
This is a repository copy of Provenancing Archaeological Wool Textiles from Medieval 
Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/106674/

Version: Published Version

Article:

von Holstein, Isabella C C, Walton Rogers, Penelope, Craig, Oliver E orcid.org/0000-0002-
4296-8402 et al. (3 more authors) (2016) Provenancing Archaeological Wool Textiles from 
Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H). PLoS 
ONE. e0162330. ISSN 1932-6203 

https://doi.org/10.1371/journal.pone.0162330

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



RESEARCH ARTICLE

Provenancing Archaeological Wool Textiles

from Medieval Northern Europe by Light

Stable Isotope Analysis (δ13C, δ15N, δ2H)
Isabella C. C. von Holstein1*, PenelopeWalton Rogers2, Oliver E. Craig1, Kirsty E.

H. Penkman1, Jason Newton3, Matthew J. Collins1

1 BioArCh, Departments of Archaeology & Chemistry, University of York, York, United Kingdom, 2 The

Anglo-Saxon Laboratory, York, United Kingdom, 3 NERC Life Sciences Mass Spectrometry Facility,
Scottish Universities Environmental Research Centre, East Kilbride, United Kingdom

* isabella@palaeo.eu

Abstract

We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging

from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD),

using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydro-

gen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values

from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were

interpreted with reference to the composition of modern sheep wool from the same regions.

The isotopic composition of wool and bone collagen samples clustered strongly by settle-

ment; inter-regional relationships were largely parallel in modern and ancient samples,

though landscape change was also significant. Degradation in archaeological wool sam-

ples, examined by elemental and amino acid composition, was greater in samples from Ice-

land (Reykholt) than in samples from north-east England (York, Newcastle) or northern

Germany (Hessens). A nominal assignment approach was used to classify textiles into

local/non-local at each site, based on maximal estimates of isotopic variability in modern

sheep wool. Light element stable isotope analysis provided new insights into the origins of

wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic

waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to under-

stand the location of origin of archaeological protein samples.

1 Introduction

Trans-European trade of raw wool and wool textiles was a cornerstone of economic and politi-
cal development in the later Middle Ages (c. AD 1100–1500) [1,2]. The paucity of surviving
historical documents from before 1100 ADmakes it difficult to determine when and how these
inter-regional exchanges developed, though the earliest such movements may date back to the
8th century AD [3]. Wool textiles are regularly found in anoxic waterlogged waste and latrine
deposits in medieval rural and urban settlements in northern Europe [4–8] (Fig 1). Wool
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mostly consists of keratins (fibrous sulfur-rich proteins), which are widely analysed isotopically
in forensic and ecological studies to establish the geographical origin of hair and feather sam-
ples [9,10]. Light stable isotope analysis of archaeological wool textiles is therefore a potential
tool to interrogate the development of long-distance movements of these economically and
socially significant objects. Use of these analyses must however take account of anthropogenic
perturbation of geospatial isotopic signals in the tissues of domesticated herbivores, which
have highly controlled diets. It must also consider the isotopic integrity of archaeological kera-
tin samples preserved by anoxic waterlogging.

1.1 Understanding inter-regional movement of raw wool and wool
textiles in northern Europe in the medieval period

Finds of medieval archaeological wool textiles from occupation sites are mostly small frag-
ments. They are often parts of larger textiles which have been through several cycles of use

Fig 1. Fragment of sample 2897, a ZS 2/2 twill, the most abundant textile type at Reykholt/IS. It has been identified with vaðmál, a
term used in Icelandic historical sources from the 11th century onwards for certain grades of cloth produced to regulated standards [11]. In
this image, the warp runs vertically and weft horizontally. The warp yarn is more tightly spun than the weft, is spun clockwise (Z) where the
weft is spun anti-clockwise (S), and contains a greater percentage of pigmented fibres. The weave structure is 2/2 twill: each yarn runs
over-two-under-two yarns of the opposing system. Scale indicates mm.

doi:10.1371/journal.pone.0162330.g001
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and reuse, indicated by the presence of e.g. cut edges, sewing or deliberate folding, and dam-
age due to wear. Unlike samples from graves, only a minority of fragments are identifiable to
specific articles of clothing, furnishing or industrial textiles. Textile assemblages from settle-
ments therefore represent the aggregate consumption of households or neighbourhoods.
The relative frequencies of structural features of textiles (e.g. spin direction, thread count,
weave type, dye use), all of which relate to the techniques of manufacture used to clean and
align the fibres, produce the yarn and finally the cloth, braid or other object [12,13], and var-
iation in wool fibre characteristics (e.g. diameter distribution, pigmentation) are compared
within and between assemblages, and are used to classify textile finds into: (i) material typi-
cal of the region and therefore likely to be locally-made textiles in local styles, (ii) material
which is not typical of the region and therefore potentially representing imports, and (iii)
local copies of non-local goods. These identifications are rarely suggested on the basis of
archaeological textile data alone, but within the context of data from contemporary sources,
e.g. local finds of textile tools, iconography or documentary sources (see references above for
examples).

A proportion of non-local textiles is expected in most assemblages, their number being espe-
cially marked in urban and high-status sites with access to exchange networks. Historical docu-
ments refer to inter-regional transfer of wool textiles: e.g. pallia fresonica [Frisian cloth] made
in or traded through Frisia (coastal northernGermany and the Netherlands) in the 8th-10th
century [14], vaðmál [standard cloth] from Iceland to mainland Europe from the 11th century
(Fig 1) [11,15], rays and stamforts from England and Flanders to northern Italy, southern
France and Spain from the 13th century [16], or douayer and arras cloths from northern
France or the Netherlands to the Hanseatic cities in the Baltic from the same period [17]. Late
medievalmarkets for standardised textiles were very large and production for them was often,
though not exclusively, professionalised [1]. However historical documents almost never
describe textiles in much technical detail, so that it is only rarely possible to link the contempo-
raneous term for the textile type to a specific archaeological textile type: three competing iden-
tifications have beenmade for pallia fresonica, for example [18,19,20], but there are no
identifications of douayer or stamforts.

The historical sources of this information largely derive frommercantile activity and high-
status consumption, and thus represent the activity and consumption of a smaller segment of
the medieval population than archaeological textile fragments [21]. The presence of sheep and
textile production equipment in the medieval archaeological record [22,23] indicates that
domestic or small-workshop textile manufacture existed in parallel to specialist production,
being especially prominent in the early medieval period and in late medieval rural districts
[24,25]. Some non-professionally produced textile types were widely distributed: vaðmál is a
historically attested example, and there are likely to have beenmany more. Wool textiles were
also used in transport (sailcloth, sacking, tents [26]) and must also have travelled as personal
possessions. Historical sources cannot therefore be taken as a summary of all wool textile
movements of the period.

