate the unique and measurable flow
instabilities. To recognise gas-liquid flow instabilities which is caused by
different phase density, viscosity, surface tension and velocity, means indeed
the recognition of the prevalent regime moreover indicates the actual flow
conditions of the monitored area. POD techniques allow to disassemble the
complex flow dynamics structures acquired via tomography technology to
the fundamental dynamics structures.

2. Approach

The intention of developing a method for recognition of flow regime using
decomposition mathematical technique comes from the fact that each regime
is characterised by typical dynamic behaviour [24]. To recognise the flow dy-
namic structures, means indeed the recognition of the prevalent regime more-
over indicates the actual flow conditions of the monitored area. The main
aim of the present study is to develop a method of flow regime recognition,
which is based on Proper orthogonal decomposition (POD) supplemented by
Linear stochastic estimation (LSE) [1, 5]. Additionally, the basic functions
determined by experimental investigation serve to the database and numeri-
cal model validation. The schematic diagram of the concept is illustrated in
Figure 1 . The highlighted blocks in the scheme present the current state of
the research and the contribution to the complex method. We recognise two
fundamental modes of this procedure, the learning mode and flow evaluation
mode. The learning mode consists of the following tasks:

1. Provide experimental multiphase flow measurement for specific flow
conditions.

2. Electrical conductivity respectively electrical permittivity of mixture.

3. Mass flow rates, viscosity, pressure and temperature data acquisition.

4. Tomography images reconstruction.

5. POD analyses of tomography images, respectively RAW data.

6. Collect and store POD modes into POD database.

7. Analyse the POD modes from theoretical fluid dynamics point of view.
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8. Frequency and statistical analysis, detection of various flow instability
mechanisms.

9. Coupling of the results with POD modes and specific flow conditions.

With a sufficiently extensive POD database the developed method could
be operate on the second, flow evaluation mode. This one is consist of the
following tasks:

1. Provide multiphase flow measurement for unknown flow conditions.

2. Tomography data acquisition.

3. The thermo-physical fluid properties must be known or predicted (pres-
sure, viscosity, temperature).

4. Concentration images reconstruction.

5. Concentration images, respectively unfiltered RAW data, POD analy-
ses.

6. Actual POD modes comparing with POD database.

7. POD modes similarity recognition, flow instability identification.

8. Flow conditions, respectively flow patterns estimation.

2.1. Image reconstruction

The typical input data sets for POD fluid dynamics analysis are the Elec-
trical resistivity tomography (ERT) or Electrical capacitance tomography
(ECT) images of the phases concentration. The algorithms based on Modified
Sensitivity Back Projection, implemented as a default algorithm of Industrial
Tomography Systems (ITS) software, was used for the ERT concentration es-
timation of present study. The algorithms and techniques are introduced and
described in the literature [42, 39].

2.2. Proper Orthogonal Decomposition

Proper Orthogonal Decomposition finds applications in computationally
and experimental processing large amounts of high-dimensional data with
the aim of obtaining low-dimensional descriptions [24, 37]. Using POD, time
independent basis functions were extracted from the EIT data and were
projected onto the basis functions to generate reduced-order models. In the
reduced-order models (ROMs) [6, 15] the large amount of experimental data
are replaced by a much smaller number of coefficients of ordinary differential
equations. These reduced-order models were applied to several reference
cases; Liquid mass flow rate between 1 − 1000 kg/sm2, gas mass flow rate
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Figure 1: Scheme of Flow pattern recognition based on POD analyses

between 0.1 − 20 kg/sm2 simulating on water-air experimental loop, using
the fast impedance camera system (FICA) [32].

From a mathematical point of view, the Proper Orthogonal Decomposi-
tion is a transformation with a diagonal matrix U(x, t) and brings it to a
canonical form. The mathematical concept of POD is based on the spectral
theory of compact, self adjoins operations [9]. The vector-value function ap-
proximation, the conductivity or concentration in this study, over domain of
interest, is supposed as a finite sum in the variables-separated form (1):

U(x, t) =
M∑

m=1

am(x)φm(t). (1)

U(x, t) in the equation (1) is given fluctuating field of concentration,
pressure or velocity, am is time-independent POD base function and φm is
vector of space-independent coefficients in the m mode.

POD decomposes a given fluctuating flow field U(x, t) into an orthonor-
mal system of spatial modes am(x) and corresponding orthogonal temporal
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coefficients φm(t). This basis is optimal in the sense that a truncated series
expansion of the data in this basis has a smaller mean square truncation
error than a representation by any other basis. The POD provides a natu-
ral ordering of the spatial modes by measure of their mean square temporal
amplitude, such as kinetic energy in the case of velocity field [26]. In conjunc-
tion with the Galerkin method a system of ordinary differential equations,
called the Galerkin system, can be derived for the temporal evolution of the
temporal amplitudes.

