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Abstract

East African elephants have been hunted for their ivory for millennia but the nineteenth cen-

tury witnessed strongly escalating demand from Europe and North America. It has been

suggested that one consequence was that by the 1880s elephant herds along the coast

had become scarce, and to meet demand, trade caravans trekked farther into interior

regions of East Africa, extending the extraction frontier. The steady decimation of elephant

populations coupled with the extension of trade networks have also been claimed to have

triggered significant ecological and socio-economic changes that left lasting legacies

across the region. To explore the feasibility of using an isotopic approach to uncover a

‘moving frontier’ of elephant extraction, we constructed a baseline isotope data set (δ13C,
δ15N, δ18O and 87Sr/86Sr) for historic East African elephants known to have come from

three distinct regions (coastal, Rift Valley, and inland Lakes). Using the isotope results with

other climate data and geographical mapping tools, it was possible to characterise ele-

phants from different habitats across the region. This baseline data set was then used to

provenance elephant ivory of unknown geographical provenance that was exported from

East Africa during the late nineteenth and early twentieth centuries to determine its likely

origin. This produced a better understanding of historic elephant geography in the region,

and the data have the potential to be used to provenance older archaeological ivories, and

to inform contemporary elephant conservation strategies.

Introduction

Eastern and South-EasternAfrica are known to have beenmajor sources of elephant ivory sup-

plying the Mediterranean world, Western Europe, the Persian Gulf, India and China for at

least the last two millennia [1–5]. The geographical origins of this exported ivory undoubtedly

shifted over time, but information is largely lacking on precisely which locales were the primary

suppliers during particular centuries and why these shifts occurred. The scale of extraction also
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changed over time, with the limited documentary sources suggesting a steady increase in the

trade with India and China from ca. AD 1500 and perhaps earlier [6–8]. The colour, texture,

and working properties of East African elephant ivorymade it particularly desirable, and

demand escalated in Europe and North America during the nineteenth century [9] encouraged

by the industrialisation of ivory working and processing industries for the manufacture of cut-

lery-handles, piano-keys, billiard balls and other diverse household objects [10–12]. The

growth in demand for such ivory products fuelled, and was fuelled by, wider changes in the aes-

thetics of taste, social distinction and patterns of conspicuous consumption among a growing

middle class in both Europe and North America [13,14]. It was in part also shaped by the

desires of East African consumers for the imported commodities used by caravan traders to

acquire ivory [15]. Among the other factors that contributed to the greater availability of East

African ivory in global markets were the pre-existing Indian trade networks [16], the develop-

ment of a mercantile economy on Zanzibar following relocation of the Omani court to Zanzi-

bar in the late 1830s [7], and the entry of American vessels, especially from Salem,

Massachusetts, into the Indian Ocean trading system at around the same time [17]. By 1891,

75% of the entire world’s supply of ivory was shipped from Zanzibar [9,18], with estimates of

East African exports ranging from 8,000 to 30,000 tusks per year for the latter half of the nine-

teenth century [9,19,20].

These estimates, which speak to the scale of ivory extraction in East Africa, are primarily

based on nineteenth century trade records of ivory exports, principally from Zanzibar [7,9].

However, aside from patchy observations concerning elephant distributions made by early

European explorers and missionaries [20,21], little is known about either the precise geographi-

cal origin of the ivory, whether changes in the location of preferred extraction areas occurred,

or whether elephants were locally hunted to extinction. It is important to know each of these

for at least three reasons. First, elephants are major ecological architects, and their local extirpa-

tion can result in significant habitat change stimulating regrowth of bushy vegetation and sec-

ondary woodland, as documented in Tsavo (SE Kenya) in the mid-twentieth century [22]. The

presence of large herds of elephants in the landscape also has a range of other consequences for

regional vegetation patterns and biodiversity more generally [8,23,24]. Secondly, sustained,

large-scale ivory extraction likely had significant impacts on elephant reproduction patterns

[25,26] and genetic diversity [27]. Finally, the expansion of the ivory trade is believed to have

triggered significant socio-ecologicaland political change [28] as communities along the trade

routes and in ivory extraction areas diversified their economic strategies and labour relations

to take advantage of the trade opportunities. This resulted in the emergence of specialist hunt-

ers, porters and middlemen [29–31], and the founding of new settlements (such as Ujiji on

Lake Tanganyika), several of which became prosperous trading hubs [32–34]. It is impossible

to understand these impacts, however, without knowing where the ivory was extracted at dif-

ferent times, which elephant populations were most affected, and therefore which habitats

likely changed.

From the available historical sources it is known that in the early part of the nineteenth cen-

tury, most ivory was brought to the coast by groups residing farther inland [31], although trade

caravans were already exploiting coastal elephant populations (e.g. [2]). By the mid-nineteenth

century, however, trade caravans were being organised almost entirely from the coast and

coastal traders were expanding their networks inland throughout Tanzania and northern

Kenya (Fig 1; [35]). Drawing on these records, Sheriff [7] suggested that the ivory trade in the

nineteenth century was a moving frontier, such that elephant herds living near the coast were

the first to be intensively exploited from ca. 1830 onwards, as they were most readily accessible

to trading expeditions from coastal ports. Others such as Thorbahn [8] and Håkansson [20]

argue that large areas of the interior of East Africa were exploited for ivory prior to the
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nineteenth century trade boom, as the global demand for ivory was already substantial, making

it likely that areas other than the coastal hinterland were already being exploited [8,20]. To bet-

ter grasp the spatial distribution of ivory extraction across eastern Africa, alternative sources of

information need to be explored. In line with this, we report here the first use of the isotopes of

carbon, nitrogen, oxygen, and strontium, in combination, to source historic ivory traded from

East Africa. Using this baseline data set, we explore the potential of using isotope data to geo-

graphically provenance historic ivory to specific areas of the region in order to understand his-

toric extraction patterns. The unprovenanced data set we use to test the baseline data derives

from collections that post-date 1890, but the baseline data have the potential to be used for

sourcing ivory traded in earlier periods of the 19th century.

Sourcing traded ivory using isotope analysis

Isotope analysis has been applied to understand current distributions of elephants across Africa

[39–41], as well as historic diet patterns [42,43] and contemporary feeding ecology [44–46].

