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Abstract 
 

Xenogeneic bone graft materials are an alternative to autologous bone grafting. Among such implants, 

coralline-derived bone grafts substitutes have a long track record as safe, biocompatible and 

osteoconductive graft materials. In this review, we present the available literature surrounding their use 

with special focus on the commercially available graft materials. Corals thanks to their chemical and 

structural characteristics similar to those of the human cancellous bone have shown great potential  

but clinical data presented to date is ambiguous with both positive and negative outcomes reported. 

Correct formulation and design of the graft to ensure adequate osteo-activity and resorption appears 

intrinsic to a successful outcome.  

 

Keywords: Corals, mesenchymal stem cells, scaffold, bone healing, growth factors 
 
 
 
Introduction 
Bone grafting is the most common transplant procedure performed today. It is estimated that 

approximately 450,000 bone transplantation procedures are performed annually in the USA and 2.2 

million worldwide.1 Autologous bone grafting has all the properties of the ideal graft material, being an 

osteoinductive and osteoconductive scaffold with no immunogenicity and containing significant 

numbers of osteoprogenitor cells.2,3 However, its use has several drawbacks including limited 

availability, variable graft quality, increased operative time and donor site morbidity.4 To overcome the 

increasing need for bone graft materials, research has focused on the development of novel bone graft 

substitutes.5,6 A large number of substitutes have been developed and a significant number are 

commercially available for clinical use. 

Bone graft biomaterials derived from mineralizing marine organisms have been vividly 

investigated over the last 50 years. Several marine species produce mineralized structures within their 

anatomy that resembles the human bone.7 Examples of such species include sponges (Porifera), red 

algae (Rhadophyta), corals (Cnidarians) and a range of other organisms like snails (Mollusca), starfish 
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(Echinodermata) etc.7 Among such marine derived biomaterials, corals are one of the most studied in 

the field of bone tissue engineering. The aim of the herein manuscript is to present the available 

literature on coral bone substitutes. 

 

Corals as graft material  

 

Corals are marine invertebrates belonging in the class Anthozoa of phylum Cnidaria. They are 

approximately 7 thousand species and can be classified as soft corals (without an inorganic structure) 

and hard corals or stony corals. The hard corals typically live in compact colonies of many identical 

individual polyps. The polyps reside in a centripetal exoskeleton. The outer layer of the corals is 

inhabited by calcicoblasts, which like the osteoblasts they produce a hard outer skeleton composed 

of calcium carbonate which, strengthens and protect the organism.    

Studies on the coralline structure revealed significant similarities to that of cancellous bone.8 

The coralline material is characterized by a uniform network of interconnected channels and pores 

similar to those in osteon-evacuated bone grafts.8,9 When implanted in-vivo was found to be 

biocompatible. It allowed vascular ingrowth and inhabitation of cell lineages found in bone. The new 

bone formation occurred without an intervening endochondral phase.8 Resorption of the corals is carried 

out by osteoclastic activity and the actions of the carbonic anhydrase enzyme.10 Resorption is linked to 

bone apposition and can be influenced by the systemic administration of acetazolamide, a diuretic 

inhibiting carbonic anhydrase.10,11 Among the different coral species, significant structural differences 

exist. This could have direct implications to their bone forming capacity. It has been previously 

proposed that the larger the porosity volume, the greater was the coral resorption as well as the new 

bone apposition.12 Three main species have been investigated as bone graft substitutes: Acropora sp., 

Goniopora sp., and Porites sp. Porites sp. have a homogeneous structure and consistent pore size while 

Goniopora sp. have a bimodal pore size and a strongly disordered structure.12,13 Acropora have oriented 

https://en.wikipedia.org/wiki/Marine_invertebrates
https://en.wikipedia.org/wiki/Colony_(biology)
https://en.wikipedia.org/wiki/Polyp
https://en.wikipedia.org/wiki/Calcium_carbonate
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pores, irregular pore size and the largest permeability compared to Goniopora and Porites sp.13 Their 

transverse section however, was closed and the useful size was limited because of its habitat type.13  

Porites had the smallest pore size and had the lowest permeability. Other coral genera have been 

previously investigated but with very limited use.14,15,16 Among them, Dichocoenia stokes were found 

to trigger a foreign-body reaction when implanted in rabbits.14 These corals were also found to have 

slow resorption rates.15 Facites and Lobophyllia and Pocillopora have a skeletal structure similar to the 

diaphysis of compact bone with a dense and compact outer wall (theca) surrounded by a thin inner septa 

(closed porosity).16,17  Other coral genera exist like  the Montipora, Fungia, Polyphyllia, Acanthastrea, 

and Turbinaria but our current available evidence on these corals is rather poor or non-existent. 

In the early 70s, observations suggesting that porous structures have improved bone integration 

sparkled a race towards the ideal bone graft substitute.18 The foundations of stony corals as biomaterials 

have been set a few years later by the work of White et al.19 White et al. proposed the replamineform 

technique (replicated life forms) which could be used to duplicate the coral carbonate microstructure 

and convert it to ceramic, metal, or polymer materials. Utilizing this technique the unique coral pore 

structures composed of the brittle calcium carbonate could be preserved and copied to produce an 

alternative material with the same structure but converted to hydroxyapatite. In addition to the converted 

form, corals have been used in their natural form i.e. as calcium carbonate. The bone formation of both 

calcium carbonate and hydroxyapatite occurred initially on surface of the pore regions and progressed 

toward the center of the pore and was linked to graft resoption.20 At present there are two commercially 

available corals: the Biocoral ® composed of corals on their natural form and Pro Osteon™ composed 

of coralline material converted to hydroxyapatite. 

Experimental Studies 

 

I. In-vitro studies 
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The vast majority of the available in-vitro studies have analysed the biocompatibility between 

the corals and the osteoprogenitor cells. Scaffolds derived from corals should be able to support the 

attachment, proliferation and differentiation of Mesenchymal Stem Cells (MSCs) and osteoblasts.21 The 

available studies showed that the corals are not cytotoxic and promote cell growth.22 When cells were 

seeded on coral granules revealed good attachment, spread, and proliferation on the material 

surface.23 Comparing cryopreserved bone allograft, coralline hydroxyapatite and demineralized freeze-

dried dentin revealed that coralline hydroxyapatite was the most potent promoter of the long term 

cellular attachment.24 In a similar study including commercially available graft products, Doherty et al. 

compared the levels of cellular attachment of rat bone, Surgibone® , Ostilit® , Biocoral® and Tisseel®.25 

The results showed that rat bone and Tisseel® (fibrin glue) had the greatest cell affinity followed by 

Biocoral® and Surgibone®, while Ostilit® did not facilitate cellular attachment. 

Following osteogenic induction, mineralized matrix and alkaline phosphatase activity was noted 

within the coral particles.23,26 DNA content, ALP activity, Ca content were significantly higher in 

osteoblasts seeded in coral scaffold in comparison to other materials.26  Mineralized nodules formation 

(both in area and number) was more predominant on the coral surface than in glass disk.26 Gene 

expression analysis of osteoblasts loaded on coral Porites sp. scaffolds showed an increased expression 

of the RUNX2, osteopontin, alkaline phosphatase and osteocalcin genes. The authors concluded 

that coral is a favourable carrier for osteogenetically competent cells to attach and remain viable.27 In 

another study significantly higher levels of osteogenic differentiation markers, namely alkaline 

phosphatase (ALP), Osteocalcin (OC) levels, and Osteonectin and Runx2, Integrin gene expression 

were detected in the cultures on corals (Porites sp) in comparison to bone.28 

 A number of authors have tried to expand corals properties with the addition of an osteoinductive 

element. Coral particles are capable to absorb and subsequent elute transforming growth factor beta 1 

(TGF-beta1) in vitro.29,30,31 TGF-beta1 release was also found to vary with particle size, higher release 

being obtained with the smaller particles.29 In a study by Zhang et al. a coral/chitosan composite was 
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combined with a plasmid encoding platelet-derived growth factor B (PDGF-B) gene. The resulted 

scaffold found to upregulate the proliferation and the PDGF-B expression of the seeded cells.30 

Combinations of platelet-rich plasma (PRP), marrow stromal cells (MSCs) and porous coral have 

shown to exert a higher osteogenic effect.31 

 

II. Animal Studies 

 

The available evidence based on experimental animal studies which explore the potential of 

coralline grafts to support bone healing can be subdivided in three distinct methodologies; studies where 

the coralline grafts have been implanted in ectopic places, studies where coralline material implanted 

on bone in cases of fracture healing or bony defects site and finally composite coralline grafts preloaded 

with growth factors in applications including bone defects spinal fusion.  