In summary, the extensive inter-regional movement of wool textiles described in medieval
documents certainly underestimates the range of distribution and the types of textile moved in
this period. Isotopic analysis of archaeological wool textiles to characterise the region of origin
of their raw material is expected to identify additional flows of these artefacts, building on exist-
ing structural, fibre and dye analyses of these objects as typical or atypical of find site and
period. This is especially significant for the period before the advent of substantial historical
documentation of this economic sphere (c. AD 1200), and for portions of society or areas of
Europe which are poorly recorded in historical sources.
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1.2 The basis of isotopic provenancing of domesticated herbivore tissue

Systematic but complex patterns in the δ13C, δ15N, δ2H, oxygen (δ18O) and sulfur (δ34S) values
of modern sheep muscle and wool proteins are present in Europe [27–31]. Thus, for example,
Icelandic material is more depleted in 15N than all samples from elsewhere; samples from south-
ern Europe show higher δ13C values compared to more northern regions; δ34S values are corre-
lated with distance from the coast in Ireland. These patterns are caused by differences in the
isotopic composition of graze plants, fodder plants and drinkingwater between different loca-
tions, which are reflected in the composition of consumer tissues. In northern Europe, where
native terrestrial plants are entirely C3 [32], foliar tissue δ

13C values are negatively correlated
with bothmean annual precipitation (MAP) and mean annual temperature (MAT), because the
degree of discrimination against 13C in plant tissue during photosynthesis is strongly linked to
plant responses to water availability [33]. Foliar tissue δ15N values are positively correlated with
MAT and negatively correlated with MAP [34], probably largely indirectly, due to geographical
dependence of plant mycorrhizal type and soil δ15N values [35]. Foliar water isotopic composi-
tion largely reflect local meteoric and groundwater inputs to plants [36], though significant and
complex fractionation occurs in foliar water and solid tissues, in response to mechanisms of
photosynthesis and water transport through the plant [37,38]. The isotopic composition of local
meteoric water (and therefore that of foliar tissue) varies systematically with latitude and alti-
tude, responding to the changing equilibria between evaporation and condensation in the water
cycle [39]. In northern Europe (British Isles/Scandinavia/Baltic region), the correlations
expected in foliar tissue between δ13C, δ15N or δ2H values and MAP or MAT were also observed
in whole year samples of sheep wool, demonstrating the dominant influence of fresh graze plant
composition on the isotopic composition of this tissue [31].

The geographical relationships described above can however be disrupted by farmers
manipulating the isotopic composition of fresh pasture and fodders, thus providing animals
with food and water which are isotopically inconsistent with local environment. Factors
increasing δ13C values in herbivore tissues include grazing on marine plants [40], transhu-
mance to higher altitude [41] and (theoretically) grazing in open pastures as opposed to under
forest canopies, though this effect has not been directly demonstrated in modern domesticated
herbivores [31,42,43]. Factors increasing δ15N values in herbivore tissues include grazing on
haplophytic plants in salt marshes [44], transhumance to lower altitude [41], use of animal
product or by-product fertilizers on pasture [45], (possibly) higher stocking level [46,47],
higher diet protein content [48] and lower legume consumption [49]. Anthropogenic factors
affecting herbivore tissue δ2H values are less well studied, but are likely to include the balance
between fresh and dry fodders, and hence that between plant water and drinkingwater.
Because animal and landscape management vary in response to local environment, economy
and cultural factors, their isotopic effects on herbivore diet composition, and hence tissue com-
position, are uneven across regions [27] and through time [50]. Modern patterns of variability
in herbivore tissue should not necessarily be expected to be identical to those in archaeological
material.

Further complicating the comparison betweenmodern and archaeological datasets are dif-
ferences in the tissues typically sampled. Modern isotope work has focused on meat, milk and
hair, because these tissues are of direct agricultural and industrial interest and/or can be non-
invasively sampled [51]. In contrast, archaeological work has focused on bone collagen and
tooth enamel, because they are most often preserved in archaeological deposits, e.g. [50,52].
Comparison of isotopic composition between tissues must take account not only of differences
in composition, but also of the period of formation and turnover of the tissue in question [53].
Hair is not metabolically remodelled once formed [54], and its longitudinal isotopic
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composition thus reflects how that of ingesta change with time, in response to both graze plant
annual composition cycles [38,55] but also season-specific farming practices such as stalling
and foddering [29,56]. In contrast, the isotopic composition of herbivore bone collagen, which
turns over continuously, integrates a longer period of dietary inputs compared to hair samples,
and generates a more averaged diet signal [53]. For most skeletal elements this is likely to
reflect diet over the whole lifetime of the individual animal.

Finally, comparisons between archaeological and modern samples must take account of
changes in isotopic composition over longer time scales. Isotopic correlates of climate change
have been identified in archaeologicalmammalian herbivore tissues [43,57]. In addition, fossil
fuel burning has decreased δ13C values of modern organic tissue compared to preindustrial
samples [58]. These effects, like those of farming and landscape management practices, are also
likely to be regionally uneven, so that parallels betweenmodern and ancient isotopic geospatial
patterning must be interpreted with caution.

1.3 Isotopic integrity of archaeological keratin samples

Light stable isotopic analysis of archaeological keratinous tissues has so far been carried out
only on material which is unusually well-preserved, for example under conditions of perma-
frost or desiccation [59,60]. In contrast, hair from anoxic waterlogged deposits, from which a
high proportion of medieval European textiles derive, is clearly altered by diagenesis, either
through chemical mechanisms (protein hydrolysis, deamidation, oxidation, breaking of S-S
crosslinks) or microbiological activity (fungal and/or bacterial attack) [61–64]. These processes
can add elements (O, H) to the fibre, remove elements (N, H) from the fibre, or cause protein
chain scission, leading to loss of amino acids (AA). These processes can have isotopic effects
[62,64]. The degree of degradation of hair fibres preserved by anoxic waterloggingmust there-
fore first be assessed in order to understand the integrity of isotopic measurements of
composition.

Establishing the degree of degradation of a hair fibre, and the effect of this degradation on
isotopic and elemental parameters, is not straightforward [61]. Bulk fibre C:N atomic ratio
(C:Natom) in particular has been used as an indicator of integrity [65,66], probably because of
its ubiquity in assessments of bone collagen integrity [67], and because it is automatically gen-
erated during dual δ13C/δ15N IRMS analysis. However, in human, horse and sheep keratin
fibre, there is experimental evidence of macroscopic alteration without significant alteration of
δ13C or δ15N value or C:Natom, and in pigmented sheep wool, δ13C and δ15N value change has
been detectedwithout C:Natom change [62,68]. In order to assess whether this measure is useful
in wool samples preserved by anoxic waterlogging, C:Natom data were compared with measures
of degradation based on AA composition [62]. These variables reflect changes in the protein
part of the fibre (i.e.�90% by mass) only, while C:Natom, also reflects the integrity of the non-
protein moiety of the fibre.