Fig 1. Location of historic andmodern provenanced East African elephant tissue samples. Caravan routes adapted from [36] and base maps of
global vegetation/land surface cover from [37] European Space Agency 2010 & UCLouvain GlobCover Project and geological map provided by the French
Geological Survey (BRGM) through SIGAfrique of bedrock age at a scale of 10 metres with the permission of OneGeology [38].

doi:10.1371/journal.pone.0163606.g001
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Most recently, a multi-isotope approach was evaluated for forensic wildlife purposes to trace

ivory across sub-Saharan Africa [47]. The research reported here uses isotope analysis to track

the historic trade that changed the distribution of elephants on the landscape. Isotope ratios

preserved in the tissues of elephants reveal several aspects of the ecological history of the ani-

mal, including its diet and habitat. Thus, each isotope analysis conducted for this research

(13C/12C, 15N/14N, 18O/16O and 87Sr/86Sr) informs about where a historic elephant roamed

within East Africa, given the principles of isotope ecology in elephants outlined below.

In African habitats, most grasses utilise the C4 pathway of plant photosynthesis, while trees,

shrubs, forbs, and other bushy vegetation utilise the C3 pathway. The two photosynthetic path-

ways discriminate differently between the carbon isotopes with the result that the two groups

have distinct δ13C values (the delta symbol (δ) indicates that the value is a measured ratio of
13C/12C relative to a standard reported in parts per thousand (‰)) [48,49]. C3 plants in tropical

forests have significantly lower δ13C values still, due to the combined effects of low light, and
effects of CO2 recycling beneath the forest canopy [50–52]. Elephants are mixed feeders, rely-

ing on a wide variety of plant species from trees to tropical grasses [53–57], and they inhabit a

wide range of habitats, from forests to savannas. Since elephants eat both C3 and C4 vegetation

at least partly according to their presence in the habitat, the δ13C value measured in the ele-
phant’s tissue also reflects the vegetation available in the habitat [56]. The ivory collagen δ13C
values of forest elephants (Loxodonta cyclotis), living mainly in the closed tropical forests of

central and western Africa, are significantlymore negative than those of elephant feeding

exclusively on C3 biomass in more open habitats [39, 56]. Savanna or bush elephants (Loxo-

donta africana), living mainly in eastern and southern Africa savanna, have a mixed diet of C3
and C4 vegetation with collagen δ

13C values between 21‰ and -12‰ [42,43,45,57].We expect

to see similar separations in the δ13C values of our data set based on density of tree cover in the
habitat, as elephant habitats in the interior Lakes region of East Africa were dominated by

closed-canopy forest, whereas coastal and Rift elephant habitats includedmosaics of tree, bush

and grassland (Fig 1).

The variability of stable nitrogen isotopes (15N/14N) in ecosystems reflects the balance

between biologically available nitrogen, fixation, and complex recycling and re-release of N2
within the biosphere [58]. Atmospheric N2 is globally uniform in isotope composition, with a

low δ15N composition (0‰ by definition). On land, soils and plants tend to be slightly 15N-

enriched compared to atmospheric N2 [59] so their δ
15N values are typically about 1–4‰, sub-

ject to variability related to environmental aridity, leaching (with high precipitation), anoxia

and salinity [60–62]. Nitrogen isotope ratios in elephant tissue largely reflect the composition

of the vegetation they consume, which is influenced by nitrogen recycling in the soil in which

the vegetation grows, and the plants and plant part they consume [61,63–65]. In most humid

rainforest habitats with organic-rich soils, plant δ15N values tend to converge around 5–6‰
(mean value for plants in Kibale Forest, Uganda and Amazon Forest, Brazil) [66–68]. In open,

arid environments 15N-enrichment can occur due to the loss of volatile nitrogen in the soil,

leading to higher δ15N values in plants and animals [69,70]. Although it has been suggested
that soil and plant δ15N is inversely related to rainfall [62], in practice this relationship is only
seen in locations where mean annual rainfall is less than 400 mm [61,71], and it is highly vari-

able. For elephants living in arid environments (Ethiopia, the Namib, Somalia), δ15N values of
up to 12–13‰have been observed [39,72]. We expect to see a similar trend of high δ15N values
for arid environments and lower, yet variable values in elephants from rain forest and mosaic

habitats in eastern Africa.

The sources of oxygen for an elephant include atmospheric oxygen, drinkingwater, leaf

water [73], and oxygen from carbohydrates in plants. Atmospheric oxygen can be discounted

since it is well-mixed, leaving the primary external influences on 18O/16O variability as the

Historic Ecology of East African Elephants
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isotopic composition of local rainfall [74], moderated by the influence of evaporation. The iso-

topic composition of drinkingwater is dependent on local climatic and geographical factors

[73,75,76], including distance from the coast, altitude and latitude due to rainout effects in the

former case and cooler air temperatures in the latter two [77]. Areas farther from the source of

moisture (the oceans) and at higher altitudes generally have lower δ18O values in water, and
also consequently in plant tissues [78,79]. Plants respond to moisture availability in their habi-

tat so leaf water and plant sugars are important sources of variability in mammal tissues. Plants

that grow in cooler, wetter, or shaded habitats exhibit lower evaporation rates from foliage

[80,81], while those in more open, arid habitats experience higher evapotranspiration, with the

result that the latter are generally enriched in 18O [82,83]. Thus, we expect East African ele-

phants living in more open, arid environments (such as Tana River, Kenya) to have higher

δ18O values, and those living in more humid, closed canopy forests and high altitude habitats
(such as the Mau Escarpment/Mount Kenya, Kenya, and Mount Meru, Tanzania) to have

lower δ18O values.
The 87Sr/86Sr incorporated into elephant tissue reflects, to a large degree, the strontium of

the bedrock on which elephants roamed. Bedrock strontium isotope composition reflects the

age of the geology and the rubidium content. However the strontium that an animal incorpo-

rates into its tissues does not directly reflect the bedrock geology, but rather the strontium that

is made available in soils to plants and then to animals. This ‘bioavailable’ strontium is affected

by the amount of weathering that occurs from bedrock to soil. General patterns of higher or

lower 87Sr/86Sr values do exist when compared to the type and age of the bedrock geology,

especially in such a diverse and widespread area as East Africa. Tissue 87Sr/86Sr values represent

an average of the range of values from bedrock over which each elephant roamed during the

time of tissue formation. The geology of East Africa is highly variable (See Fig 1) and ranges

from young volcanics in the Rift Valley to much older basement found in the Congo Basin. Ele-

phants which roamed on Rift Valley basalts (e.g. Arusha, Tanzania) are expected to have the

lowest 87Sr/86Sr values in the region, (0.7030 to 0.7045; [84]). Along the East African coast (e.g.