Considering dimension of the tomography data matrix, the experimental
data preferable uses direct POD approach, which is developed by Lumley
[25]. In this case the average is temporal and evaluated as an ensemble
average, based on the assumptions of stationary and ergodicity. On the other
hand, the variable U(x, t) is assimilated to the space variable x = (x, y, z)
defined over the domain of interest (two measurement EIT planes consist of
the 360 cells). In order to estimate the set of POD basis functions, Python
parallel library MODRED [3] is used. The fundamental characteristics of the
calculation procedure are as follow:

• Collect, order and store the concentration vectors U(x, t) = [ui(x)], for
each frame of data acquisition i = 1,....,it.

• Compute each entry of the it × it correlation matrix H via [H]i,j =
〈ui, uj〉.

• Compute the eigenvalues and eigenvectors of correlation matrix, writing
HX = XΣ, where eigenvalues Σ is diagonal and real, eigenvector X is
orthogonal, since H is symmetric.

• Sort the eigenvalues and corresponding eigenvectors in descending or-
der.

• Select the number of modes M , truncate the matrices, keeping the

first M columns of X to obtain XM , and the first M rows and columns
of Σ to obtain ΣM .

• Compute the matrix of modes A = XM Σ
−1/2
M .

• Construct corresponding temporal coefficients φ individually via (2)
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φm(t) =
it∑

i=1

ui(x)[A]
T
i,m, m = 1, ....M. (2)

φm in the equation (2) is temporal POD coefficients of the m mode, ui is the
temporal component of fluctuating field of concentration vector U(x, t) of i
frame and A is the vector of time-idependent POD function.

The different number of modes is tested, M ∈ (3− 20) . The recon-
structed image shows the dominant role of the first few modes. POD can
be applied for flow regime recognition using reduced number of modes (3
modes), unlike the identification of fluid dynamics behaviour, in in which
higher number of modes is required.

2.2.1. Direct versus Snapshot approach

The fundamental questions of the POD approach choice are: the input
data collection, the inner product, the averaging operation (spatial or tem-

poral) and the variable ~X (spatial ~x = (x, y, z) or temporal t) .
Schematic view of Direct and Snapshot approaches application for process

tomography data are shown on the Figure 2. In Classical direct method, the
average operator < ∗ > is temporal. The snapshot POD method, which
is developed by Sirovich [31], is exact symmetry of the classical POD. The
average operator < ∗ > is evaluated as a space average over the domain of
interest.

The snapshot approached is tested for experimental multiphase flow data
as an alternative POD method, however the snapshot approach is more suit-
able for data of numerical investigation with regard to the typical correlation
matrix size.

2.3. Repeatability of developed approach

POD base functions database is developed for the specific device configu-
ration and flow conditions. The function database should be used for pattern
estimation exclusively inside the known flow conditions area. Tomography
device settings and configuration, such as sample frequency, geometry and
number of electrodes, type of resistance network, algorithm of image recon-
struction should correspond with reference measurements.
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Figure 2: Schematic view of Direct (left) and Snapshot (right) POD approaches

The POD approach is basically incapable to recognise caution of flow
instabilities itself. The POD algorithm decompose the signal and order the
function according the actual relevance of dynamics structures. The flow in-
stabilities caused by different mechanics change the importance for different
flow conditions. It means, the same mechanism could occupy the different
base functions position and must be recognised manually by experimental-
ist. This additional information accompanies the function database and it is
unique for given flow condition area.

2.4. Liquid-gas flow test rig

The experiments were carried out in a flow loop built at the University
of Leeds with a 3.0 m long, 50 mm internal diameter, transparent, verti-
cal and horizontal working section, which is shown in Figure 3. Air was
introduced into the base of the working section via a central tube inside a
Y tee. A thermometer was used to provide continuous monitoring of the
water temperature. Two differential pressure sensors for measuring the dif-
ferential pressure drop were placed along the column at around 2.5 m above
the air distributor. The water volumetric flow rate Qw , varying from 0 to
1.94 × 103 m3/s and the air volumetric flow rate Qa , varying from 0 to
1.67× 104 m3/s were measured separately through a turbine flowmeter and
a gas flow controller before they were mixed together. An EIT sensor with
16 electrodes was mounted in the inner wall of the column. The electrodes
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Figure 3: Liquid (water) - gas (air) experimental flow loop

were made of stainless steel with a contact area of 8 mm (width) by 16 mm
(height). The data collection rate was 800 frames/s with an excitation signal
frequency of 10.0kHz.

2.5. Measurement matrix

The present POD method is tested via EIT and ECT data sets of hori-
zontal and vertical pipeline orientation, two or three phase flow. The mea-
surement points used for present study are shown on the Figure 4. The flow
map shows 10 variants of horizontal water-air flow configuration covered the
Plug, Slug and Stratified flow regimes, see Figure 5, stacked concentration
tomogram on centerline cross-section of 2 inch pipeline.

3. Result and discussion

3.1. Results

Different flow regimes can be characterised through different structure
of flow dynamics. In other words, each mode of POD can be used to rep-
resent the prevalent flow regime within the pipeline, as shown in Figure 6.
The estimation of the first dominant basic functions enables, with certain
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Figure 4: Measurement points

probability, the recognition of the flow regime based on the acquired signal
from multiphase flow measurement. Figure 7 shows the comparison between
the flow image reconstructed using EIT with that of POD. The EIT-based
reconstructed image is shown in terms of stacked concentration tomogram.
It is quite apparent that, the EIT technique can be utilised for validation of
the results generated from the POD.