In order to investigate whether the carbon (δ13C), nitrogen (δ15N) and non-exchangeable
hydrogen (δ2H) isotopic composition of archaeological wool textiles could indicate their geo-
graphic origin, and thus the development of exchange patterns in this commodity, this study
analysed wool samples from 7th-16th century AD contexts from Iceland (IS), north-east
England (GB) and Frisia (coastal northernGermany [DE]) (Fig 2). All these regions have evi-
dence of long-distance wool textile trades in the medieval period [1,3,15], and have productive
natural and semi-natural C3 grasslands on a range of soil types, which were already present in
the Middle Ages [69,70]. Existing δ13C and δ15N isotopic data from archaeological sheep bone
collagen from these three regions shows good regional discrimination [50,71,72], as does mod-
ern wool δ15N and δ2H data (Fig 3) [31]. Results indicated that light stable isotopic analysis of
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this material was largely robust to diagenesis, and permitted the identification of non-local
wool samples.

2 Material and Methods

This study compared sheep (Ovis aries) wool and bone collagen δ13C, δ15N and non-exchange-
able δ2H values from 7 archaeological sites. The study tested the following hypotheses:

1. Authentic isotopic composition is preserved in medieval samples of wool keratin preserved
by anoxic waterlogging.

2. Mechanical processing of wool during textile manufacture averages seasonal isotopic varia-
tion down the length of the fibre.

3. Modern and medieval geographic patterns of sheep protein isotopic composition are
parallel.

2.1 Sample origin

The study analysed 83 textiles and 59 sheep bones from four occupation sites, both rural and
urban, in Iceland, north-east England, and Frisia (Fig 2; Table 1; S1 Table).

Specimen numbers for all samples are given in S1 Table. All necessary permits were
obtained for the study, which complied with all relevant regulations. Permission to sample
assemblages was given by Guðrún Sveinbjarnardóttir of Þjóðminjasafn Íslands, Reykjavík
(RKH); ChristineMcDonnell at York Archaeological Trust (YCG, YLB); Andrew Parkin at the

Fig 2. Map of annual mean δ2H values (in‰) in precipitation in north-west Europe [73] with locations
of archaeological assemblages tested.

doi:10.1371/journal.pone.0162330.g002
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Fig 3. δ15N vs δ2H values for modern wool samples from northern Europe, redrawn from [31]. Each data point
represents the median value (±maximum/minimum values) of wool samples (n = 9–10) from one flock. Flock locations
are indicated in the insert map; point symbols and groupings match the main figure. DK indicates wool from Denmark.

doi:10.1371/journal.pone.0162330.g003
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Great North Museum, Newcastle (NBG,NQS); Klaus Tidow, former director of the Neumün-
ster Textilmuseum (HSS textiles); and Annette Siegmüller, Niedersächsisches Institut für his-
torische Küstenforschung, Wilhelmshaven (HSS bone).

Samples from Reykholt are deposited with the Þjóðminjasafn Íslands, Reykjavík. Samples
from York (YCG, YLB) are deposited with the York Archaeological Trust, York; textiles from
YSG are on long-term loan to The Anglo-Saxon Laboratory fromMAP Archaeological Consul-
tancy Ltd. Samples fromNewcastle (NBG,NQS) are deposited with the Great North Museum,
Newcastle upon Tyne, but NBG textiles are on long-term loan to The Anglo-Saxon Laboratory.
Textiles fromHessens were deposited with Textilmuseum Neumünster but samples are on
long-term loan to The Anglo-Saxon Laboratory, while the bone has been deposited with the
Niedersächsisches Institut für historische Küstenforschung, Wilhelmshaven.

2.2 Sample types

Wool samples included both unprocessed raw staples (the clusters of wool fibres into which
the fleece naturally grows) and completed textiles (combed, spun and woven). In intact staples,
the fibres lie in parallel, with the segments grown in each season level with each other; the fibres
must all come from the same animal; and each fibre represents total growth between shearing
dates, typically at least annually [53,80]. In finished textile products, combing or carding the
fibres in preparation for spinning de-aligns sections grown at the same time. A sample of>50
fibres from a yarn therefore derives from all parts of the year, and also probably several staples,
though probably not more than one animal, given the quantity of material which can be pro-
cessed at a time with medieval hand tools [24,81]. No difference in processing effects was
expected between textile construction types (e.g. tabby, twill, knit).

Textiles were dated by context to the 7th–16th centuries AD. Bone samples were selected
from the same or contemporaneous contexts.

2.3 Sample preparation

A fragment of textile, weighing approximately 0.1 g, was selected from each find. Dirt and
inherent lipid were removed by sonicating in ultra-pure water (ELGA Purelab Ultra, Marlow,

Table 1. Archaeological find sites of samples tested in this study.

Site Country Code Location Site type Latitude/
longitude

Altitude/
m

Period
selected

N textile samples
analysed by IRMS
(by HPLC)

N bone
samples

Reference

Reykholt,
Borgarfjörður

IS RKH Reykholt Rural,
inland

64.665/-
21.292

45 C11-16 21 (21) 7 [6]

Hessens, Kreis
Wilhelmshaven

DE HSS Hessens Rural,
coastal (salt
marsh)

53.518/
8.070

0 C7-8 10 (10) 7 [4,5,74]

16–22 Coppergate,
York

GB YCG York Urban,
inland

53.958/-
1.081

20 C9-15 21 (21) 16 [7,12,75]

6–8 Pavement (Lloyds
Bank site), York

GB YLB York Urban,
inland

53.958/-
1.080

21 C11 11 (12) 0 [76]

Rear of 7–15
Spurriergate, York

GB YSG York Urban,
inland

53.958/-
1.083

18 C11 4 (5) 0 [77]

Black Gate, Newcastle
upon Tyne

GB NBG Newcastle Urban,
inland

54.969/-
1.611

19 C15-16 12 (12) 14 [78]

Queen Street,
Quayside, Newcastle
upon Tyne

GB NQS Newcastle Urban,
inland

54.969/-
1.607

12 C13 4 (4) 15 [79]

doi:10.1371/journal.pone.0162330.t001
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UK; 2 x 30 mins), and four times in mixtures of dichloromethane and methanol (both HPLC
grade, Fisher Scientific, Loughborough,UK; 2 x 30 mins in 2:1 v/v mixture; 2 x 30 mins in 1:2
v/v mixture).

In order to examine the degree of seasonal variability in a single raw sample, sample 2950
was subdivided by cutting across the lock into ten segments c.1cm in length, representing
sequential periods of growth, before being washed as described above.

In order to examine the isotopic effects of washing procedures which may have been
employed during conservation or laboratory workup of hair or wool samples, sample 4120 was
washed using a range of these methods, as follows: (1) Triton X100 (Fisher Scientific, Lough-
borough, UK) [76]; (2) sodium dodecyl sulfate (Melford Laboratories Ltd, Ipswich, UK) [82];
(3) 2% solution disodiumEDTA (Sigma-Aldrich, St Louis, MO, USA) [7]; (4) pyridine (Fisher
Scientific) [83]; (5) dichloromethane/methanol (both HPLC grade, Fisher Scientific) [84]; (6)
deionisedwater, (ELGA Purelab Ultra, Marlow, UK) [85]; (7) 2:1 chloroform (VWR Interna-
tional, Fontenay-sous-Bois, France) /methanol (as above) [86]; (8) 2:1 methanol/chloroform
(both as above) [87]; or (9) no treatment [9,59].