Saadani/Mikumi, Tanzania), 87Sr/86Sr values are expected to reflect a marine-like quaternary

sedimentary range, strongly influenced by coastal, windblown sands and the breakdown of

coral in the soil (~0.710). The highest values are expected in the regions with the oldest geology

where rubidium content is also high, such as Precambrian granites (e.g. Ruaha, Tanzania)

found farther into the interior and in the Great Lakes region (> 0.710; [85]).

Material and Methods

Sample Selection

Modern and historic baseline elephant specimens from known habitats across East African

ecological zones were sampled frommuseum collections in Africa, US, UK and Europe (Fig 1,

S1 Table) and analysed for the isotopes of carbon (δ13C), nitrogen (δ15N), oxygen (δ18O), and
strontium (87Sr/86Sr). Most samples were derived from the Powell-Cotton Museum (near Mar-

gate, Kent, UK) natural history collection assembled by the big game hunter Major Powell-Cot-

ton (b. 1866, d. 1940). The benefit of using this collection is the detail and quality of the

accompanying archival evidence regarding his hunting expeditions which helped contextualise

the isotope results for these samples [86]. Particular emphasis was placed on collecting samples

from areas surrounding the known nineteenth century caravan routes, as this would likely be

where traded elephant ivory was initially sourced.

Unprovenanced samples comprised piano keys, cutlery handles, and other ivory fragments

frommuseum collections including the Hawley Collection, Sheffield (UK), House of Wonders,

Zanzibar (Tanzania), Deep River and Ivoryton Museum, Connecticut (USA), and one

Historic Ecology of East African Elephants
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archaeological site (Korogwe, Tanzania). These samples are known to have been traded within

and from East Africa, from ca. 1890 to the mid-20th century. Dating of these samples is based

on archival and collection records, which typically indicate when the ivory was manufactured.

Therefore, it is likely that the material found in European and American collections dating to

the early and mid-20th century in particularwas traded out of East Africa as raw ivory prior to

this, though it is difficult to know precisely when. Ivory was too valuable and sought after not

to be used soon after its arrival in the warehouse for manufacture, but the dates for the samples

are still approximate.

Due to the fragmentary nature of the collections and restrictions on invasive sampling of

somemuseummaterial, it was not always possible to sample ivory directly. Consequently,

bone and molar teeth were also analysed. Bone is a dynamic tissue that re-models, whereas

molars do not–they are formed during a limited period of the animal’s life and do not undergo

any changes after formation. Ivory is a modifiedupper incisor, or tusk, that grows incremen-

tally throughout the lifetime of the elephant, and therefore archives a continuous record

[43,87]. In order to minimise the effect of inhomogenous, incremental tissues and differences

in turnover, we sampled larger areas of molars or the tusk, in order to average multiple growth

increments, and sampled in the same area of the molar, bone, or tusk in each case. For example,

the (most recently formed) proximal end of the tusk was sampled (elephants use the distal end

in daily activities, so this is worn away throughout their lifetime).Where possible, multiple tis-

sue samples were obtained from the same specimen, including tail hairs, to assess the variability

of isotope values over short-term time scales and these data are reported separately [86,88].

These results suggest that intra-annual variability amongst forest elephants is lower than that

found in savanna elephants, likely because of lower seasonal shifts in palatable vegetation and

water availability, which is in accordance with other studies [43,45]. While analyses of different

tissues from the same animal demonstrated that an individual elephant may well range across

different ecological zones during its lifetime, large pieces of ivory, bone, and molar that are

homogenised in the laboratory give averaged isotope values and relate to where an elephant

spent the majority of its life over multiple seasons.

Another sampling-related issue is that most historic elephant tissues collected by big game

hunters were frommale elephants (See S1 Table), because they are solitary and their tusks tend

to be larger and hence were more sought after. Males, specifically lone bulls, have larger home

ranges than females due to the matriarchal structure of elephant family groups [89–91].

Females have higher nutritional demands and the social responsibility of feeding the juveniles

in the matriarchal group, so they tend to be more conservative about staying close to reliable

sources of water and food [89–91]. Thus, sex and vegetation heterogeneity in the habitat also

influence the variability of individual elephant isotope values within a population.

Carbon and Nitrogen

For collagen extraction, either whole chips or powder were collected using a clean diamond-tip

drill bit on a Dremel hand drill. Museum samples from Europe as well as East African samples

(CITES permit 451717, 318736, 22225) were measured at the University of Bradford (UK) sta-

ble light isotope laboratory, whilst samples frommuseums in the USA were measured at the

University of Illinois Urbana-Champaign (USA) stable isotope laboratory due to CITES

restrictions on their export. Collagen extraction in both labs followed an adapted method of

gelatinization and filtration following the Longinmethod [92] and in Illinois followed the

method by Ambrose [93]. Briefly, cleaned chips or powdered samples were demineralised in

0.5MHCl at a temperature of 4°C for a period of 1–5 days then rinsed with de-ionizedwater to

neutrality [92]. After this, the samples were put in a 0.01MHCl (pH 3) solution and heated to

Historic Ecology of East African Elephants
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70°C for 48 hours to denature the collagen [92]. The modern and historic museum samples

were then centrifuged and filtered to remove large debris (60–90 μm Ezee1 filter) whereas the

few archaeological samples also went through a second filtering (30,000 nm ultrafilters) to

remove contaminants. All of the samples were then frozen and lyophilized for analysis.