Ectopically implanted coral material seem to be biocompatible but inner without inducing an 

osteogenic response.32 Once an osteoinducing signal is added either in the form of osteogenic cells or 

growth factors, bone formation is initiated.32,33,34 The structural characteristics and the degree of bone 

formation was found to be linked to the resorption of the calcium carbonate corals.32,35 Such approach 

can result in the construction of material of predesigned shape with structure similar to the native 

bone.33,36 This strategy can be utilized to fabricate pre-vascularized tissue engineered bone grafts.37 

Such grafts can have a predetermined shape, organized internal vascular network with a vascular pedicle 

attached to the graft.37 Furthermore, comparative studies have highlighted that new bone formation was 

higher in the Porites coral and Acropora coral than in either the beta-tricalcium phosphate or the banked 

bone constructs.32 Analyzing further the way that bone formation occurs within the corals it is of interest 

to mention the work of Ripamonti et al. group.38,39 A partially converted corral, composed of 7% 

hydroxyapatite and calcium carbonate was preloaded with verapamil (calcium channel blocker) or 

bipsosphonate zoledronate (osteoclast inhibitor) and implanted intramuscularly in baboons.38 The 
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results showed that the inhibition of movement of calcium and osteoclastic functions strongly inhibited 

the induction of bone formation. BMP-2 downregulation with the up-regulation of Noggin genes was 

noted indicating that the induction of bone formation by coral-derived macroporous constructs is via 

the BMPs pathway. The same group, has also shown that if the same coral material is loaded with hTGF-

ȕ3 both the adjacent muscle and the macroporous bioreactor show upregulation of BMP-2 up-

regulation.39 This finding correlates with the observation of bone formation occurring at the periphery 

of the graft but also could be the result of the recruiting of osteoprogenitor cells from the adjacent soft 

tissues. 

Coralline graft material implanted adjacent to bone in the treatment of bone defects has been 

analysed by a number of authors.40,41,42 Intra-bony defects in dogs treated with either coralline calcium 

carbonate graft (Biocoral®) or autologous bone showed no difference in terms of healing.41 In 

osteochondral defects, application of Biocoral ® resulted in bone ingrowth associated with graft 

resorption and noticeably enhance the overall healing of the defect. Intra-articular defects filled with 

coralline hydroxyapatite had no adverse effects to the joint environment in comparison to other graft 

materials that can generate inflammation of the synovium and damage the cartilage when their particles 

are released in the joint.40 The coralline hydroxyapatite graft was found to be surrounded by new bone 

but there was minimal resorption of the graft. In another study, the bone ingrowth of a coralline 

hydroxyapatite material (Interpore 500) at 1 years post-implantation was found to be limited to 66.5 % 

of the surface of the graft raising concerns over its overall resorption.43 Poor results have been also 

reported when hydroxyapatite granules (Pro Osteon 200™) were used around porous coated metal 

implants.7 The results showed that the grafted implants were largely encapsulated in fibrous tissue and 

the addition of concentrated autologous bone marrow did not change the outcome. 

Composite grafts composed of coralline material and growth factors or cells has been utilized 

by a number of authors.44-52 Combinations of coral graft, BMPs and osteoprogenitor cells have shown 

potent bone healing potential which was comparable to the autologous bone grafting.44,45,46,48,49 The 
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cellular component of the composite graft originate in the vast majority from bone marrow. However, 

osteogenically induced adipose tissue stem cells have been utilized with favorable results.45 Transfected 

cellular lines with vascular endothelial growth factor resulted in enhanced vascularization and 

resorption of the coralline graft and a higher osteogenic response.52 In single-level posterolateral lumbar 

arthrodesis performed in 48 adult New Zealand White rabbits, the combination of BMPs and coralline 

hydroxyapatite resulted in 100% fusion rates.53 This was in contrast to the groups receiving coralline 

hydroxyapatite with bone marrow (0% union rates) and the coralline hydroxyapatite with autogenous 

iliac crest bone (50% union rates). The authors concluded that when coralline grafts were combined 

with autogenous iliac crest bone graft served as a graft extender yielding results comparable to those 

obtained with autograft alone.53 In addition to BMPs other molecules have been investigated. In a 

comparative study of Insulin growth factor-1 (IGF-1) and BMP-2, IGF-1 was more potent inducer of 

bone regeneration when loaded on a coralline hydroxyapatite scaffold for the treatment of proximal 

tibial defects.50 Platelet rich plasma was found to significantly upregulate the bone healing process when 

loaded on corals for the treatment of radial diaphyseal critical size defects.47,51 Cylindrical calcium 

carbonate implants loaded with bovine-derived bone proteins were used in the treatment of a canine 

segmental bone defects.54 The results revealed healing of the defect with total resorption of the coralline 

material at 12 weeks following implantation. It also highlighted the absence of union in the control 

group representing the coralline implants alone. Contradictory results though have been reported. In 

segmental tibial defects in sheep, composite grafts composed of calcium carbonate (Biocoral ), BMP 

and IV collagen resulted in a large amount of callus compared to the coral alone with no significant 

difference in the mechanical strength of the resulted bone.55 This study however highlighted a 

statistically significant increase in the detectable ant-BMP antibody, suggesting an underlying 

immunogenic reaction.  

 

Commercially available Corals 
 



 9 

 
 

i Pro Osteo TM  (former Interpore, Biomet, USA) 
 

 
  Pro Osteon™ is a graft substitute derived from Goniopora or Porites corals. It is fabricated 

utilizing a replamineform process, which involves the conversion of the calcium carbonate exoskeleton 

to a crystalline hydroxyapatite replica. In this process all the organic material of the corals are extracted 

and the microarchitecture is preserved. The result is a graft material with longitudinal pores of 500-600 

microns and interconnecting pores of 220-260 microns in diameter.56 Pro Osteon™ comes in two 

varieties; Pro Osteon 500 ™ and 200 with the number following the trade name designating the nominal 

pore diameter.  

 More recently, a resorbable version of this graft has been developed. This new product utilizes the 

replamineform process producing a composite of calcium phosphate and calcium carbonate. This 

composite graft has an outer layer of calcium phosphate while the core of the material remains as 

calcium carbonate. Therefore, due to the fact that calcium carbonate can be resorbed faster than calcium 

phosphate, the graft can facilitate the remodeling allowing more effective bone ingrowth within the 

graft material.      

  There have been a number of clinical studies analyzing the effectives of Pro Osteon™ in a range 

of clinical applications [Table 1].56-73 The majority of the studies involve cases of periodontal and 

maxillofacial defects. These studies revealed the presence of new bone formation, integration of the 

implant with reduction in the defect size.57,58,59,60 A poor resorption of the implant was highlighted in 

some studies.61  

In 10 cases of hindfoot arthrodesis the application of Pro Osteon 500™ had satisfactory results 

with one case of nonunion.62 The group reported on the poor resorption of the graft and the difficulties 

they faced to contain the graft material and the asymptomatic extrusion of the graft in all the cases. In 

tibial plateau fractures, no difference was noted between the cases treated with Pro Osteon™ and those 

with autologous bone graft.63  
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In cases of spinal fusion the results were mixed. In one study of idiopathic scoliosis surgery the 

utilization of coralline hydroxyapatite resulted in fusion in all 27 patients.64 The authors reported on the 

‘marbilized’ appearance of the grafts. In another study of 40 cases of posterolateral lumbar fusion 

augmented with Pro Osteon 500™, a union rate of 92.5% was noted.65 In 13 cases of revision following 

spinal surgery where hydroxyapatite was used, foreign-body like giant cells and the development of 

inflammatory granulation tissue around graft was noted.66 In a study of 60 cases of instrumented 

posterolateral lumbar and lumbosacral fusion using either Pro Osteon 500 R™ or iliac bone graft or 

both, there were no cases of non-union with complete resorption 1 year postoperatively.67 It was also 

highlighted that the incorporation of coralline hydroxyapatite mixed with local bone and bone marrow 

needs adequate bleeding bone surface. Pro Osteon 500R™ use was found to be inappropriate for 

intertransverse posterolateral fusion, because the host bone in this area is little. However, the use of 

hydroxyapatite over the decorticated laminae that represents a wide host area was followed by solid 

dorsal fusion within the expected time.67 

   

ii  Biocoral ® (Inoteb, Saint-Gonnery, France) 
 

 
  Biocoral ® is a coral-derived bone graft in its natural pure form composed of 99% calcium 

carbonate and the remaining ~1% includes simple amino acids.11 It undergoes minimal processing to 

remove potential contaminants and preserves the original morphology and chemistry. Acropora genera 

obtained from the French part of the Great Barrier Reef in New Caledonia is used for this product.67      

Clinical studies utilizing Biocoral ® have shown mixed results.74-83 Early studies have utilized 

Biocoral ® in the treatment of bony maxillofacial defects. Of interest is the study of Roux et al. presented 

the outcome of this product in 183 patients.74 They reported that the coral block moved or was partly 

resorbed and split into pieces after 7 to 36 months in 20% of cases.  At 1 year 40 to 50% resorption rate 

was noted and the overall infection rate was 4%. In another study when Biocoral® was implanted in the 

anterior maxilla a high revision rate was observed (83% revision rate) in contrast to posterior maxilla 
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and mandible (6% revision rate). 75 In cervical fusion a poor fusion rate of 45 % and 60% has been 

reported in two studies of 48 and 40 patients.76,77 In scaphoid fractures, the utilization of a composite 

graft composed of Biocoral®, BMP and collagen resulted in a high failure rate of 80%.78 The use of the 

same implant however, in 4 diaphyseal and one olecranon ulnar non-union resulted in successful 

consolidation in all cases.79 Finally, in iliac crest defects treated with Biocoral®, a poor bone ingrowth 

was observed only in biopsies at one year of follow-up.80   

 

Discussion and Future directions 
 
 

An ideal bone graft substitute should be osteoconductive, inert, readily available and adaptable 

in terms of size and shape. It should also be biodegradable, to allow bone ingrowth and provide 

structural support. Corals pose several of the aforementioned properties. Coral structure is similar to 

cancellous bone and one of the few xenogeneic materials that can form chemical bonds with bone in-

vivo. Coral based biomaterial could overcome the drawbacks of autologous bone grafting.  