For collagen extraction, 0.5–1.0 g of bone chunks was demineralised in 0.6 M HCl (aq) at
4°C. Samples were rinsedwith distilledwater, then gelatinised in pH 3 HCl (aq) at 75°C for 48
h. The supernatant containing the collagen was filtered (30 kDa, Amicon1Ultra-4 centrifugal
filter units, Millipore, Billerica,MA, USA), frozen, and lyophilised.

2.4 Isotopic analyses

In weighing cleaned samples for isotope analysis, whole fibres were selected from staples; for
finished textiles, cross-sectional samples of a single yarn (typically>50 fibres) were taken.

δ13C and δ15N isotope value analyses (except bone collagen samples from YCG) was carried
out at the Natural Environment Research Council Life SciencesMass SpectrometryFacility
(NERC LSMSF) in East Kilbride. Aliquots (0.7 mg) of both bone and keratin were weighed into
4 x 3.2 mm Sn capsules (Elemental Microanalysis, Okehampton, UK). δ13C and δ15N isotope
ratio mass spectrometric (IRMS) analyses were carried out on a ThermoElectronDelta Plus XP
(Thermo Fisher Scientific, Bremen, Germany) with Costech ECS 4010 elemental analyser
(Costech International, Milan, Italy); internal standards were a gelatine standard, two alanine
single AA standards enrichedwith 13C and 15N respectively, and a 15N-enriched glycine single
AA standard. C and N content and C:Natom ratios were calculated using a tryptophan
standard.

Bone collagen from YCG was analysed at the Stable Isotope Laboratory in the School of
Archaeological, Geographic and Environmental Sciences, University of Bradford. Duplicate
aliquots of 1.0 mg were weighed in 4 x 3.2 mm Sn capsules. Their isotopic composition was
measured using a Finnigan Delta Plus XL isotope ratio mass spectrometer, coupled with a
Thermo Flash EA 1112 elemental analyser via a Finnigan Conflo III interface (all Thermo
Fisher Scientific). The instrument was calibrated using both laboratory (Fish gel, BLS) and
international standards (IAEA 600, N1 and ANU sucrose).

All δ2H composition analyses were carried out at NERC LSMSF. 0.1 mg washed wool was
weighed into 4 x 3.2 mmAg capsules (Elemental Microanalysis, Okehampton, UK and Pelican
Scientific, Stockport, UK). δ2H values were measured with a Thermo Fisher ScientificDelta V
Plus with a TC/EA high temperature furnace. The contribution of exchangeable hydrogen was
calculated using keratin standards BWB-II (bowheadwhale baleen), CFS (chicken feathers),
ISB (Icelandic black-legged kittiwake, Rissa tridactyla, feathers) andWG (Willow grouse, Lago-
pus lagopus, feathers) [10,88] and a comparative equilibrationmethod [89]. The δ2H values of
the non-exchangeable H in the four keratin standards was previously determined using a
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steam equilibration technique [90]. Calculation of non-exchangeable δ2H composition
assumed a fractionation factor of α = 1.080 (εx-w = 80‰).

δ13C, δ15N and δ2H values are reported in per mille (‰) relative to VPDB, AIR and
VSMOW respectively. Analytical error was better than 0.25‰ in δ13C and 0.35‰ in δ15Nmea-
surements (both 1σ). Analytical error for δ2H isotopemeasurements differed between sub-
strates [53]: it was better than 4‰ in keratin, and within 9‰ in collagen.

2.5 AA content analysis

AA content and racemization analysis was carried out using reverse-phase high performance
liquid chromatography (RP-HPLC) [91] following the methodology for unbleached samples
described in Penkman et al. [92] with the following adjustment: hydrolysis was carried out
using 50 μL 7MHCl (HPLC-grade, Fisher Scientific) per mg wool, previously prepared as for
isotope analysis above. The following AAs were detected: aspartic acid/asparagine (Asx), glu-
tamic acid/glutamine (Glx), serine (Ser), threonine (L-isomer only, L-Thr), histidine (L-isomer
only, L-His), glycine (Gly), arginine (L-isomer only, L-Arg), alanine (Ala), tyrosine (Tyr),
valine (Val), phenylalanine (Phe), leucine (Leu), and isoleucine (Ile). Experimental errors are
reported in von Holstein et al. [62].

2.6 Statistical analysis

Statistical analysis was carried out using R [93]. Where multiple samples were tested from a
single wool sample, the arithmetic mean of isotope and AA composition values was used in sta-
tistical calculations at site/settlement level. All isotope and AA data were non-parametric (uni-
variate Shapiro-Wilk tests, P<0.001). No effective data transformations were found, so
parametric statistical tests were not appropriate. Archaeological wool data are describedby
median and interquartile range (IQR), calculated using all data points from the site including
any outliers.

The resistance of bone collagen to degradation during burial, and the consequent stability of
δ13C and δ15N composition in well-preserved collagen, is well characterised [67,94], though lit-
tle work has been done to confirmwhether this is also true of δ2H values. The isotopic compo-
sition of bone collagen was used to check whether degradation has significantly altered the
isotopic composition of archaeological wool samples. As collagen contains far more of the
non-essential AA Gly [94], sheep bone collagen is systematically higher in δ13C and δ2H values
compared to wool keratin in the same individual (2.0‰ for δ13C, 29‰ for δ2H) [53]. These off-
sets were used to correct collagen values in this study for comparison to keratin values.

A measure for expected isotopic range at a single site was derived from the maximal ranges
of whole-year wool composition observed in modern flocks from northern Europe [31]. This
data was not normal, so describing these ranges in terms of mean and standard deviation is not
appropriate. Instead, flock variability was defined by the estimated standard deviation calcu-
lated via bootstrapping methods [95]. Geographic discrimination between flocks was assessed
using a randomForest function, which does not assume data normality [96].

This study employed a nominal assignment framework to distinguish between local/non-
local wool at each settlement tested [97]. (The use of a sheep wool isoscapewas avoided because
this cannot currently be modelledwith any certainty, due to unsystematic baseline data avail-
ability and insufficient characterisation of the relative contributions of climatic, environmental
and anthropological factors to herbivore tissue isotopic composition).Wool in archaeological
textiles was identified as regionally non-local in origin if: (1) the distance of any isotopemea-
surement from site/settlement median was more than twice the maximum 95% confidence
interval for the standard deviation for that isotope in a modern sheep flock; or (2) the sample’s
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values were identified as outliers at site/settlement level using two robust multivariate outlier
detection tests, aq.plot and dd.plot in R packagemvoutlier [98], applied to all three isotope
values.