In Bradford, samples were weighed into tin capsules for combustion into N2 and CO2 gases

on a Thermo Flash Elemental Analyser 1112 attached to a Delta plus XLmass spectrometer for

measurement of 13C/12C and 15N/14N ratios as well as elemental compositions (%C, %N). In

Illinois, samples were similarly combusted on a Carlo Erba NC 2500 Elemental Analyser cou-

pled to a FinniganMAT 252 mass spectrometer. In both laboratories, samples were measured

together with internal laboratory standards (fish gelatine, whale bone collagen) as well as inter-

national standards (e.g. ammonium sulfate (IAEA-N2), sucrose (IAEA-CH), and thiourea

(Sigma-Aldrich) to ensure inter-lab reproducibility of results. The results listed in S1 Table are

expressed in parts per thousand (‰) as delta (δ) relative to international standards of PeeDee
Belemnite (VPDB) for carbon and Ambient Inhalable Reservoir (AIR) for nitrogen. Repeatabil-

ity of the internal standards was less than 0.2‰ for δ13C and δ15N. All collagen samples fell
within a normal atomic C:N range of between 2.8 and 3.6, used as standard quality control

measure [93].

Carbon and Oxygen

For analysis of bioapatite carbonate, pieces of bone/molar/ivorywere either drilled using a

small diamond tip on a Dremel hand drill or homogenized in a SpexMill. Purification followed

protocols by Sponheimer [94], paying particular attention to the acetic acid step, which reacts

extremely quickly with modern dentine (ivory and molar) samples. Briefly, a NaOCl solution

(~1.7% v/v) was added to 10–20 mg of powder in a 2ml centrifuge tube for 3 hours to eliminate

the organic content, then centrifuged and rinsedwith de-ionizedwater several times. After

this, a 0.1M acetic acid (CH3COOH) solution was added to the samples, reacted for 5 minutes,

and then centrifuged and rinsed several times in de-ionizedwater. Samples were frozen and

lyophilized. In Bradford, dried, powdered samples were weighed into glass tubes for reaction

with 100% phosphoric acid at 70°C in a ThermoGasbench II interfaced with a Delta V mass

spectrometer. In Illinois, samples were analysed on a dual inlet Thermo Finnigan Kiel III device

interfaced with a FinniganMAT 252 mass spectrometer. All δ18Omeasurements are reported
as compared to the Vienna mean standard ocean water (VSMOW) while δ13C values are
expressed relative to the VPDB standard. International standards measured alongside the sam-

ples in both laboratories were NBS 18 and NBS 19. Analytical error was less than 0.2‰ for

both isotopes.

The δ13C values of modern samples were adjusted for the fossil fuel effect in the atmosphere,
using as starting year 1896 AD (the oldest sample in the data set). The correction factor is cal-

culated from the fossil fuel curve for the year to which the sample dates according to museum

and archival records [95].

Strontium

Strontium analysis was carried out at the University of Illinois, Urbana-Champaign (USA) and

the University of Cape Town (South Africa) for reasons related to CITES restrictions. An ali-

quot of the bone, ivory or molar dentine powdered as above for carbon and oxygen isotope

analysis was utilised for strontium separation in both labs using chromatographic separation

with Eichrom Sr spec resin, following protocols for solutionMC-ICP-MS [96]. In both labora-

tories, the powdered sample was dissolved in nitric acid (3MHNO3), then loaded onto chro-

matographic separation columns with a slurry of Sr spec resin in the base of the column. Once
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the sample was loaded onto the column, a series of 3MHNO3 elutions removed other heavy

elements allowing isolation of purified strontium. The purified strontium was then eluted with

0.05MHNO3 into a Teflon beaker, dried down at 90°C and reconstituted in 2ml of 0.2% HNO3
for introduction directly into the mass spectrometer for isotope analysis. A NuPlasma multi-

collector inductively coupled mass spectrometer (MC-ICP-MS) was used for analysis in both

laboratories. The international strontium standard NIST 987 was measured as a control, giving

0.710257 ±0.000057 (2σ) (reference value = 0.710255) based on multiple replicates (n = 57).

Analysis Tools

Vegetation information was sourced from [97] and the digitised version from [98]. For scatter-

plots (e.g. Fig 2), the colours of the symbols are grouped according to their habitat of forest/

mountain, savanna mosaic, and arid, adapted from [57] and based on the vegetation classifica-

tions in Fig 3 [97]. Historic climate data from the British Atmospheric Data Centre and Cli-

mate Research Unit time-series global grids are from 1901 [99,100]. Modern climate data

(elevation and annual precipitation) in Figs 4 and 5 are from theWorld Clim Database [101].

The geologymap in Fig 6 derives from the AfriCover database and OneGeologyportal courtesy

of the French Geological Survey (BGRM) [38]. Principle component analysis (PCA) was run in

the R statistical software package [102].

Results

The δ13C and δ15N results measured on the collagen of elephants from the modern data set
range from -11.4 to -21.0‰ and 5.7 to 15.0‰, respectively, shown in Fig 2 (A1). The δ13C
results show that most elephants were mixed feeders, consuming both C3 and C4 vegetation.

Elephants from three locations (red symbols: Garissa, Lugard Falls, and Tana River) are sepa-

rated from the main cluster of data points due to their high δ15N values (13 to 15‰). These
high values likely reflect the aridity of these locations, which have highly seasonal, low annual

rainfall–precipitation in the dry season is on average less than 50mm and in total less than

500mm per year [101].

Collagen δ13C and δ15N data for the historical ivory in Fig 2 (B1) fall into three clusters. The
first (extreme left of the graph, δ13C = -23 to -25‰) consists of forest elephants that browsed
in closed canopy forests dominated by C3 vegetation. This cluster includes the historic ele-

phants that ranged in habitats farther into the East African interior and nearer the Great Lakes

region, such as the Ituri Forest, Lake Albert, Lado Enclave Camp, and Makala samples. Their

δ13C values are similar to those documented [41] for modern Central African elephants living
in closed canopy forests (-24±1.3‰, n = 11). The second and largest cluster of data points

(δ13C = -22.1 to -18.5‰) represents elephants that fed on a mixture of both C3 and C4 vegeta-
tion, in mosaic habitats of forest, woodland, and grassland. The third cluster, consisting of

three outlying points to the right of the graph (δ13C = -13‰) are set apart by their high δ13C
values, and represent elephants which consumed a substantial amount of C4 grass. Two ele-

phants in this cluster with particularly high δ15N values (15.8 and 17.6‰) are from Arda-Arto,
an area in central Ethiopia near what is today the Awash National Park. This area is dominated

by dry bushland and grassland with wooded areas along the Awash River [97]. Powell-Cotton

wrote in his hunting account of these two elephants that ‘. . .the next day’s march took us into a

lovely country of low, well-woodedhills, with plenty of grass, which extended to Arda-Arto, on

the bank of the Hawash’ with a further day’s journey leading them to ‘a sandy open plain,

sparsely dotted with thorn trees’ [103]. Based on their isotope values, these elephants were

likely feeding on the dry grasslands found in the more arid Afar region near Awash National

Park. The third elephant in this group is from Rhino Camp in the northwest corner of Uganda,
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and the δ15N value is much lower than the samples from Ethiopia. This lower δ15N value could
be a reflection of a more humid habitat or the consumption of a different type of C4 vegetation,

as this habitat is near a permanent water source (Nile River) and historically received an aver-

age rainfall of over 1000 mm per year [99,100].