Figure 6 demonstrate the extraction of flow information which charac-
terise the EIT signal from dynamics point of view, and Figure 7 illustrate the
capability of original image reconstruction according extracted basis function,
with certain accuracy . Both attributes of POD techniques will be utilised for
further flow regime recognition based on the developed reduce-order model
[6, 37].

It is obvious, the first POD mode and the corresponding time function
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Figure 5: Stacked concentration tomogram, red = water, blue = air.

in terms of dynamic behaviour is dominant for the most of multiphase flow
regimes, see Figure 8, first three modes of time function φ. However, for the
flow pattern recognition is eligible to analyse more than first mode, because
different modes seems to be the carrier of different scale of flow instabilities
generated by the various physical mechanisms. Especially the frequency anal-
ysis of the time functions allow us to identify the different flow instabilities
which are recognised and record by the EIT measurement and decomposed
by the POD analysis. The POD provides the study of instability on the
different temporal and spatial scales. Another techniques capable to analyse
the experimental data sets, especially time variable signal, from dynamics
point of view is wavelet transformation [15].
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Figure 6: Normalised POD Basis functions of specific flow regimes, 1 mode

3.2. Conditions and limits of the POD method

There are two basic characteristics of a flow pattern, the degree of sep-
aration of different concentrations and level of intermittency in the volume
fraction. Both important parameters could be determined by using a differ-
ent approaches to analyse the tomography data, such as a Neural network
[23], Boolean logic analysis [29], stochastic flow modelling [30] and many
others. The presented methods is based on the recognition of the typical
dynamic coherent structures in the fluid mixture. The sufficient time and
spatial resolution of the measurement method is one of the fundamentals
prerequisite for successful specific flow instabilities recognition. The typical
frequency of multiphase flow instabilities must be predicted before data ac-
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Figure 7: Comparison of the POD-based reconstructed image with that of the EIT for
horizontal plug flow

quisition and that fact affects the choice of the sampling frequency. Used
Fast impedance camera system with the frequency up to 1 kHz could be
sufficient for superficial gas and liquid velocity up to 20 m/s.

3.3. Error analyses

The accuracy of POD reconstruction is strongly depends on the number
of POD modes and flow conditions. The comparison of relative and absolute
error for 3 and 4 modes reconstruction are shown on the Figure 9. The
errors are calculated for 8000 frames (10s data acquisition). It is obvious,
the reconstruction involving the fourth POD mode causes the reduction of
the errors on the half, approximately. The accuracy of the measured signal
reconstruction relates to the capability to use POD for data filtering and
compressing as well as an order of multiphase flow model reducing.
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Figure 8: Normalised space independent functions φ(t) of horizontal Slug flow regime,
comparison of first three modes
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Figure 9: Relative and absolute error analyses of POD data reconstruction, left: the first
three modes, right: the first four modes
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4. Conclusions

Two-phase gas-liquid flow regime recognition using any decomposition
technique could be promising methods for EIT data post-processing. The
proposed method is based on typical fluid dynamic structure and instability
recognition on the flow measurement, which is based on POD. The appli-
cation of the method is based upon the database of typical basis functions.
The database could be developed by multiphase flow experimental and nu-
merical modelling and implementing the theory of multiphase flow instability
[40]. The proposed method could be used to validate the numerical models
based on Large eddied simulation or Direct simulation approaches [36]. Also,
to test and validate the established databases of typical basis functions for
horizontal gas-liquid flow, reported elsewhere [27].

A part of the present procedure is signal filtering of the electronic de-
vices noise and noise induced by electrical tomography signal reconstruction
algorithm. In principle, this filtering could be as part of the POD meth-
ods. However, this can work quite well if the estimated different POD modes
are assigned for different types of dynamic behaviour. In other words, i.e.
the external noise is clearly distinguished from fluid dynamics phenomena,
otherwise, the filtering has to be performed separately from POD.

The accuracy of flow regime identification is depends on the frequency of
the data obtained from the of electrical tomography systems. This implies
that, the flow regime recognition can not be carried out on-line according
to the principle of the statistical decomposition techniques. The speed of
flow regime recognition depends on the number of frames acquired from the
tomography system, and this number of the frames should take into account
all flow dynamic features related to the active flow regime. Nevertheless, the
method returns the preliminary information on regime identification, and
the higher the number of frames is, the more accurate identification of the
regime can be achieved. Further increase the number of measured frames
will apparently increase the time length of POD evaluation.

The different POD approaches, direct versus Snapshot method, optimal
time of evaluating record, total number of evaluated POD mode, optimal
size of snapshot matrix, the number of modes used for estimation process,
signal filtering, and dependencies of estimation accuracy of all mentioned
parameters, is the subject of the present and complex future study.
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