3 Results

The ranges of isotopic values for each settlement are reported in Table 2. Maximum isotopic vari-
ability within samples, flocks and assemblages are compared in Table 3. Full elemental and isoto-
pic composition results for archaeological wool are reported in S2 Table (individual textiles) and
S3 Table (replicate measurements); data for archaeological bone is given in S4 Table. AA compo-
sition data are reported in S5 Table as AA concentration (pmol mg-1), AA % recovered and race-
misation ratio (D/L). Significance testing of differences in isotopic, elemental and AA
composition in both textiles and bone between settlements and regions is reported in S6 Table.

3.1 Keratin degradation in archaeological wool samples

Modern wool exhibits C:Natom values between 3.40–3.62 [31,53], higher than the theoretical
values of 3.32–3.46 for the ten most abundant proteins in wool [99]. This is because C:Natom

Table 2. Settlement median and interquartile range (maximum difference) of archaeological keratin and collagen isotope composition and C:
Natom.

Site Measure δ13C/‰ δ15N/‰ δ2H/‰ C:Natom

Keratin

Reykholt/IS (n = 21) Median -23.9 2.8 -102 3.88

IQR -24.1 – -23.7 (0.3) 2.4–3.9 (1.5) -104 – -94 (11) 3.72–4.25 (0.53)

Newcastle/GB (n = 16) Median -24.3 6.1 -89 3.71

IQR -24.7 – -24.0 (0.7) 5.3–7.2 (1.9) -90 – -87 (3) 3.63–3.76 (0.14)

Hessens/DE (n = 10) Median -23.3 9.7 -88 3.83

IQR -23.5 – -23.0 (0.5) 9.1–10.4 (1.3) -95 – -81 (13) 3.78–3.87 (0.08)

York/GB (n = 36) Median -24.0 7.0 -92 3.42

IQR -24.2 – -23.8 (0.4) 6.2–7.6 (1.3) -97 – -89 (8) 3.36–3.54 (0.18)

Collagen

Reykholt/IS (n = 7) Median -21.4 3.3 -69 3.25

IQR -21.8 – -21.3 (0.4) 3.0–3.7 (0.7) -72 – -69 (3) 3.23–3.31 (0.08)

Newcastle/GB (n = 29) Median -21.8 7.2 -59 3.26

IQR -21.9 – -21.5 (0.4) 5.8–8.2 (2.4) -63 – -53 (10) 3.25–3.28 (0.03)

Hessens/DE (n = 7) Median -20.8 10.9 -43 3.27

IQR -20.9 – -20.4 (0.6) 10.2–11.7 (1.5) -46 – -40 (5) 3.27–3.29 (0.03)

York/GB (n = 16) Median -22.0 6.6 -59 3.18

IQR -22.2 – -21.8 (0.4) 6.0–8.6 (2.6) -65 – -55 (10) 3.17–3.20 (0.03)

doi:10.1371/journal.pone.0162330.t002

Table 3. Maximum degree of variation in isotopic composition within a single fleece, flock, and archaeological textile (1σ).

Source of variation δ13C/‰ δ15N/‰ δ2H/‰ C:Natom

Keratin samples, experimental error 0.2 0.4 4 /

Collagen samples, experimental error 0.2 0.4 9 /

Within single modern fleece [31] 0.5 0.7 3 0.14

Within single raw wool find (RKH 2950, n = 10) 0.1 0.3 3 0.04

Within single wool textile (YCG 4078, n = 3; *YLB 4087, n = 2) 0.6 0.5 3* 0.20

Within single modern flock (maximum basic bootstrapped 95% CI) [31] 0.7 1.7 5.8 /

doi:10.1371/journal.pone.0162330.t003
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also reflects the presence of the non-protein fraction of the fibre (>2% of drymass), composed
of melanins and lipids [54], which have C:Natom ratios greater than 7.0. Archaeological samples
in this study showed C:Natom values between 3.28 and 4.54. A total of 76% of archaeological
samples had C:Natom values outside the modern sheep wool range, with 30% also outside the
wider limits of 3.0–3.7 defined by O’Connell and Hedges [68]. Maximum range in C:Natom

value within a single sample was 0.36 (YCG 4078, n = 3).
C:Natom value distribution was different between sites (Kruskal-Wallis test with Bonferroni

correction, P<<0.001). C:Natom values in York/GB assemblages (YLB and YCG; sample size in
YSG was too small to test) were significantly lower than at Reykholt/IS,Hessens/DE or NBG/
GB (medians 3.4 vs 3.9, 3.8 and 3.7, respectively;Mann Whitney test with Bonferroni correc-
tion, P<0.001). C:Natom values were not significantly associated with any isotope ratio overall
(Spearman’s rank correlation coefficient, all P>0.05), or in any individual assemblage, except
at YLB/GBwhere a significant positive association with δ2H values was present (S6 Table).

In all archaeological assemblages except Hessens/DE, the distributions of AA % contents
and D/L values were significantly different from those of modern control samples (Kolmogo-
rov-Smirnov tests, all P<0.003). AA composition of archaeological samples most resembled
data from experimental burials rather than high temperature degradation [62], with low levels
of racemisation, and loss of Ser (Fig 4). The highest degree and the widest range of both racemi-
sation and hydrolysis was present in samples from Reykholt/IS, but the distribution of % AA
recovered and D/L values were significantly different from those of YCG/GB and HSS/DE only

Fig 4. AA indicators of diagenesis in archaeological wool samples (grouped by site), compared to isothermal hydrolysis
(median ± IQR per time point) and experimental burial [62]. Analytical error indicates within-sample s.d.; arrows show time series for
hydrolytic experiments; error for Asx D/L is smaller than the data point.

doi:10.1371/journal.pone.0162330.g004

Geospatial Patterns in Archaeological Sheep Proteins (δ13C, δ15N, δ2H)

PLOSONE | DOI:10.1371/journal.pone.0162330 October 20, 2016 12 / 27



(Kolmogorov-Smirnov tests with Bonferroni correction; all P<0.05). Asx D/L values were not
related to sample contextual age, either within or between assemblages (Fig 5).

3.2 Integrity of wool isotope values as indicated by AA and elemental
composition

There were very few significant correlations betweenAA variables (AA % composition or D/L
value) and either C:Natom or isotope values at any assemblage (S6 Table), and none that
occurred in more than one assemblage. These correlations do not resemble the protein-specific
changes observed in hydrolytically-degradedmaterial [62], which showed a general loss of
hydrophilic AAs (Asx, Gsx, Ser), relative gain of hydrophobic AAs (Phe, Ile, Leu), and decrease
in δ2H values with increasing AA composition change. The AA variables recorded here do not
detect deamidation, which has been identified proteomically in some of the same samples [63],
as Asn and Gln are fully deamidated to Asp and Glu, respectively, during workup.