The δ13C and δ18O values measured in the carbonate of modern elephants in Fig 2 (A2)
range from -14.6 to -5.8‰ and 24.3 to 33.3‰ respectively. Elephants frommore arid locations

Fig 2. δ13C, δ15N, δ18O and 87Sr/86Sr values for modern and historic provenanced elephant samples from East Africa. (A1-3) Three plots of modern
(post-1950) elephant tissue samples collected frommuseum specimens and national parks in Tanzania (see S1 Table). Colours of all samples correspond
to habitat following [41] for East African elephant habitats: green is forest/mountain, black is savanna mosaic (incorporates a wide range of woodland/
bushland/grassland habitats) and red is arid (incorporates arid bushland and grassland habitats), with habitat descriptions following [97]. (A1) δ13C and δ15N
values of collagen, (A2) δ13C and δ18O values of carbonate, and (A3) δ13C and 87Sr/86Sr values, from collagen and carbonate respectively. (B1-3) Three
plots of historic (1896–1909) elephant tissue samples collected frommuseum specimens (see S1 Table). (B1) δ13C and δ15N values of collagen, (B2) δ13C
and δ18O values of carbonate, and (B3) δ13C and 87Sr/86Sr values, from collagen and carbonate respectively.

doi:10.1371/journal.pone.0163606.g002
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(red symbols) have higher δ18O values (n = 5, mean = 32.4‰, stdev = 0.8‰) than samples
from forest and high altitude environments (n = 2, mean = 26.2‰, stdev = 2.6‰). For exam-

ple, one of these samples is from the Mau Escarpment, Kenya. Ambrose and DeNiro [104] sur-

veyed a gradient of C3 to C4 plants along the Mau Escarpment and found that C4 plants were

restricted to low altitudes with a sharp transition to C3 plants in higher altitudes. This elephant

has a δ13C value indicative of C3 consumption, and low δ18O value, reflecting the high altitude
of the habitat in which the elephant was likely feeding.

The δ13C and δ18O values measured in the carbonate of historic elephants in Fig 2 (B2)
range from -16.8 to -7.6‰ and 22.6 to 32.2‰ respectively. A correlation between low δ13C and
low δ18O values seen here indicates that elephants which primarily consumed C3 vegetation
(lower δ13C values) lived in more humid and/or high altitude environments (lower δ18O val-
ues). There is also a similar trend found in the modern samples frommore arid locations (red

symbols) which have higher δ18O values (n = 3, mean = 31.4‰, stdev = 0.9‰) than the ele-
phants living in forested/mountain locations (green symbols) (n = 6, mean = 27.4‰,

stdev = 1.8‰).

The range of 87Sr/86Sr values (0.705 to 0.720) measured in all the modern elephant samples

is wide (Fig 2, A3), although animals from the same reserve have a relatively conservative range

of values. As expected, the elephant from Arusha (Rift Valley volcanics) has the lowest
87Sr/86Sr value in the data set (0.70512), thoughmany samples fall within this lower 87Sr/86Sr

range, including all of the Kenyan elephants (Garissa, Tana River, Mau Escarpment), reflecting

the young geology of the Rift. The Saadani and Mikumi samples from near the Tanzanian

coast reflect expected 87Sr/86Sr values typical of coastal sedimentary geology (0.71353 ± 0.002).

The 87Sr/86Sr values (0.705 to 0.736) for the historic elephants shown in Fig 2 (B3) exhibit a

clear separation between those animals which roamed on younger (below 0.708) and older

geology (above 0.710). Using a second isotope system (δ13Ccollagen), it is possible to further

Fig 3. Map of δ13C values and vegetation. Circle colour represents the δ13C value of each sample from that location. The base map of vegetation
cover with legend is a simplified version of [98].

doi:10.1371/journal.pone.0163606.g003
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discriminate those elephants that consumed C3 vegetation in forests (δ
13C less than -23‰) as

these populations also have higher 87Sr/86Sr values (n = 3, mean = 0.726, stdev = 0.008) due to

the older basement geology in the interior regions of East Africa.

Discussion

Trends in Provenanced Data Sets

For each of the isotopes measured, a distributionmap is displayed in Figs 3–6 showing the iso-

topic variability of elephants across different habitats and relating those values to the distribu-

tion of vegetation cover, annual precipitation, elevation, and bedrock geology.

The variation in δ13Ccollagen values in the modern and historic provenanced elephants is
shown in Fig 3, with values ranging from -27.8‰ to -12.7‰, on a base map of vegetation

cover. The elephants living in forests further inland have the most depleted δ13C values (dark-
est green symbols) and differ significantly from elephants from arid or mosaic habitats (Mann-

Whitney Z-value for forest vs mosaic is 3.11 and for forest vs arid is -3.20, p<0.001 in each

case). However, δ13C values for some elephants near the Great Lakes region indicate a substan-
tial amount of C4 grass in the diet. From the vegetation map (Fig 3) it is possible to see that

there are large areas of grassland along the lake shores, as well as areas such as the Queen Eliza-

beth National Park, Uganda, which has a mixture of short grassland, thicket and tall grassland

[97,105]. Conversely, the strip of coastal forest along the Kenya and Tanzania coastline is

reflected in the more negative δ13C value of a sample from Saadani National Park. Elephants
from the area of savanna just to the west of this coastal belt have more mixed δ13C values
reflecting the bushland and thicket in the habitat (light brown and yellow symbols).