Coralline calcium carbonate based materials were considered to have a high-resolution rate, poor 

longevity and stability. They rely on bone ingrowth for structural support and predominately they were 

used to fill well-contained voids. The available literature utilizing calcium carbonate grafts for fracture 

healing is rather limited. Their resorption is unpredictable with some authors reporting full resorption 

while in other studies the resorption was poor. In cases of scaphoid fracture non-union, treated with 

composites of calcium carbonate coral, collagen and bone morphogenetic protein, poor results have 

been documented.78 The authors stated that in such avascular conditions the coral did not resorb 

adequately and acted as a barrier between the two bone parts obstructing the healing process. In a later 

study by the same group, complete union was achieved utilizing the same composite graft in 5 ulnar 

non-unions.79 

To overcome the weaknesses of calcium carbonate, conversion of the calcium carbonate to 

hydroxyapatite has been performed. This procedure preserves the porous structure of the corals and in 
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theory delays the resorption of the graft. Unfortunately, this new material is either slowly resorbed or 

considered by some as permanent.  In animal models, White et al. highlighted that the resorption rate 

varies between 0 to 5% per year.56 Several authors have also raised concerns in terms of the slow 

resorption of coralline hydroxyapatite.62 Coughlin et al. analysed the clinical outcome of 10 patients 

treated with hindfoot arthrodesis with the application of Pro Osteon 500™.62 The authors reported a 

case of nonunion but satisfactory results in the remaining patients, and highlighted the difficulties to 

contain the graft material with asymptomatic extrusion of the graft in all the cases. They also raised 

concerns regarding the slow resorption rates and the presence of the graft material 6 years following 

implantation. 

The permanent nature of the coralline hydroxyapatite has triggered the development of a 

‘resorbable’ version of the implant. For the fabrication of this implant the same replamineform process 

was utilized, however, only partial with conversion.90 The new implant is composed of coralline 

hydroxyapatite limited to 2 to 10 microns on the outer surface and has an unconverted inner core which 

remains as calcium carbonate.90 The aim theoretically is a more resorbable implant but also represents 

a concern as this is an unpredictable factor in terms of the graft properties and overall function in-vivo. 

The available literature is limited and the full potential of this construct is yet to be elucidated.  

Coralline graft substitutes have several other disadvantages. Their effectiveness seems to be 

influenced by the anatomic site of implantation. As mentioned before in areas of poor blood supply they 

seem to produce poor results. The anatomic location also seems to influence the results possibly related 

to the overall local vascularity.  

Another major disadvantage of the coral material is the initial mechanical weakness. Once bone 

in-growth occurs the mechanical stability improves. It is characteristic that the compressive strength of 

corals could be as low as 2.62MPa when the one of bone is between 131 and 283 MPa.13 In this context, 

FDA has issued warnings for one of the commercially available corals.91 Briefly the Pro Osteon™ use 

is contraindicated in segmental defects, fracture of the growth plate, in patients with systemic or 
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metabolic disorders affecting bone healing, in vascularly impaired bone, in infected sites or in cases 

when soft tissue coverage is not possible and finally cases where stabilization of the fracture cannot be 

attained. 91 In addition, FDA database clearly indicates that Pro Osteon™ does not pose sufficient 

mechanical strength to support fracture reduction and relies on bone ingrowth to stabilize the defect 

site. 91 

Even if the above-mentioned issues are addressed, corals can be considered a viable solution as 

a bone graft material only if they are sustainable and with minimal environmental impact.92 Porities and 

Goniopora corals that are used for the commercially available products derive from corals of the Pacific 

and Indian Oceans. These corals are not classed as endangered, however, their overexploitation together 

with the environmental changes, ocean warming and acidification could put them at risk. Furthermore, 

some authors highlighted the negative effect or even complete cessation of the overall calcification that 

the rising water temperature and acidity has on these corals.13,93,94 In addition, a substantial decrease in 

the coral reefs has been noted since 1990 and it is expected that approximately 50% of the reefs will be 

destroyed by 2030.13 These data add to the overall uncertainty when planning to explore the utilization 

of the corals further.  

Despite all the aforementioned concerns, we believe that some coral derived biomaterials are 

good void fillers with distinct role in our armamentarium. Their utilization should be performed with 

prior knowledge of the properties of each different product. The fact that they are inner osteoconductive 

material, safe from a disease transmission point of view, and also the need to incorporate an 

osteoinductive signal to safeguard the overall success, is an undisputable strength. As far as the coralline 

hydroxyapatite is concerned, this should be considered as a permanent implant, the effectiveness of the 

partially converted analogue would require further investigation in terms of their overall effectiveness 

and properties in clinical applications. Tissue engineering approaches with graft supplementation with 

different osteogenic cells, bone marrow, platelet rich plasma and a number of growth factors is 
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promising but the ideal combination enhancing the neoangiogenesis and osteogenesis needs further 

clarification.         

 
Conclusions 

 
Research is ongoing on strategies how to enhance and optimize bone repair strategies.95-100 

Ongoing research Coralline-derived bone grafts are safe, inert osteoconductive material, which are 

readily available in nature. Their highly porous structure is similar to cancellous bone. Raw coralline 

graft products are brittle, lack mechanical strength and are resorbed by the host fast. The conversion to 

hydroxyapatite diminishes the resorption of the graft making it a permanent implant. Our current clinical 

evidence is limited to well-contained voids in dental and maxillofacial surgery. Some authors report 

good clinical results, yet others reported devastating poor outcomes. Until further clarification and 

development of new coral based implants that address the short-comings of the current materials the 

utilization of such material should be limited to well contained, well vascularized defects, bearing into 

consideration the potential permanent nature of the this graft material. 
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17. Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed 

Mater Res. 1987;21:557-67. 

18. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic 

materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970;4:433-56. 

19. White RA, Weber JN, White EW. Replamineform: a new process for preparing porous ceramic, 

metal, and polymer prosthetic materials. Science. 1972;176:922-4. 

20. Ohgushi H, Okumura M, Yoshikawa T, Inoue K, Senpuku N, Tamai S, Shors EC. Bone 

formation process in porous calcium carbonate and hydroxyapatite. J Biomed Mater Res. 

1992;26:885-95. 

21. Tran CT, Gargiulo C, Thao HD, Tuan HM, Filgueira L, Michael Strong D. Culture and 

differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem 

cells. Cell Tissue Bank. 2011;12:247-61.  

22. Shamsuria O, Fadilah AS, Asiah AB, Rodiah MR, Suzina AH, Samsudin AR.In 

vitro cytotoxicity evaluation of biomaterials on human osteoblast cells CRL-1543; 

hydroxyapatite, naturalcoral and polyhydroxybutarate. Med J Malaysia. 2004;59:174-5. 

23. Sautier JM, Nefussi JR, Boulekbache H, Forest N. In vitro bone formation on coral granules. In 

Vitro Cell Dev Biol. 1990;26:1079-85. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Roudier%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bouchon%20C%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rouvillain%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Am%C3%A9d%C3%A9e%20J%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bareille%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rouais%20F%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fricain%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dupuy%20B%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dupuy%20B%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kien%20P%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jeandot%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7593034
http://www.ncbi.nlm.nih.gov/pubmed/7593034
http://www.ncbi.nlm.nih.gov/pubmed/8915948
http://www.ncbi.nlm.nih.gov/pubmed/8915948
http://www.ncbi.nlm.nih.gov/pubmed/2884221
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hulbert%20SF%5BAuthor%5D&cauthor=true&cauthor_uid=5469185
http://www.ncbi.nlm.nih.gov/pubmed/?term=Young%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=5469185
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mathews%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=5469185
http://www.ncbi.nlm.nih.gov/pubmed/?term=Klawitter%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=5469185
http://www.ncbi.nlm.nih.gov/pubmed/?term=Talbert%20CD%5BAuthor%5D&cauthor=true&cauthor_uid=5469185
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stelling%20FH%5BAuthor%5D&cauthor=true&cauthor_uid=5469185
http://www.ncbi.nlm.nih.gov/pubmed/?term=White%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=4402400
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weber%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=4402400
http://www.ncbi.nlm.nih.gov/pubmed/?term=White%20EW%5BAuthor%5D&cauthor=true&cauthor_uid=4402400
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ohgushi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okumura%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yoshikawa%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Inoue%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Senpuku%20N%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tamai%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shors%20EC%5BAuthor%5D&cauthor=true&cauthor_uid=1607371
http://www.ncbi.nlm.nih.gov/pubmed/20703817
http://www.ncbi.nlm.nih.gov/pubmed/20703817
http://www.ncbi.nlm.nih.gov/pubmed/20703817
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shamsuria%20O%5BAuthor%5D&cauthor=true&cauthor_uid=15468874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fadilah%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=15468874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Asiah%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=15468874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rodiah%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=15468874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Suzina%20AH%5BAuthor%5D&cauthor=true&cauthor_uid=15468874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Samsudin%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=15468874
http://www.ncbi.nlm.nih.gov/pubmed/15468874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sautier%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=1980494
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nefussi%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=1980494
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boulekbache%20H%5BAuthor%5D&cauthor=true&cauthor_uid=1980494
http://www.ncbi.nlm.nih.gov/pubmed/?term=Forest%20N%5BAuthor%5D&cauthor=true&cauthor_uid=1980494
http://www.ncbi.nlm.nih.gov/pubmed/1980494
http://www.ncbi.nlm.nih.gov/pubmed/1980494