3.3 Archaeological wool keratin and bone collagen

All archaeological wool samples had higher δ13C values relative to modernwool samples from
the same regions (archaeological range -25.3 to -22.2‰,modern range -27.6 to -25.0‰) [31].
This differencewas greater than that of c. 1.5‰ expected from fossil fuel burning [58]. Differ-
ences betweenmodern and archaeological δ15N value ranges were unremarkable. Absolute values
of δ2H data are not comparable between this study and others because of differences in sample
equilibrationmethodologies affecting absolute values and apparent H exchangeability [53,100].

Fig 5. Asx D/L value against median context date for each sample. Horizontal error bars indicate total context date range. Analytical
error in Asx D/L (within-sample s.d.) is smaller than the data points.

doi:10.1371/journal.pone.0162330.g005
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δ13C, δ15N and δ2H values in both wool keratin samples and collagen bone samples clus-
tered by region of origin (Table 4, Figs 6a–6d and 7a–7d). Material from Reykholt/IS had lower
δ15N and δ2H values, and higher δ13C values, compared to samples from York/GB and New-
castle/GB, in parallel to the isotopic relationships identified in modern samples of sheep wool

Table 4. Textile samples with isotope compositions outlying from respective settlement median.

In one dimension
(bootstrapped
estimates)

In three
dimensions

Sample
type

ID Small find
no.

Site Location Type Hypothesised
origin

δ13C/‰ δ15N/‰ δ2H/‰ By aq.
plot

By dd.
plot

Wool
keratin

2894 2001-26-30
(i)

RKH Reykholt/IS Yarn typical YES YES YES

2896ave 1999-18-57 RKH Reykholt/IS 2/2 plain twill typical YES YES

2903 1989-33-380
(f)

RKH Reykholt/IS Tabby atypical YES YES YES YES

3966 2000-6-130 RKH Reykholt/IS Tabby atypical YES YES YES

3967 1989-33-380
(c)

RKH Reykholt/IS Tabby atypical YES YES YES

3968 1989-33-380
(d)

RKH Reykholt/IS Tabby atypical YES YES YES

4329 HE4 HSS Hessens/DE 2/1 plain twill atypical YES YES

4330 HE21b HSS Hessens/DE 2/2 chevron/
diamond twill

typical YES YES YES YES

4336 HE76c HSS Hessens/DE Tabby typical YES YES YES

4058 13584 YCG York/GB Staple typical YES

4060b 13382 YCG York/GB Yarn typical YES YES YES

4095 10519 YCG York/GB Tabby typical YES YES

4123 19e YSG York/GB 2/2 plain twill typical YES YES YES YES

3949 BGT14, T5 NBG Newcastle/
GB

Tabby typical YES

Totals: 0 4 9 12 13

Bone
collagen

3608 / RKH Reykholt/IS Humerus / YES YES

4308 / HSS Hessens/DE Mandible / YES

4309 / HSS Hessens/DE Mandible / YES

4310 / HSS Hessens/DE Mandible / YES

4311 / HSS Hessens/DE Mandible / YES

4312 / HSS Hessens/DE Mandible / YES

4313 / HSS Hessens/DE Mandible / YES

4177 / YCG York/GB Mandible / YES

4183 / YCG York/GB Mandible / YES

4548–2 / NQS Newcastle/
GB

Metapodial / YES

4549–1 / NQS Newcastle/
GB

Vertebra / YES YES YES

4550–1 / NQS Newcastle/
GB

Cranium / YES

4555–4 / NBG Newcastle/
GB

Metapodial / YES YES YES

4555–
12

/ NBG Newcastle/
GB

Metapodial / YES

Totals: 2 5 12 / /

doi:10.1371/journal.pone.0162330.t004
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Fig 6. (a) δ13C vs δ15N values and (b) δ15N vs δ2H values for wool keratin samples (heavy solid outline) and bone
collagen samples (light dotted outline).

doi:10.1371/journal.pone.0162330.g006

Geospatial Patterns in Archaeological Sheep Proteins (δ13C, δ15N, δ2H)

PLOSONE | DOI:10.1371/journal.pone.0162330 October 20, 2016 15 / 27



Fig 7. Textile keratin (left, heavy solid outlines, with error bars indicating bootstrappedmaximum
estimated flock range around settlement median value) and bone collagen (right, light dotted
outlines) isotope values by location. (a) δ13C values, (b) δ15N values and (c) δ2H values. Outliers are
marked by sample number. Collagen values are corrected to keratin equivalents using inter-tissue spacing
data from von Holstein et al. [53].

doi:10.1371/journal.pone.0162330.g007
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[31], sheep muscle [28] and graze plants [42,55,71]. Material from Hessens/DE was higher in
both δ13C and δ15N values compared to British samples, in parallel to the salt marsh/dryland
grazing offset previously identified in archaeological samples [44,50]; however modernwool
showed a different relationship, with north Germanmaterial showing lower δ13C values than
and similar δ15N values to British material [31]. δ2H values were very similar between north
Germany and England in archaeological wool; in modernwool, Germanmaterial was similar
to material from northern Britain (Penicuik) but had c. 10‰ lower δ2H values than wool from
south-eastern Britain (Tollesbury).

The offsets betweenmedian δ13C and δ15N values of bone collagen and wool keratin at each
site were consistent with the metabolic offsets between these tissues in modern individual ani-
mals [53], implying that the majority of both bone and wool from each archaeological site was
from animals subject to similar husbandry regimes which did not differ significantly over the
life of the animal. This was also true for most δ2H values, except at Hessens/DE.

3.4 Geographic origin discrimination in archaeological samples

Within sample variation in textile samples was of the same order of magnitude as experimental
error in keratin samples (Table 3). Variation in woven textiles was the same as in unprocessed
wool samples at RKH; however variation within samples at York/GB was larger (S3 Table). Dif-
ferences betweenwashing methods did not increase variation in any isotope over that measured
in raw staples. Within-sample variabilities were always smaller than estimated flock ranges.

For textile samples, all regions were significantly distinguished by δ15N values (Mann-Whit-
ney tests with Bonferroni correction, P<0.005; S6 Table). Samples from Frisia had significantly
higher δ13C values than those from England (P<0.05); samples from England had significantly
higher δ2H values than those from Iceland (P<0.005). For collagen samples, all regions were
significantly distinguished by δ15N and δ2H values (all P<0.005). Collagen samples from Frisia
also had significantly higher δ13C values than those from elsewhere (P<0.05).

A randomForest function correctly classified 66% of textile samples to settlement and 77%
to region. Classification of bone collagen samples to settlement was 67% correct and to region
was 90% correct.

Outlier identification for textiles was most parsimonious using the bootstrapping method in
one dimension (10 outlying samples), while statistical methods of outlier detection identified
12 and 13 outliers, respectively (Table 4). At each of the settlements investigated, textile sam-
ples with isotope values outlying the local range were present (Fig 7). These objects are there-
fore identified as of non-local provenance, with one exception (YCG/GB 4060b) where the
sample was outlying in δ15N value only, and therefore possibly only differentiated by farming
practice. At Reykholt/IS, identification of non-local material was largely consistent with textile-
technical indicators of origin; at York/GB, Newcastle/GB and Hessens/DE, isotopically outly-
ing textiles had almost all been interpreted as consistent with local manufacturing techniques,
while technically atypical material was not isotopically outlying (Table 4). Surprisingly, 8 bone
samples (1 at Reykholt/IS, 2 at York/GB and 5 at Newcastle/GB) were also isotopically outlying,
not counting the material fromHessens/DE where wool keratin and (corrected) bone collagen
ranges did not correspond well.