The variation of δ15N values in elephants across the region ranges widely from 3.4‰ to

17.6‰, as shown against regional variations in annual precipitation in Fig 4. High δ15N values

Fig 4. Map of δ15N values and annual precipitation. Circle colour represents the δ15N value of the sample from that location. Base map is of
annual precipitation (mm) from theWorldClim database [101].

doi:10.1371/journal.pone.0163606.g004
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are measured in populations in the north-east of the region and within the more arid habitats

of the Rift. As the rainfall pattern becomes higher farther inland and in clusters along mountain

ranges, lower δ15N values are observed.As a result, elephants from arid locations have signifi-
cantly different δ15N values than those frommountain/forest locations (Mann-Whitney Z-
value for arid vs forest is -3.92, p<0.001). For both the historic and modern data sets, there was

a significant negative correlation (r = -0.684, -0.538, p<0.005 respectively) between the annual

precipitation and δ15N value of the elephant from each location. However, these correlations
are reportedwith caution, as rain forest elephants can have higher δ15N values than those living
in mixed grassland/woodlandenvironments with lower rainfall due to the moisture availability

in the soil and ‘openness’ of the nitrogen system in rainforest environments [67,68]. Thus it is

important to note that high δ15N values are only consistently measured in populations living in
regions of more extreme aridity.

The variation in δ18O values in the elephants is displayed on a base map of elevation in Fig
5, with values ranging from 22.6‰ to 33.3‰. For the provenanced data set, there is a signifi-

cant positive correlation (r = 0.542, p<0.001) between δ18O values and longitude, or in other
words, decreasing δ18O value with distance from the Indian Ocean coastline. The rainout effect
is enhanced by continental topography since the mountains and tropical forests are in the inte-

rior, west of the Great Lakes. The modern and historic elephants which have high δ15N values
(Garissa, Lugard Falls and Tana River, Arda-Arto) also have high δ18O values, as expected
given that these locations are in low rainfall, lower altitude environments. The modern and his-

toric elephants from arid locations have significantly different δ18O values than those from
mosaic or forested environments (Mann-Whitney Z-value for arid vs mosaic is -3.20 and for

arid vs forest is -4.09, p<0.001 in each case).

The variation in 87Sr/86Sr in the samples is displayed on a base map of bedrock geology in

Fig 6 and shows the large geological variation across this region with 87Sr/86Sr values between

0.70512 and 0.73639. There is also a significant negative correlation (r = -0.698, p<0.001)

between longitude and 87Sr/86Sr values in the provenanced data set. This negative correlation is

primarily driven by the differentiation of strontium isotope values between the volcanic Rift

Valley, with its comparatively young surface geology and thus low 87Sr/86Sr values, and the

regions farther into the interior with much older surface geology creating comparatively higher
87Sr/86Sr values.

The results demonstrate that isotope data differentiate broadly between ivory obtained from

elephants that routinely occupied different habitats and geographical areas across eastern

Africa. For example, those elephants that lived in closed canopy forests in the interior of the

region are characterised by their low δ13C values, low δ18O values, and high 87Sr/86Sr values.
This combination of distinct isotope values is related both to the forested habitat and the older

basement compared to the younger Rift volcanics to the east. Elephants roaming over Rift vol-

canics have low 87Sr/86Sr but a wide range of δ13C values due to the variety of vegetation types
of the Rift. Coastal elephants reflect a sedimentary bedrock range in their 87Sr/86Sr values.

Those which have rather low δ13C values inhabited coastal forests, whereas those inhabiting
coastal savannas have higher δ13C values.
These isotope results therefore reflect not only the mosaic vegetation cover of East African

elephant habitats, but also elephant migration to different patches of vegetation based on what

is palatable and available in different seasons [43]. Codron et al. [43] concluded through study-

ing elephant diet in Kruger Park over decades that elephants are ‘dietary generalists,’ and that

there is considerable diversity at the individual level in terms of the amount of graze to browse

consumed. This is represented in our data set by elephant tissue samples fromMikumi

National Park, Tanzania, which have a large range of isotope values. Mikumi is a diverse land-

scape and forms a wildlife corridor with the Selous Game Reserve, so the variability measured
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Fig 5. Map of δ18O values and elevation.Circle colour represents the δ18O value of the sample from that location. Base map is of elevation above
sea level (m) from theWorldClim database [101].

doi:10.1371/journal.pone.0163606.g005

Fig 6. Map of 87Sr/86Sr values and geology.Circle colour represents the 87Sr/86Sr value of the sample from that location. Base map is of bedrock
geology provided by the French Geological Survey (BRGM) through SIGAfrique of bedrock age at a scale of 10 metres with the permission of
OneGeology [38].

doi:10.1371/journal.pone.0163606.g006
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in these elephants reflects their diverse and expansive habitat range. In the historic data set,

two elephants fromWadelai, Uganda that were shot by Powell-Cotton in the same year have

disparate δ13Ccollagen values (-23‰ and -18‰) and 87Sr/86Sr values (0.720 and 0.716), but

more similar δ18O values (25.9‰ and 27.4‰) (Fig 2, B1-3). These values reflect the vegetation

in this region which includes forest, woodland, but also open grassland near Lake Albert and

the tributaries that feed into it [97]. Powell-Cotton wrote that near Wadelai he ‘came upon a

solitary elephant drinking from a little pool on an open expanse of grass’ [106] and in his diary

for the day that he shot the elephant, he describes swampy expanses that elephants visited to

drink [107]. Furthermore, this area straddles younger volcanics found in the westernmost part

of the Rift and older basement at the edge of the Congo basin which would cause the differ-

ences in the 87Sr/86Sr values of these elephants [108]. Another factor here, as mentioned previ-

ously, is that male elephants have feeding patterns that are more versatile and less conservative

than females and most of the elephants collected in the historic data set were frommale

elephants.

Overall, the results demonstrate patterns in both the historic and modern data sets for East

African elephants that are useful for determining the origin of unknown ivory samples. δ13C
values are low on the eastern coast due to coastal forest habitats and are more positive until the

Lakes, mountains, and forests are reached further inland, where the values are lower. The low-

est δ13C values are recorded in elephants living in closed canopy forested habitats in the inte-
rior. δ15N values are variable, but highest in elephants from arid habitats, with δ18O values
following this trend. δ18O values also are lower in elephants which lived further inland and in
higher altitude habitats. And finally, 87Sr/86Sr values are lowest in the Rift and higher going

west towards the basement geology of the interior region. Thus, it should be possible using all

four isotopes to better pinpoint the origins of historic elephants, with the proviso that vegeta-

tion and rainfall patterns have remained similar in these same habitats in the past.