 17 

24. Devecioğlu D, Tözüm TF, Sengün D, Nohutcu RM. Biomaterials in periodontal regenerative 

surgery: effects of cryopreserved bone, commercially available coral, demineralized freeze-

dried dentin, and cementum on periodontal ligament fibroblasts and osteoblasts. J Biomater 

Appl. 2004;19:107-20. 

25. Doherty MJ, Schlag G, Schwarz N, Mollan RA, Nolan PC, Wilson DJ. 

Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue 

sealant for human osteoblasts. Biomaterials. 1994;15:601-8. 

26. Al-Salihi KA, Samsudin AR.Bone marrow mesenchymal stem cells differentiation and 

proliferation on the surface of coral implant. Med J Malaysia. 2004;59:45-6. 

27. Foo LH, Suzina AH, Azlina A, Kannan TP. Gene 

expression analysis of osteoblasts seeded in coral scaffold. J Biomed Mater Res A. 

2008;87:215-21. 

28. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T. 

A comparative study on morphochemical properties and osteogenic cell differentiation 

within bone graft and coral graft culture systems. Int J Med Sci. 2013;10:1608-14.  

29. Demers CN, Tabrizian M, Petit A, Hamdy RC, Yahia L. Effect of experimental parameters on 

the in vitro release kinetics of transforming growth factor beta1 from coral particles. J Biomed 

Mater Res. 2002;59:403-10. 

30. Zhang Y, Wang Y, Shi B, Cheng X. A platelet-derived growth factor releasing 

chitosan/coral composite scaffold for periodontal tissue engineering. 

Biomaterials. 2007;28:1515-22. 

31. Zhang S, Mao T, Chen F.Influence of platelet-rich plasma on ectopic bone formation 

of bone marrow stromal cells in porous coral. Int J Oral Maxillofac Surg. 2011;40:961-5.  

32. Viateau V, Manassero M, Sensébé L, Langonné A, Marchat D, Logeart-Avramoglou D, Petite 

H, Bensidhoum M. Comparative study of the osteogenic ability of four different ceramic 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Devecio%C4%9Flu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15381784
http://www.ncbi.nlm.nih.gov/pubmed/?term=T%C3%B6z%C3%BCm%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=15381784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Seng%C3%BCn%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15381784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nohutcu%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=15381784
http://www.ncbi.nlm.nih.gov/pubmed/15381784
http://www.ncbi.nlm.nih.gov/pubmed/15381784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Doherty%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=7948579
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schlag%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7948579
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schwarz%20N%5BAuthor%5D&cauthor=true&cauthor_uid=7948579
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mollan%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=7948579
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nolan%20PC%5BAuthor%5D&cauthor=true&cauthor_uid=7948579
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilson%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=7948579
http://www.ncbi.nlm.nih.gov/pubmed/?term=doherty+biocompatibility+xenogeneic
http://www.ncbi.nlm.nih.gov/pubmed/?term=Al-Salihi%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=15468811
http://www.ncbi.nlm.nih.gov/pubmed/?term=Samsudin%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=15468811
http://www.ncbi.nlm.nih.gov/pubmed/15468811
http://www.ncbi.nlm.nih.gov/pubmed/18085658
http://www.ncbi.nlm.nih.gov/pubmed/18085658
http://www.ncbi.nlm.nih.gov/pubmed/?term=Puvaneswary%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24151432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Balaji%20Raghavendran%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=24151432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ibrahim%20NS%5BAuthor%5D&cauthor=true&cauthor_uid=24151432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Murali%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=24151432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Merican%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=24151432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kamarul%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24151432
http://www.ncbi.nlm.nih.gov/pubmed/24151432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Demers%20CN%5BAuthor%5D&cauthor=true&cauthor_uid=11774297
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tabrizian%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11774297
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petit%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11774297
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hamdy%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=11774297
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yahia%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11774297
http://www.ncbi.nlm.nih.gov/pubmed/11774297
http://www.ncbi.nlm.nih.gov/pubmed/11774297
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17169421
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17169421
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shi%20B%5BAuthor%5D&cauthor=true&cauthor_uid=17169421
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cheng%20X%5BAuthor%5D&cauthor=true&cauthor_uid=17169421
http://www.ncbi.nlm.nih.gov/pubmed/?term=zhang+wang+coral+periodontal
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21596524
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mao%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21596524
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20F%5BAuthor%5D&cauthor=true&cauthor_uid=21596524
http://www.ncbi.nlm.nih.gov/pubmed/21596524
http://www.ncbi.nlm.nih.gov/pubmed/?term=Viateau%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Manassero%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sens%C3%A9b%C3%A9%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Langonn%C3%A9%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Marchat%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Logeart-Avramoglou%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petite%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petite%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23784976
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bensidhoum%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23784976


 18 

constructs in an ectopic large animal model. J Tissue Eng Regen Med. 2016;10:E177-87.  

33. Geng W, Ma D, Yan X, Liu L, Cui J, Xie X, Li H, Chen F. Engineering tubular bone using 

mesenchymal stem cell sheets and coral particles. Biochem Biophys Res Commun. 

2013;433:595-601.  

34. Damien CJ, Christel PS, Benedict JJ, Patat JL, Guillemin G. A composite of natural coral, 

collagen, bone protein and basic fibroblast growth factor tested in a rat subcutaneous model. 

Ann Chir Gynaecol Suppl. 1993;207:117-28. 

35. Fricain JC, Roudier M, Rouais F, Basse-Cathalinat B, Dupuy B. Influence of the structure of 

three corals on their resorption kinetics. J Periodontal Res. 1996;31:463-9. 

36. Gao Z, Chen F, Zhang J, He L, Cheng X, Ma Q, Mao T. Vitalisation of tubular coral scaffolds 

with cell sheets for regeneration of long bones: a preliminary study in nude mice.Br J Oral 

Maxillofac Surg. 2009;47:116-22.  

37. Cai L, Wang Q, Gu C, Wu J, Wang J, Kang N, Hu J, Xie F, Yan L, Liu X, Cao Y, Xiao 

R.Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based 

bone tissue engineering. Biomaterials. 2011;32:8497-505.  

38. Klar RM, Duarte R, Dix-Peek T, Dickens C, Ferretti C, Ripamonti U. Calcium ions and 

osteoclastogenesis initiate the induction of bone formation by coral-derived macroporous 

constructs. J Cell Mol Med. 2013;17:1444-57.  

39. Ripamonti U, Dix-Peek T, Parak R, Milner B, Duarte R. Profiling bone morphogenetic proteins 

and transforming growth factor-ȕs by hTGF-ȕ3 pre-treated coral-derived macroporous 

bioreactors: the power of one. Biomaterials. 2015;49:90-102.  

40. Koëter S, Tigchelaar SJ, Farla P, Driessen L, van Kampen A, Buma P. Coralline hydroxyapatite 

is a suitable bone graft substitute in an intra-articular goat defect model. J Biomed Mater Res B 

Appl Biomater. 2009;90:116-22. 