4 Discussion

4.1 Wool fibre integrity in archaeological samples

Analysis of AA composition of archaeological samples allowed the protein composition of
these objects to be put into diagenetic context. AA composition change in archaeological sam-
ples was greater than—but comparable to—that seen in wool buried experimentally for up to 8
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years; it was smaller and much less specific than the hydrolytic changes (loss of the more
hydrophilic AAs, relative increase in content of the more hydrophobic AAs) observed in ele-
vated-temperature hydrous laboratory conditions [62,63]. Archaeological samples show some
hydrolytic change (particularly in the Reykholt/IS samples) but most variation is consistent
with non-protein specific attack by microorganisms, in agreement with proteomic analysis of a
subset of the same samples [63]. Clustering of AA variables by assemblage indicated that the
primary determinant of wool fibre molecular integrity (AA composition and racemisation)
was local soil environment (i.e. humidity, temperature, acidity, oxidation), but not date of con-
text (Fig 5) or pre-burial processing (e.g. weaving, dyeing). Dating methods based on AA vari-
ables, for example Asx racemization value [101], are therefore not appropriate for buried wool
samples. Overall, Reykholt/IS samples showed the highest degree of protein change, and York/
GB samples the least, again in parallel to proteomic data [63], and to microscopic characterisa-
tion of fibre damage (see references in Table 1). These patterns reflect the local balance of soil
characteristics which control fibre degradation (temperature, pH, microbiological activity).

According to the previously-employed measure of keratin fibre diagenesis, C:Natom, the
majority of samples in this study were too degraded for isotopic analysis. However, AA vari-
ables indicated that elevated C:Natom values were present in samples which show good protein
preservation (e.g. 3950, NBG), and conversely, acceptable C:Natom values were present in sam-
ples which show considerable protein change (e.g. 3962, RKH; Fig 6). C:Natom reflects the com-
position of the whole fibre, not just the protein component, in contrast to AA data which
reflects protein only. It is therefore possible that the generally high C:Natom values observed in
this study indicate changes in the proportion of protein to non-protein components of the
fibre (i.e. relative loss of protein), or diagenesis of the non-protein moiety of the fibre. The for-
mer is more likely, as melanins are less susceptible to chemical alteration than proteins, given
their heterogeneous polymeric structure and insolubility [102]. C:Natom should probably not be
used as a guide to the isotopic integrity of archaeological keratin samples, as it is most sensitive
to changes in the proportion of protein to non-protein moieties of the fibre. This could have
isotopic effects if melanins have significantly different isotopic composition to keratins. Mela-
nins are derived from Tyr and Cys, and their presence has been shown to affect at least δ13C
values [103]. AA-based methods are to be preferred to indicate the degree of preservation of
the bulk of the fibre.

The absence of correlation betweenAA composition variables, C:Natom and isotope values
indicated that samples with outlying isotope values were not more degraded than typical sam-
ples in any assemblage. Thus, isotope composition from all archaeological samples could be
interpreted as equally indicative of pre-burial values, and used to investigate provenance. The
only possible exception was for wool with dense natural pigmentation. In high temperature
hydrolysis experiments, a significant decrease in δ13C and δ15N (but not δ2H) values was
observed in densely pigmented samples, without significant protein AA composition change
but with deamidation [62,63]. It therefore remains possible that samples with this pigmenta-
tion might show outlying δ13C and δ15N values due to diagenetic change. The only examples of
this in the present study are 4330 and 4336, both at Hessens/DE (Table 4).

4.2 Isotope composition of archaeological wool and bone collagen

The strong clustering of δ13C and δ15N isotope values for wool keratin and (tissue-adjusted)
bone collagen samples indicated that, in accordance with wool sample AA data, keratin preser-
vation was good, giving geographically plausible isotopic results, in line with expectations from
previously published data frommodern sheep muscle protein, modern vegetation samples and
archaeological sheep bone [28,31,42,50,71]. Agreement between bone collagen and wool
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keratin δ2H values was also generally good, except for δ2H values at Hessens/DE, where
(adjusted) collagen values were higher than keratin values. It is unlikely that these differences
indicate that the bone and wool at this site came from animals raised in different locations,
given the good agreement between tissues in δ13C and δ15N values. Instead, these variations
could reflect differences in the growth periods of the two tissues. Collagen is expected to aver-
age dietary inputs over years, in contrast to keratin, which reflects inputs between shearing
dates. Lower δ2H values in keratin suggest greater inputs from winter diet in wool than in colla-
gen [29], which is unlikely given that wool grows faster in summer than in winter as it is under
photoperiodic control [104]; winter wool is therefore unlikely to account for the bulk of textile
production at a site. This result therefore at present remains unexplained.

The overall agreement between bone collagen and wool keratin isotopic composition at all
settlements tested indicates the basic robustness of isotopic data derived from archaeological
wool protein, and supported our hypothesis 1 (see section 2). The parallels betweenmodern
and archaeological data supported hypothesis 3. Assuming that the majority of the bone sam-
ples were of local production (as is typically assumed in isotope studies in archaeology), then
so were the majority of wool samples at all sites examined.

4.3 Averaging of seasonal variability in wool textiles

Unlike other keratin-based archaeologicalmaterials, wool in textiles has been highly mechani-
cally processed.Where shearing is annual, whole-year samples of wool are likely to reflect sum-
mer diet inputs more strongly than winter inputs [31]. A single yarn typically contains at least
50 fibres, so a cross-sectional sample of this is likely to return an average isotopic compositional
value for the period of wool growth. At Reykholt/IS, this effect could be tested by comparison
of samples 2950 (unprocessed) and 4120 (woven). Combing and weaving did not increase
compositional variability over that present in the raw fleece in any isotope (S3 Table), support-
ing hypothesis 2. However, the magnitude of within-sample isotopic variation in finished tex-
tiles differed between assemblages, being larger in the York/GB material than in the Reykholt/
IS samples. This indicates either greater seasonal variability (environmental or farming-related)
in wool isotopic composition in the region supplying York/GB with wool, and/or greater farm-
ing/environmental variability in the region supplying wool to York/GB. However in no case
were within-sample variabilities greater than the maximum bootstrapped estimate for within-
flock variabilities. Nevertheless, the presence of a wider range of farming practices influencing
wool isotopic composition in a single region has the potential to impair the geographical reso-
lution of the technique for that region.