Historic Unprovenanced Ivory

Having explored trends in the provenanced data set, the results of the analyses of unprove-

nanced ivory (i.e. the piano keys, cutlery handles, and other ivory objects traded from East

Africa) can be considered. In Fig 7 (A1-3), the results of the modern, historic, and additional

published data [39,41,42] are coloured according to habitat zone as before (green = forest/

mountain, black = mosaic, red = arid) and in Fig 7 (B1-3), the values from the modern and his-

toric provenanced elephants are plotted in closed circles as in Fig 7 (A1-3), but with the addi-

tion of the unprovenanced ivory plotted in blue open circles. The majority of these ivory

samples, including piano keys and cutlery handles, have δ13C values lower than -18‰, suggest-
ing that they derived from elephants consuming substantial amounts of C3 vegetation (Fig 7,

B1). Seven of the unprovenanced ivory samples plot with elephants from closed canopy forest

habitats (δ13C values of -24‰ +/- 0.6). Only three of the unprovenanced samples have values

higher than -18‰; they include a tusk from the Zanzibarmuseum and piano keys. Although

all the piano keys from one piano were manufactured in Ivoryton, USA, one of the keys plots

separately from the others primarily due to its low δ13C value of -16‰, with the others from
the group with values averaging -20‰. Historical sources on piano key manufacturing in Ivor-

yton indicate that efforts were made to ensure uniform colour and texture across the keyboard

and hence key tops were usually cut from the same tusk [109]. In this case, however, the ivory

may be from a different elephant.

Fig 7 (B2) shows δ18O and δ13C from unprovenanced ivory in open blue circles. A large pro-
portion of ruler blanks (blank ivory pieces that would have beenmade into rulers) have low

δ18O and δ13C values very similar to samples from the Ituri Forest, Congo. Interestingly the
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δ18O values of many of the other blanks are outside the range of the provenanced samples,
with lower δ18O values (less than -23‰) than the provenanced elephants from forested habi-
tats. This could indicate that they are from other inland forests with a hydrological regime dif-

ferent from that of the provenanced and published data sets. Measured δ18O values in modern
Central African elephants and mountain/forest elephants of East Africa are around 25‰ [41].

These unprovenanced samples may originate from higher altitude (low δ18O values), rainforest
elephants farther west towards the Congo basin and within the distribution of West African

monsoonal rainfall originating from the Atlantic rather than the Indian Ocean, as the source of

the rainfall affects the oxygen isotope value of the drinkingwater. Alternatively, they might be

derived from elephants that occupiedmountainous habitats in Uganda/Rwanda where ele-

phants are unknown today. Most of the other piano keys plot within the δ18O range of the East

Fig 7. δ13C, δ15N, δ18O and 87Sr/86Sr values for modern, historic, and unprovenanced elephant
samples from East Africa. (A1-3) Three plots of modern (post-1950) and historic elephant tissue samples
collected frommuseum specimens, national parks in Tanzania (see S1 Table), and including modern
published data from [39,41,42]. Colours of all samples correspond to habitat following [41] for East African
elephant habitats: green is forest/mountain, black is savanna mosaic (incorporates woodland/bushland/
grassland habitats) and red is arid (incorporates arid bushland and grassland habitats), with habitat
descriptions following [97]. (A1) δ13C and δ15N values of collagen, (A2) δ13C and δ18O values of carbonate,
and (A3) δ13C and 87Sr/86Sr values, from collagen and carbonate respectively. (B1-3) Three plots of all
samples included in (A1-3) are lightly shaded and in blue open circles, the unprovenanced ivory samples
frommuseum collections (see S1 Table). (B1) δ13C and δ15N values of collagen, (B2) δ13C and δ18O values
of carbonate, and (B3) δ13C and 87Sr/86Sr values, from collagen and carbonate respectively.

doi:10.1371/journal.pone.0163606.g007
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African elephants that consumedmixed vegetation in mosaic habitats of woodland and

grassland.

Finally, the 87Sr/86Sr values for the unprovenanced samples are plotted with δ13C in Fig 7
(B3). Most of the ruler blanks and piano keys have high 87Sr/86Sr values (<0.720), plotting

more closely to the provenanced samples from forested habitats and older geological ranges,

such as those located farther into the East African interior. However, the δ13C results do not
suggest that all of the ivory used for these piano keys was derived from closed canopy forest ele-

phants, but rather that some were mixed C3 and C4 consumers, suggesting that they occupied

different habitats. Thus, it is possible these ivories came from elephants that inhabited more

open habitats but on older geology: the provenanced samples that are similar to these values

are from Ruaha National Park, Tanzania and Uganda. The Korogwe archaeological elephant

bone is an outlier compared to the other unprovenanced samples, as it has a low 87Sr/86Sr

value, meaning that this elephant could have been local to the Pangani basin, as Korogwe and

areas west towards Arusha and Kilimanjaro are located on a geological belt of young basalts.

In order to compare all of the isotopes together from the modern, historic, and published

data sets, a principal component analysis was carried out. When three of the isotopes are com-

pared (δ13C, δ15N, and δ18O), the first two principal components (Fig 8A) account for 80% of
the total variance.When all the isotopes are compared (δ13C, δ15N, δ18O, and 87Sr/86Sr), the
first two principal components (Fig 8B) account for 90% of the total variance.We analysed

both becausemore samples had δ13C, δ15N, and δ18O values than 87Sr/86Sr values, so we could
include more of the data in the analysis with three isotopes. The lines with arrows on the PCA

plots visually represent how each of the isotopes affects the spread of the data along the princi-

pal component axes. Because each isotope pulls the data set in different directions, this demon-

strates the importance of using all of the isotopes to more effectively separate the data set,

which was also reported for isotope sourcing of modernAfrican ivory samples [47]. Samples

that plot in close proximity are related by the close range of their multiple isotope values and

thus these elephants likely lived in a similar habitat.