41. Kim CS, Choi SH, Cho KS, Chai JK, Wikesjö UM, Kim CK. Periodontal healing in one-wall 

http://www.ncbi.nlm.nih.gov/pubmed/23523796
http://www.ncbi.nlm.nih.gov/pubmed/23523796
http://www.ncbi.nlm.nih.gov/pubmed/?term=Damien%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=8154825
http://www.ncbi.nlm.nih.gov/pubmed/?term=Christel%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=8154825
http://www.ncbi.nlm.nih.gov/pubmed/?term=Benedict%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=8154825
http://www.ncbi.nlm.nih.gov/pubmed/?term=Patat%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=8154825
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guillemin%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8154825
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fricain%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=8915948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Roudier%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8915948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rouais%20F%5BAuthor%5D&cauthor=true&cauthor_uid=8915948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Basse-Cathalinat%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8915948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dupuy%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8915948
http://www.ncbi.nlm.nih.gov/pubmed/18992973
http://www.ncbi.nlm.nih.gov/pubmed/18992973
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cai%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gu%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kang%20N%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hu%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xie%20F%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yan%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20X%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cao%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xiao%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xiao%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21855129
http://www.ncbi.nlm.nih.gov/pubmed/24106923
http://www.ncbi.nlm.nih.gov/pubmed/24106923
http://www.ncbi.nlm.nih.gov/pubmed/24106923
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ripamonti%20U%5BAuthor%5D&cauthor=true&cauthor_uid=25725558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dix-Peek%20T%5BAuthor%5D&cauthor=true&cauthor_uid=25725558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parak%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25725558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Milner%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25725558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duarte%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25725558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ko%C3%ABter%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19016454
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tigchelaar%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=19016454
http://www.ncbi.nlm.nih.gov/pubmed/?term=Farla%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19016454
http://www.ncbi.nlm.nih.gov/pubmed/?term=Driessen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19016454
http://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Kampen%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19016454
http://www.ncbi.nlm.nih.gov/pubmed/?term=Buma%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19016454
http://www.ncbi.nlm.nih.gov/pubmed/15882215


 19 

intra-bony defects in dogs following implantation of autogenous bone or a coral-derived 

biomaterial.J Clin Periodontol. 2005;32:583-9. 

42. Shahgaldi BF. Coral graft restoration of osteochondral defects. Biomaterials. 1998;19:205-13. 

43. Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone-graft substitute in 

metaphyseal defects. A histometric study. J Bone Joint Surg Am. 1986;68:904-11. 

44. Chen F, Feng X, Wu W, Ouyang H, Gao Z, Cheng X, Hou R, Mao T. Segmental bone tissue 

engineering by seeding osteoblast precursor cells into titanium mesh-coral composite 

scaffolds.Int J Oral Maxillofac Surg. 2007;36:822-7.  

45. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y. Repair of cranial bone 

defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 

2007;28:5477-86.  

46. Arnaud E1, De Pollak C, Meunier A, Sedel L, Damien C, Petite H. Osteogenesis with coral is 

increased by BMP and BMC in a rat cranioplasty. Biomaterials. 1999;20:1909-18. 

47. Parizi AM1, Oryan A, Shafiei-Sarvestani Z, Bigham AS.Human platelet rich plasma plus 

Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, 

histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med. 

2012;23:473-83. 

48. Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T. Comparative study between 

coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized 

cranial defect model. J Biomed Mater Res A. 2007;80:85-93. 

49. Manassero M, Viateau V, Deschepper M, Oudina K, Logeart-Avramoglou D, Petite 

H, Bensidhoum M.Bone regeneration in sheep using acropora coral, a natural resorbable 

scaffold, and autologous mesenchymal stem cells. Tissue Eng Part A. 2013;19:1554-63.  

50. Nandi SK, Kundu B, Mukherjee J, Mahato A, Datta S, Balla VK. Converted marine coral 

hydroxyapatite implants with growth factors: in vivo bone regeneration. Mater Sci Eng C Mater 

http://www.ncbi.nlm.nih.gov/pubmed/15882215
http://www.ncbi.nlm.nih.gov/pubmed/15882215
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shahgaldi%20BF%5BAuthor%5D&cauthor=true&cauthor_uid=9678869
http://www.ncbi.nlm.nih.gov/pubmed/?term=Holmes%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=3015975
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bucholz%20RW%5BAuthor%5D&cauthor=true&cauthor_uid=3015975
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mooney%20V%5BAuthor%5D&cauthor=true&cauthor_uid=3015975
http://www.ncbi.nlm.nih.gov/pubmed/17804199
http://www.ncbi.nlm.nih.gov/pubmed/17804199
http://www.ncbi.nlm.nih.gov/pubmed/17804199
http://www.ncbi.nlm.nih.gov/pubmed/17888508
http://www.ncbi.nlm.nih.gov/pubmed/17888508
http://www.ncbi.nlm.nih.gov/pubmed/?term=Arnaud%20E%5BAuthor%5D&cauthor=true&cauthor_uid=10514067
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Pollak%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10514067
http://www.ncbi.nlm.nih.gov/pubmed/?term=Meunier%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10514067
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sedel%20L%5BAuthor%5D&cauthor=true&cauthor_uid=10514067
http://www.ncbi.nlm.nih.gov/pubmed/?term=Damien%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10514067
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petite%20H%5BAuthor%5D&cauthor=true&cauthor_uid=10514067
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parizi%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=22057970
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oryan%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22057970
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shafiei-Sarvestani%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=22057970
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bigham%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=22057970
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hou%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20F%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cheng%20X%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gao%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20HO%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20W%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mao%20T%5BAuthor%5D&cauthor=true&cauthor_uid=16960828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Manassero%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Viateau%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Deschepper%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oudina%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Logeart-Avramoglou%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petite%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petite%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bensidhoum%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23427828
http://www.ncbi.nlm.nih.gov/pubmed/23427828
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nandi%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=25687013
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kundu%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25687013
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mukherjee%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25687013
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mahato%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25687013
http://www.ncbi.nlm.nih.gov/pubmed/?term=Datta%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25687013
http://www.ncbi.nlm.nih.gov/pubmed/?term=Balla%20VK%5BAuthor%5D&cauthor=true&cauthor_uid=25687013


 20 

Biol Appl. 2015;49:816-23. 

51. Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-

hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and 

histopathologic evaluation. Int J Surg. 2012;10:96-101. 

52. Geiger F, Lorenz H, Xu W, Szalay K, Kasten P, Claes L, Augat P, Richter W.VEGF producing 

bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral 

bone substitute. Bone. 2007;41:516-22.  

53. Boden SD, Martin GJ Jr, Morone M, Ugbo JL, Titus L, Hutton WC. The use of coralline 

hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract 

for posterolateral lumbar spine fusion. Spine (Phila Pa 1976). 1999;24:320-7. 

54. Sciadini MF, Dawson JM, Johnson KD. Evaluation of bovine-derived bone protein with a 

natural coral carrier as a bone-graft substitute in a canine segmental defect model. J Orthop Res. 

1997;15:844-57. 

55. Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC, Jalovaara P, Urist 

MR. The use of a coral composite implant containing bone morphogenetic protein to repair a 

segmental tibial defect in sheep. Int Orthop. 1997;21:194-200. 

56. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin 

North Am. 1986;30:49-67. 

57. Oreamuno S, Lekovic V, Kenney EB, Carranza FA Jr, Takei HH, Prokic B. Comparative 

clinical study of porous hydroxyapatite and decalcified freeze-dried bone in human periodontal 

defects. J Periodontol. 1990;61:399-404.  

58. Krejci CB, Bissada NF, Farah C, Greenwell H. Clinical evaluation of porous and nonporous 

hydroxyapatite in the treatment of human periodontal bony defects. J Periodontol. 1987;58:521-

8. 

59. Hjorting-Hansen E, Worsaae N, Lemons JE.Histologic response after implantation of porous 

http://www.ncbi.nlm.nih.gov/pubmed/22246167
http://www.ncbi.nlm.nih.gov/pubmed/22246167
http://www.ncbi.nlm.nih.gov/pubmed/22246167
http://www.ncbi.nlm.nih.gov/pubmed/?term=Geiger%20F%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lorenz%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xu%20W%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szalay%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kasten%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Claes%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Augat%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Richter%20W%5BAuthor%5D&cauthor=true&cauthor_uid=17693148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boden%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=10065514
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20GJ%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=10065514
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morone%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10065514
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ugbo%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=10065514
http://www.ncbi.nlm.nih.gov/pubmed/?term=Titus%20L%5BAuthor%5D&cauthor=true&cauthor_uid=10065514
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hutton%20WC%5BAuthor%5D&cauthor=true&cauthor_uid=10065514
http://www.ncbi.nlm.nih.gov/pubmed/9497809
http://www.ncbi.nlm.nih.gov/pubmed/9497809
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gao%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lindholm%20TS%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kommonen%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ragni%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Paronzini%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lindholm%20TC%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jalovaara%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Urist%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
http://www.ncbi.nlm.nih.gov/pubmed/?term=Urist%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=9266302
https://www.ncbi.nlm.nih.gov/pubmed/?term=White%20E%5BAuthor%5D&cauthor=true&cauthor_uid=3514293
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shors%20EC%5BAuthor%5D&cauthor=true&cauthor_uid=3514293
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oreamuno%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2167360
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lekovic%20V%5BAuthor%5D&cauthor=true&cauthor_uid=2167360
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kenney%20EB%5BAuthor%5D&cauthor=true&cauthor_uid=2167360
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carranza%20FA%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=2167360
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takei%20HH%5BAuthor%5D&cauthor=true&cauthor_uid=2167360
http://www.ncbi.nlm.nih.gov/pubmed/?term=Prokic%20B%5BAuthor%5D&cauthor=true&cauthor_uid=2167360
http://www.ncbi.nlm.nih.gov/pubmed/?term=oreamuno+lekovic
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krejci%20CB%5BAuthor%5D&cauthor=true&cauthor_uid=3040959
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bissada%20NF%5BAuthor%5D&cauthor=true&cauthor_uid=3040959
http://www.ncbi.nlm.nih.gov/pubmed/?term=Farah%20C%5BAuthor%5D&cauthor=true&cauthor_uid=3040959
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greenwell%20H%5BAuthor%5D&cauthor=true&cauthor_uid=3040959
http://www.ncbi.nlm.nih.gov/pubmed/3040959
https://www.ncbi.nlm.nih.gov/pubmed/1965896


 21 

hydroxylapatite ceramic in humans.Int J Oral Maxillofac Implants. 1990;5:255-63. 