4.4 Identification of non-local textiles

The nominal assignment framework used to distinguish between local/non-localwool at each
settlement in this study was based on estimates of isotopic range from annual wool samples
frommodern flocks in northern Europe [31]. The range criterion employed (twice the maxi-
mum bootstrapped 95% confidence interval from site median) is a deliberate overestimate of
annual flock variability, in order to reduce the likelihood of Type 1 errors (incorrect identifica-
tion of local material as non-local), and also to compensate for the much greater chronological
range of archaeological sampling (200–600 years in this study) compared to modern samples
(1–3 years). The use of a metabolically-basedestimate of flock range was preferred to a statisti-
cal method (e.g. observedmean ± 2 s.d.) as it is less susceptible to sampling bias, especially as
sampling deliberately includedmaterial likely to be non-local (Fig 7).

Maximum flock ranges were derived from flocks sheared annually in a single event [31].
Variability in wool shearing date may significantly increase flock isotopic variability,
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incorporating a different set of dietary inputs to fibre. Shearing frequency differs between farm-
ing practice regions in northern Europe (1–4 times per year) [80,105] and there is little data on
frequency of shearing in the medieval period in Iceland or Frisia [106], though yearly shearing
appears to have been typical in Britain [81]. It is thus possible that wool isotopic range for a site
could be increased if shearing at that site was frequent and/or irregular.

The bootstrapped estimate of flock range was applied to the median point of each assemblage
to identify local from non-localmaterial. Thus, data from non-local wool was included in the
calculationwhich established the isotopic range of local material. Potential for error from this
circular reasoning was minimised by deliberately sampling many more objects considered to be
local, and by comparison of the local wool median to bone collagenmedian isotope values.

At Reykholt/IS, isotopic results were entirely in line with the earlier interpretation of textile
origin at this site, based on structural features of the finds. This contrasted with 87Sr/86Sr data
from two of the samples, where exogenous (soil-derived)material obscured endogenous isoto-
pic signals [65]. All four tabby textiles analysed here, dated by context to the 14th-16th centu-
ries, are clearly differentiated from typical textiles at Icelandic sites in both technology and
fibre type; isotopically two were outlying and the other two showed the same isotopic trends
towards relatively high δ15N and δ2H. Technologically, samples 2903, 3967 and 3968 are con-
sistent with the types of commercial production recorded in late medieval historical documents
in northernmainland Europe [11]. Their δ13C and δ15N isotope values were consistent this ori-
gin, but they were more depleted in 2H than material from any of the other settlements tested
in this study, suggesting that the wool in these samples originated further south than Britain or
northern Germany, and at relatively low altitude. They probably arrived in Iceland as traded
goods via late medieval trade networks [107]; earlier contexts at Reykholt/IS contain only tex-
tiles consistent with an origin in Iceland.

Isotopic results fromHessens/DE have highly significant implications for the ongoing dis-
cussion on the origin and nature of pallia fresonica [18–20]. If the term did refer to textiles
manufactured in Frisia using locally produced wool, then relatively enriched δ13C and espe-
cially δ15N values, consistent with this salt-marsh grazing environment, could be a new bio-
marker for these textiles elsewhere. There are three samples of textile from Hessens/DE which
are consistent with one of these definitions [19] (4330, 4337, 4338) but only two of these (4337
and 4338) have wool isotopic composition consistent with an origin in a salt-marsh grazing
area. Samples 4330 and 4336 are instead unlikely to be from Frisia, demonstrating the integra-
tion of the small village of Hessens/DE into long-distance transfer networks in the early medie-
val period [108,109]. From the small sample size tested here, it is not possible to say whether
these textiles were moved as goods or as belongings.

The isotopic composition of all York/GB textiles identified as atypical of English manufac-
ture (or showing hybrid features), such as the sample of vaðmál-like twill (4068) and the “Cop-
pergate sock” (3959), were nevertheless consistent with an origin in the British Isles. They
could originate from a region of Britain then under strong Scandinavian influence, e.g. Viking
Dublin, or the Danelaw region of England, including York itself [7,110]. The isotopic composi-
tion of wool from Denmark can be identical to that of Britain (Fig 3), and it is therefore possi-
ble that the Scandinavian-type textiles were instead made in Denmark. In contrast, sample
4123 with outlying isotopic composition could originate in northern or highland Scandinavia,
by analogy with data in Fig 3 from Iceland and coastal Norway. It could have arrived in York
by commercial mechanisms or as migrants’ belongings.

Of the Newcastle/GB textiles, sample 3944 (knitted cap with kermes dye in Fine-type fleece)
was strongly expected to be made of Spanish or French wool [78] because the fleece type, dye
and knitting itself are all unusual for the British Isles in the mid-15th century. This sample is
however not isotopically outlying from the British range, suggesting that either the technique
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of knitting arrived in Britain earlier than previously thought, or that the garment originated
from a region in Europe with a climate and environment relatively similar to that of the British
Isles, thus excluding Spain and southern France.

The presence of bone collagen samples which had isotopic composition outside the local
textile range (after correction for the offset between tissues) indicates that it cannot be assumed
that all zooarchaeologicalmaterial at a medieval site is local. This is not surprising for late
medieval towns (York and Newcastle, GB) but is more so for rural sites such as Reykholt/IS
and Hessens/DE. The additional uncertainty associated with the offset in isotopic composition
between tissues suggests that not all of these are likely to be genuinely non-local. However it is
extremely unlikely that samples 3608 (Reykholt/IS), 4549–1 (NQS/GB) and 4555–4 (NBG/GB)
are local to each respective find site.

5 Conclusion

This study has shown that modernwool keratin, archaeological wool keratin and archaeolog-
ical bone collagen δ13C, δ15N and non-exchangeable δ2H values show largely parallel geo-
graphic relationships in northwest Europe, and that these are comprehensible in terms of
climate, grassland and farming practice differences between regions. Degradation occurring in
archaeological keratin samples preserved by anoxic waterlogging did not significantly alter tex-
tile isotopic composition at any site, and did not obscure geographical origin. C:Natom is not a
good guide to keratin protein preservation; AA-based methods are more promising.

Using a nominal assignment framework based on the variability of wool isotopic composi-
tion within single modern flocks, it was possible to assign local/non-local origin to archaeolog-
ical sheep wool samples. Wool origin could be clearly differentiated between Iceland, north-
east England and Frisia, and in each region, non-local wool in textiles was identified. The
degree of isotopic variability caused by environment and farming practices within a region will
affect the resolution of this provenancing technique in the present and the past.
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26. Möller-Wiering S. Segeltuch und Emballage: Textilien im mittelalterlichenWarentransport auf Nord-
und Ostsee. Dobiat C, Leidorf K, editors. Internationale Archäologie. Rahden, Westf., DE: Verlag
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46. Schwertl M, Auerswald K, Schäufele R, Schnyder H. Carbon and nitrogen stable isotope composition
of cattle hair: ecological fingerprints of production systems? Agric Ecosyst Environ. 2005; 109: 153–
165. doi: 10.1016/j.agee.2005.01.015
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