Fig 8. Principal component analysis plots. Colours of symbols and 95% confidence circles correspond to colours in previous
figures, green is forest/mountain, black is savanna mosaic (incorporates woodland/bushland/grassland habitats), red is arid
(incorporates arid bushland and grassland habitats), and blue is unprovenanced ivory. (A) represents the scores for the samples
along PC 1 versus PC 2 with three of the isotopes included as variables (δ13C, δ15N, δ18O) given that more samples had data for
these three isotopes than all four isotopes together. PC 1 explained 52.4% of the variance in the data set whilst PC 2 explained
28.1%. (B) represents the scores for the samples along PC 1 versus PC 2 with all of the isotopes included as variables (δ13C, δ15N,
δ18O and 87Sr/86Sr). PC 1 explained 71.7% of the variance in the data set whilst PC 2 explained 19.5%.

doi:10.1371/journal.pone.0163606.g008
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Both of the plots consistently show that more of the unprovenanced samples match values

measured in elephants from forest/mountain and mosaic habitats than arid ones (red symbols).

The unprovenanced samples are also scattered quite widely, though there are a few clusters

worth highlighting. Seven of the piano keys/ruler blanks have δ13Ccollagen values lower than
-23‰, and therefore cluster with the group of historic samples from closed canopy forest habi-

tats. It is likely that these samples thus originated from the East African interior where these

habitats exist, as there are no δ13Ccollagen values this low from elephants elsewhere in East
Africa along the coast or in the Rift. Another large group of ten unprovenanced ivory samples

have high 87Sr/86Sr values, but with higher δ18O values and high δ13C values they are more sim-
ilar to the values from the modern samples from Ruaha National Park, Tanzania, the published

elephant value from Kasungu, Malawi [39], and the historic sample fromObbo, Uganda. A fur-

ther two samples are set apart due to their low 87Sr/86Sr values, one from the archaeological site

of Korogwe that is likely local to the area, and the other a ruler blank with an 87Sr/86Sr value of

0.705 and a δ13Ccollagen value of -20‰. This ivory was likely from an elephant that inhabited
forest or woodland on relatively young geology in the Rift such as around Mount Meru, Kenya.

Overall, the trends in the data sets highlight a number of issues regarding the provenancing

of ivory samples from East Africa. The region is incredibly diverse in terms of its geology, vege-

tation, and climate, and therefore there are unique regions that provide ‘outlier’ numbers for

certain isotope signatures, such as the Rift with its low 87Sr/86Sr values and the interior with its

closed canopy rainforests and low δ13C values. We know from accompanying documentary
sources that all of the unprovenanced pieces tested are from ivory obtained post-1890, in other

words, after the hypothesised expansion of the ivory trade into the interior [7,8,20]. Many of

the unprovenanced pieces did not come from arid environments, some came from closed can-

opy forests, and others likely from the Rift. Thus, it is possible to say that these samples likely

did not originate from the narrow coastal strip along the southern Kenyan and northern Tan-

zanian coast where elephants are thought to have been eradicated by the 1890’s (see map in

[20]). A portion of our unprovenanced ivory therefore supports the archival history, yet the

remainder were from habitats that do not match our provenanced data set.

Conclusion

Our study underlines the importance of a ‘multi-isotope’ approach for characterising East Afri-

can habitats, as we demonstrated that all of the isotopes were necessary for explaining variation

in the data set, and that without all of the isotopemeasurements, the ability to predict the habi-

tat of origin of an unprovenanced sample declined substantially. A recent preliminary study of

post-medieval ivory found in Amsterdam [110] reached a similar conclusion.

Despite the use of multiple isotopes, there are limitations of this technique, and in principle

it may ultimately be more useful for determiningwhere an elephant does not originate than

pinpointing where it does. Assigning origin to elephant ivory becomes increasingly difficult the

larger the scale, so using the technique on a continental scale, as has been a suggested applica-

tion for modern illegal ivory confiscations [47], would not be possible without the addition of

another method. For example, mitochondrial and nuclear DNA have been utilised recently to

determine the likely source region of modern ivory confiscated from poachers and their mid-

dlemen (e.g. [111–114]). As African elephant genome databases continue to grow and sam-

pling depth increases, it may be possible to use genetic markers to obtain more precise

information regarding the location where the ivory was first obtained.More precise location

information is particularly useful in terms of the modern trade, as better funding can be chan-

nelled to those regions and national parks in Africa which are witnessing increasing numbers

of poached elephants. In terms of the historic ivory trade, better geographic provenancing of
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ivory could inform which habitats in Africa were most depleted of elephants by the ivory trade

through times when there was a surge in extraction across the continent, such as the late 19th

century. This information might also be able to reveal trade connections between specific

regions in Africa and the Middle East, Asia, and Europe from the early medieval period

onwards by being able to provenance archaeological ivories traded from Africa across the

globe. However, other methodsmay still be effective and can provide additional important

information about ecological conditions and animal behaviour, as we report here with refer-

ence to the development of an isotopic approach to provenance historic ivory obtained from

East Africa. Furthermore, the isotopic data sets created by this study and others could also be

used on a smaller scale to understand elephant movement across park boundaries, as well as

changes in the dietary ecology of these animals throughout time for the management of these

landscapes into the future.

Ivory, whether frommammoth, Asian or African elephants, walrus, hippopotamus, narwhal

or others, has been a desirable material among different human populations throughout the

globe for millennia [115]. In this paper, we explored the geographical origins of ivory that was

traded as part of the 19th century East African caravan trade to understand the interactions

between humans and elephants during a time when there was an exponential demand for ivory

from this region of Africa. These results suggested that a range of habitats were exploited for

elephants from the late 19th to the mid-20th centuries, but particularly interior regions of East

Africa. Tracing the geographical origins of ivory, whether to address historical and archaeolog-

ical questions or in the context of contemporary fears over the impact of poaching [116,117], is

thus a necessary starting point for exploring the wide range of events and processes within

which ivory was exploited. The practical task of doing so, however, depends on the robustness

of the baseline data set and general knowledge of local ecology and habitats in the region to be

explored.

Supporting Information

S1 Table. Isotope and location data for all samples. δ18O values are relative to VSMOW and

the δ13C values of modern elephants have been corrected for depletion of 13C in atmospheric
CO2 since the Industrial Revolution, due to burning of fossil fuels, for comparison with historic

samples [90].

(XLSX)
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