60. Small SA, Zinner ID, Panno FV, Shapiro HJ, Stein JI. Augmenting the maxillary sinus for 

implants: report of 27 patients. Int J Oral Maxillofac Implants. 1993;8:523-8. 

61. Byrd HS, Hobar PC, Shewmake K. Augmentation of the craniofacial skeleton with porous 

hydroxyapatite granules. Plast Reconstr Surg. 1993;91:15-22. 

62. Coughlin MJ, Grimes JS, Kennedy MP. Coralline hydroxyapatite bone graft substitute in 

hindfoot surgery.Foot Ankle Int. 2006;27:19-22. 

63. Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in 

tibial plateau fractures. Clin Orthop Relat Res. 1989;240:53-62. 

64. Mashoof AA, Siddiqui SA, Otero M, Tucci JJ. Supplementation of autogenous bone graft with 

coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. 

Orthopedics. 2002;25:1073-6. 

65. Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z. Instrumented posterolateral lumbar fusion 

using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to 

autologous bone. Spine J. 2001;1:131-7. 

66. Korovessis P, Repanti M, Koureas G. Does coralline hydroxyapatite conduct fusion in 

instrumented posterior spine fusion? Stud Health Technol Inform. 2002;91:109-13. 

67. Korovessis P, Koureas G, Zacharatos S, Papazisis Z, Lambiris E. Correlative radiological, self-

assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for 

degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J. 

2005;14:630-8.  

68. Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed 

Mater Res. 1987;21:557-67. 

69. Thalgott JS, Fritts K, Giuffre JM, Timlin M. Anterior interbody fusion of the cervical spine with 

coralline hydroxyapatite. Spine (Phila Pa 1976). 1999;24:1295-9. 

https://www.ncbi.nlm.nih.gov/pubmed/1965896
https://www.ncbi.nlm.nih.gov/pubmed/?term=Small%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=8112791
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zinner%20ID%5BAuthor%5D&cauthor=true&cauthor_uid=8112791
https://www.ncbi.nlm.nih.gov/pubmed/?term=Panno%20FV%5BAuthor%5D&cauthor=true&cauthor_uid=8112791
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shapiro%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=8112791
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stein%20JI%5BAuthor%5D&cauthor=true&cauthor_uid=8112791
https://www.ncbi.nlm.nih.gov/pubmed/?term=Byrd%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=8380106
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hobar%20PC%5BAuthor%5D&cauthor=true&cauthor_uid=8380106
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shewmake%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8380106
http://www.ncbi.nlm.nih.gov/pubmed/16442024
http://www.ncbi.nlm.nih.gov/pubmed/16442024
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bucholz%20RW%5BAuthor%5D&cauthor=true&cauthor_uid=2537166
https://www.ncbi.nlm.nih.gov/pubmed/?term=Carlton%20A%5BAuthor%5D&cauthor=true&cauthor_uid=2537166
https://www.ncbi.nlm.nih.gov/pubmed/?term=Holmes%20R%5BAuthor%5D&cauthor=true&cauthor_uid=2537166
https://www.ncbi.nlm.nih.gov/pubmed/2537166
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mashoof%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=12401014
http://www.ncbi.nlm.nih.gov/pubmed/?term=Siddiqui%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=12401014
http://www.ncbi.nlm.nih.gov/pubmed/?term=Otero%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12401014
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tucci%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=12401014
http://www.ncbi.nlm.nih.gov/pubmed/12401014
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thalgott%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=14588393
http://www.ncbi.nlm.nih.gov/pubmed/?term=Giuffre%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=14588393
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fritts%20K%5BAuthor%5D&cauthor=true&cauthor_uid=14588393
http://www.ncbi.nlm.nih.gov/pubmed/?term=Timlin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14588393
http://www.ncbi.nlm.nih.gov/pubmed/?term=Klezl%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=14588393
http://www.ncbi.nlm.nih.gov/pubmed/14588393
http://www.ncbi.nlm.nih.gov/pubmed/?term=Korovessis%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15457705
http://www.ncbi.nlm.nih.gov/pubmed/?term=Repanti%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15457705
http://www.ncbi.nlm.nih.gov/pubmed/?term=Koureas%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15457705
http://www.ncbi.nlm.nih.gov/pubmed/?term=Korovessis%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15789231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Koureas%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15789231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zacharatos%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15789231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Papazisis%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=15789231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lambiris%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15789231
http://www.ncbi.nlm.nih.gov/pubmed/2884221
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thalgott%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=10404570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fritts%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10404570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Giuffre%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=10404570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Timlin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10404570
http://www.ncbi.nlm.nih.gov/pubmed/10404570


 22 

70. Salyer KE, Hall CD. Porous hydroxyapatite as an onlay bone-graft substitute for maxillofacial 

surgery. Plast Reconstr Surg. 1989;84:236-44. 

71. Irwin RB, Bernhard M, Biddinger A. Coralline hydroxyapatite as bone substitute in orthopedic 

oncology. Am J Orthop (Belle Mead NJ). 2001;30:544-50. 

72. Nicolaides AP, Papanikolaou A, Polyzoides AJ. Successful treatment of valgus deformity of the 

knee with an open supracondylar osteotomy using a coral wedge: a brief report of two cases. 

Knee. 2000;7:105-107.  

73. Wasielewski RC, Sheridan KC, Lubbers MA. Coralline hydroxyapatite in complex acetabular 

reconstruction. Orthopedics. 2008;31:367. 

74. Roux FX, Brasnu D, Menard M, Devaux B, Nohra G, Loty B. Madreporic coral for cranial base 

reconstruction. 8 years experience. Acta Neurochir (Wien). 1995;133:201-5. 

75. Yukna RA, Yukna CN. A 5-year follow-up of 16 patients treated with coralline calcium 

carbonate (BIOCORAL) bone replacement grafts in infrabony defects. J Clin Periodontol 

1998;25:1036–1040 

76. Ramzi N, Ribeiro-Vaz G, Fomekong E, Lecouvet FE, Raftopoulos C. Long term outcome of 

anterior cervical discectomy and fusion using coral grafts. Acta Neurochir (Wien). 

2008;150:1249-56 

77. Bizette C, Raul JS, Orhan B, Jacquet G, Czorny A. Results of cervical interbody fusion with 

coral grafts. Neurochirurgie. 1999;45:4-14. 

78. Kujala S, Raatikainen T, Ryhänen J, Kaarela O, Jalovaara P. Composite implant of native bovine 

bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions--a 

preliminary study. Scand J Surg. 2002;91:186-90. 

79. Kujala S, Raatikainen T, Ryhänen J, Kaarela O, Jalovaara P. Composite implant of native 

bovine bone morphogenetic protein (BMP), collagen carrier and biocoral in the treatment of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Salyer%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=2546169
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hall%20CD%5BAuthor%5D&cauthor=true&cauthor_uid=2546169
https://www.ncbi.nlm.nih.gov/pubmed/2546169
https://www.ncbi.nlm.nih.gov/pubmed/?term=Irwin%20RB%5BAuthor%5D&cauthor=true&cauthor_uid=11482509
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bernhard%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11482509
https://www.ncbi.nlm.nih.gov/pubmed/?term=Biddinger%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11482509
https://www.ncbi.nlm.nih.gov/pubmed/11482509
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nicolaides%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=10788773
http://www.ncbi.nlm.nih.gov/pubmed/?term=Papanikolaou%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10788773
http://www.ncbi.nlm.nih.gov/pubmed/?term=Polyzoides%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=10788773
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wasielewski%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=19292282
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sheridan%20KC%5BAuthor%5D&cauthor=true&cauthor_uid=19292282
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lubbers%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=19292282
http://www.ncbi.nlm.nih.gov/pubmed/19292282
http://www.ncbi.nlm.nih.gov/pubmed/?term=Roux%20FX%5BAuthor%5D&cauthor=true&cauthor_uid=8748767
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brasnu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8748767
http://www.ncbi.nlm.nih.gov/pubmed/?term=Menard%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8748767
http://www.ncbi.nlm.nih.gov/pubmed/?term=Devaux%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8748767
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nohra%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8748767
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loty%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8748767
http://www.ncbi.nlm.nih.gov/pubmed/8748767
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ramzi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19002374
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ribeiro-Vaz%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19002374
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fomekong%20E%5BAuthor%5D&cauthor=true&cauthor_uid=19002374
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lecouvet%20FE%5BAuthor%5D&cauthor=true&cauthor_uid=19002374
http://www.ncbi.nlm.nih.gov/pubmed/?term=Raftopoulos%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19002374
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bizette%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10374229
http://www.ncbi.nlm.nih.gov/pubmed/?term=Raul%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=10374229
http://www.ncbi.nlm.nih.gov/pubmed/?term=Orhan%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10374229
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacquet%20G%5BAuthor%5D&cauthor=true&cauthor_uid=10374229
http://www.ncbi.nlm.nih.gov/pubmed/?term=Czorny%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10374229
http://www.ncbi.nlm.nih.gov/pubmed/12164521
http://www.ncbi.nlm.nih.gov/pubmed/12164521
http://www.ncbi.nlm.nih.gov/pubmed/12164521
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kujala%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14618346
http://www.ncbi.nlm.nih.gov/pubmed/?term=Raatikainen%20T%5BAuthor%5D&cauthor=true&cauthor_uid=14618346
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ryh%C3%A4nen%20J%5BAuthor%5D&cauthor=true&cauthor_uid=14618346
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kaarela%20O%5BAuthor%5D&cauthor=true&cauthor_uid=14618346
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jalovaara%20P%5BAuthor%5D&cauthor=true&cauthor_uid=14618346


 23 

resistant ulnar nonunions: report of five preliminary cases. Arch Orthop Trauma 

Surg. 2004;124:26-30.  

80. Vuola J, Böhling T, Kinnunen J, Hirvensalo E, Asko-Seljavaara S. Natural coral as bone-defect-

filling material. J Biomed Mater Res. 2000;51:117-22. 

81. Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, Caputi S, Perrotti V, Mangano 

C, Piattelli A.Maxillary sinus augmentation with different biomaterials: a comparative 

histologic and histomorphometric study in man. Implant Dent. 2006;15:197-207. 

82. Piattelli A, Podda G, Scarano A. Clinical and histological results in alveolar ridge enlargement 

using coralline calcium carbonate. Biomaterials. 1997;18:623-7. 

83. Alvarez K, Camero S, Alarcón ME, Rivas A, González G. Physical and mechanical properties 

evaluation of Acropora palmata coralline species for bone substitution applications. J Mater Sci 

Mater Med. 2002;13:509-15. 

84. Van Lieshout EM, Alt V. Bone graft substitutes and bone morphogenetic proteins for 

osteoporotic fractures: what is the evidence? Injury. 2016;47 Suppl 1:S43-6.  

85. Kuehlfluck P, Moghaddam A, Helbig L, Child C, Wildemann B, Schmidmaier G; HTRG-

Heidelberg Trauma Research Group.RIA fractions contain mesenchymal stroma cells with high 

osteogenic potency. Injury. 2015;46:S23-32.  

86. Lim CT, Ng DQ, Tan KJ, Ramruttun AK, Wang W, Chong DY. A biomechanical study of 

proximal tibia bone grafting through the lateral approach. Injury. 2016;S0020-1383(16):30447-

8. 

87. Caterini R, Potenza V, Ippolito E, Farsetti P. Treatment of recalcitrant atrophic non-union of the 

humeral shaft with BMP-7, autologous bone graft and hydroxyapatite pellets. Injury. 

2016;S0020-1383(16):30341-2.  

http://www.ncbi.nlm.nih.gov/pubmed/14618346
http://www.ncbi.nlm.nih.gov/pubmed/14618346
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vuola%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10813752
http://www.ncbi.nlm.nih.gov/pubmed/?term=B%C3%B6hling%20T%5BAuthor%5D&cauthor=true&cauthor_uid=10813752
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kinnunen%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10813752
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hirvensalo%20E%5BAuthor%5D&cauthor=true&cauthor_uid=10813752
http://www.ncbi.nlm.nih.gov/pubmed/?term=Asko-Seljavaara%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10813752
http://www.ncbi.nlm.nih.gov/pubmed/?term=Scarano%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Degidi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Iezzi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pecora%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Piattelli%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Orsini%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Caputi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Perrotti%20V%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mangano%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mangano%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=Piattelli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16766904
http://www.ncbi.nlm.nih.gov/pubmed/?term=inoteb+patients
http://www.ncbi.nlm.nih.gov/pubmed/?term=Piattelli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9134162
http://www.ncbi.nlm.nih.gov/pubmed/?term=Podda%20G%5BAuthor%5D&cauthor=true&cauthor_uid=9134162
http://www.ncbi.nlm.nih.gov/pubmed/?term=Scarano%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9134162
http://www.ncbi.nlm.nih.gov/pubmed/9134162
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alvarez%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15348605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Camero%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15348605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alarc%C3%B3n%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=15348605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rivas%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15348605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gonz%C3%A1lez%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15348605
http://www.ncbi.nlm.nih.gov/pubmed/15348605
http://www.ncbi.nlm.nih.gov/pubmed/15348605
https://www.ncbi.nlm.nih.gov/pubmed/26768291
https://www.ncbi.nlm.nih.gov/pubmed/26768291
https://www.ncbi.nlm.nih.gov/pubmed/26747914
https://www.ncbi.nlm.nih.gov/pubmed/26747914
https://www.ncbi.nlm.nih.gov/pubmed/27659850
https://www.ncbi.nlm.nih.gov/pubmed/27659850
https://www.ncbi.nlm.nih.gov/pubmed/27507544
https://www.ncbi.nlm.nih.gov/pubmed/27507544


 24 

88. Rankine JJ, Hodgson RJ, Tan HB, Cox G, Giannoudis PV. MRI appearances of the femur 

following bone graft harvesting using the Reamer-Irrigator-Aspirator. Injury. 2015;46 Suppl 

8:S65-7.  

89. Giannoudis PV, Gudipati S, Harwood P, Kanakaris NK. Long bone non-unions treated with the 

diamond concept: a case series of 64 patients. Injury. 2015;46 Suppl 8:S48-54. 

90. Ben-Nissan B. Natural bioceramics: from coral to bone and beyond. Current Opinion in Solid 

State and Materials Science. 2003; 7:283-288. 

91. FDA insert for Pro Osteon. http://www.accessdata.fda.gov/cdrh_docs/pdf/k990131.pdf 

92. Tambutté E, Tambutté S, Segonds N, Zoccola D, Venn A, Erez J, Allemand D. Calcein labelling 

and electrophysiology: insights on coral tissue permeability and calcification. Proc Biol Sci. 

2012;279:19-27.  

93. Carricart-Ganivet JP, Cabanillas-Terán N, Cruz-Ortega I, Blanchon P. Sensitivity of 

calcification to thermal stress varies among genera of massive reef-building corals. PLoS One. 

2012;7:e32859.  

94. Iglesias-Prieto R, Galindo-Martínez CT, Enríquez S, Carricart-Ganivet JP. Attributing 

reductions in coral calcification to the saturation state of aragonite, comments on the effects of 

persistent natural acidification. Proc Natl Acad Sci U S A. 2014;111:E300-1.  

 

95. Santolini E, West R, Giannoudis PV. Risk factors for long bone fracture non-union: a stratification approach 

based on the level of the existing scientific evidence. Injury. 2015 Dec;46 Suppl 8:S8-S19.  

 

96. Guimarães JA, Duarte ME, Fernandes MB, Vianna VF, Rocha TH, Bonfim DC, Casado PL, do Val 

Guimarães IC, Velarde LG, Dutra HS, Giannoudis PV. The effect of autologous concentrated bone-marrow 

grafting on the healing of femoral shaft non-unions after locked intramedullary nailing. Injury. 2014 Nov;45 

Suppl 5:S7-S13.  

 

97. Tsitsilonis S, Seemann R, Misch M, Wichlas F, Haas NP, Schmidt-Bleek K, Kleber C, Schaser KD. The 

https://www.ncbi.nlm.nih.gov/pubmed/26747921
https://www.ncbi.nlm.nih.gov/pubmed/26747921
https://www.ncbi.nlm.nih.gov/pubmed/26747919
https://www.ncbi.nlm.nih.gov/pubmed/26747919
http://www.accessdata.fda.gov/cdrh_docs/pdf/k990131.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tambutt%C3%A9%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tambutt%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/?term=Segonds%20N%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zoccola%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/?term=Venn%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/?term=Erez%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/?term=Allemand%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21613296
http://www.ncbi.nlm.nih.gov/pubmed/22396797
http://www.ncbi.nlm.nih.gov/pubmed/22396797
http://www.ncbi.nlm.nih.gov/pubmed/24398532
http://www.ncbi.nlm.nih.gov/pubmed/24398532
http://www.ncbi.nlm.nih.gov/pubmed/24398532


 25 

effect of traumatic brain injury on bone healing: an experimental study in a novel in vivo animal model. 

Injury. 2015 Apr;46(4):661-5. 

 

98. Roberto-Rodrigues M, Fernandes RM, Senos R, Scoralick AC, Bastos AL, Santos TM, Viana LP, Lima I, 

Guzman-Silva MA, Kfoury-Júnior JR. Novel rat model of nonunion fracture with vascular deficit. Injury. 

2015 Apr;46(4):649-54.  

 

99. Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G. Treatment of atrophic tibia non-unions 

according to 'diamond concept': Results of one- and two-step treatment. Injury. 2015 Oct;46 Suppl 4:S39-

50.  

 

100. Ollivier M, Gay AM, Cerlier A, Lunebourg A, Argenson JN, Parratte S. Can we achieve bone healing 

using the diamond concept without bone grafting for recalcitrant tibial nonunions? Injury. 2015 

Jul;46(7):1383-8.  

  



 26 

Table 1. Clinical studies analyzing the outcome of Pro Osteon™ in patients. 

Study/ Year Participants Condition site Study characteristics Outcome 
Krejci et al., 1987 
56 

12 pts Periondontal  angul
ar osseous defects 

Each patient had 3 
defects, one filled with 
Pro Osteon 200™, one 
with OrthoMatrix HA-
500 and one unfilled 

 While the defect sites improved 
with respect to plaque index, 
probing depth measurements, and 
defect fill, only those treated with 
the nonporous OrthoMatrix HA-
500 hydroxyapatite revealed a 
statistically significant 
improvement treatment 
modalities.  

Bucholz et al., 
1989 63 

49 pts Closed Tibial 
plateau fractures 

RCT, 20 pts treated with 
Pro-Osteon™, 20 patients 
with autograft from Iliac 
crest, 9 lost in FU 

 No significant differences in the 
two groups 

 Interporous hydroxyapatite is a 
safe, effective alternative to 
autogenous cancellous bone for 
the filling of metaphyseal defects 
associated with Tibial plateau 
fractures. 

Salyer et al., 1989 
70 

25 pts Maxillofacial 
deformities 

Non-randomised, 17 pts 
treated with Pro Osteon 
200™, 8 pts with 
autograft 

 No difference in length of stay, 
clinical function, complications 
and aesthetic performance 

Oreamuno et al., 
1990 57 

24 pts Periondontal  angul
ar osseous defects 

The defects were 
randomly filled with 
either Pro Osteon™ or 
decalcified freeze-dried 
bone  

 Pro Osteon produced greater 
reduction in pocket depth and 
higher attachment levels and 
defect fill 

Hjorting-Hansen 
et al., 1990 59 

22 pts Periondontal 
osseous defects 

Bone biopsies and 
histologic examination of 
Interpore 200™ 

 New bone formation was notes 
within the grafts.  

Small et al., 1993 
60 

27 pts Maxillary sinus 
augmentation 

Graft material composed 
of Interpore 200™ and 
demineralized cortical 
bone 

 Integration noted in all implants 
 

Byrd et al., 1993 61 43 pts Craniofacial bone 
augmentation 

52 sites in 43 patients for 
the aesthetic correction of 
congenital or 
posttraumatic deformities 

 Resorption not occurred, no cases 
of infection, 2 patients required 
revision 

Nicolaides et al., 
2000 72 

2 pts Open 
supracondylar 
osteotomies 

Treatment of valgus 
deformities using coral 
wedge 

 No complications with complete 
incorporation of the graft 

Irwin et al. 2001 71 71 pts Bone defects 
derived from 
excision of tumours 

Retrospective review of 
consecutive patients 
managed with coralline 
hydroxyapatite Pro-
Osteon 500™  

 Complications encountered in 12 
patients (3 major and 9 minor 
complications) 

 Pro-Osteon 500™ is a viable 
option for the management 
of bone defects in orthopaedic 
oncology. 
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Thalgott et al., 
2001 65 

40 pts Lumbar fusion Retrospective series of 
40 patients undergoing 
instrumented autogenous 
posterolateral lumbar 
fusion augmented with 
Pro Osteon 500 ™ 

 An overall fusion rate of 92.5% 
was achieved 

 Coralline hydroxyapatite is an 
effective bone graft extender in 
difficult- to-fuse patients 

Thalgott et al., 
1999 69 

26 pts Cervical fusion Retrospective, 26 patients 
anterior discectomy and 
reconstruction from C3 to 
T1 

 No evidence of plate breakage, 
screw breakage, resorption of the 
implant, or pseudarthrosis.  

 There was no evidence of 
nonunion. 

Mashoof et al., 
2002 64 

27 pts Adolescent 
idiopathic scoliosis 

Consecutive patients, 
70/30 ratio of coralline 
hydroxyapatite to 
autograft  

 All patients achieved solid fusion 
at an average follow-up of 27 
months.  

 Coralline hydroxyapatite is safe, 
biocompatible, and effective in 
augmenting 
autogenous bone graft 

Korovessis et al., 
2002 66 

13pt Cervical, thoracic, 
lumbar spine fusion 

Biopsies during revision 
surgery 

 Foreign-body like giant cells & 
development of inflammatory 
granulation tissue around 
hydroxyapatite 

 Bone formation was observed in 
11/15 cases 

Korovessis et al., 
2005 67 

60 Lumbar spine 
fusion 

Prospective randomized 
study, 3 Groups: Pro 
Osteon 500 R™ vs Iliac 
Crest graft vs both 

 No radiological evidence of non-
union 

 The resorption of hydroxyapatite 
was completed 1 year 
postoperatively.  

Coughlin et al., 
2006 62 

10 Hindfoot 
arthrodesis 

Retrospective review, 6 
years FU  

 One case of non-union 

 Extrusion of the graft from the 
joint occurred in all patients  

Wasielewski et al. 
2008 71 

17 pts Complex 
acetabular 
reconstruction 

 

Retrospective review of 
patients who underwent 
acetabular revision 
using Pro Osteon 500™  

 No cups required re-revision, but 1 
had failed.  

 Radiographic evidence of bone 
incorporation was observed in 
every coralline hydroxyapatite 
graft.  

 No graft resorption was observed. 

RCT: Randomised Controlled Study, FU: Follow-up, Pts: Patients 
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Table 2. Clinical studies analyzing the outcome of Biocoral® in patients. 

Study/ Year Participants Condition site Study characteristics Outcome 
Marchac et al., 1994 11 36 pts Craniofacial osseous 

contour defects 
36 consecutive patients 
requiring correction of 54 minor 
bony contour defects 

 5 sites of clinically evident resorption 
 2 incidences of wound irritation  
 1 case of infection 

Roux et al., 1995 74 183 pts Cranial base 
reconstruction 

587 Madreporic Coral grafts as 
bone substitute 

 In 20% of cases the coral block moved or 
was partly resorbed and split into pieces 
after 7 to 36 months 

 40 to 50% resorption of their volume after 
a year or more 

 The local infection rate was only 4% 
Piattelli et al., 1996 82 6 pts Deficient alveolar 

ridges 
Biocoral® gel particles in 
connection with expanded 
polytetrafluoroethylene 
membranes 

 At 6 months Biocoral® particles were still 
present and almost all were completely 
surrounded by mature bone 

Yukna et al., 199875 21 pts Dento-alverolar defects 48 augmentation sites 
(Biocoral® or bone graft ) 

 2 implants failed to osseo-integrate 
 One case of infection with resorption of 

coral granules was observed in the 
anterior maxilla. 

 When Biocoral® placed in anterior maxilla 
a high revision rate was observed (83% 
revision rate) in contrast to posterior 
maxilla and mandible (6% revision rate) 

Bizette et al., 1999 76 48 pts Cervical fusion Retrospective review of cases  Clinical improvement in 52% of pts 
 Fusion rate 60% 

Vuola et al., 2000 80 10 pts Iliac crest defects Biopsies performed at 1 year  All the blocks still detectable at 2.1 years.  
 Bone ingrowth could be observed only in 

two out of seven biopsies.  
 One implant had to be removed after 1.7 

years due to infection. 
Kujula et al., 2002 78 10 Scaphoid fractures BMP/coral/collagen composite 

implant 
 80% failure of union 

Kujala et al., 2004 79 5 pts 4 Diaphyseal and one 
olecranon ulnar non-
unions 

BMP/coral implant combined 
with internal fixation. 
Additional autografting was 
used in three cases. 

 Solid union was achieved in all cases.  
 No adverse effects were encountered. 

Scarano et al., 2006 81 94 pts Maxillary sinus 
Augmentation 

Histological examination of 
biopsy performed 6 months 
after implantation. 

 No inflammatory cell infiltrate was 
present 

 Graft particles appeared to be fused by 
newly formed bone 

 Areas of resorption were present at the 
surface of some graft particles 

Ramzi et al., 2008 76 40 pts Cervical fusion Prospective study, Anterior 
cervical fusion 

 45% fusion rate at 44 months (22 out of 40 
patients not fused) 

RCT: Randomised Controlled Study, FU: Follow-up, Pts: Patients 
 
 

 


