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The latitudinal gradient of the start of the growing season (SOS) and the end of the growing season (EOS) were
quantified in Alaska (61°N to 71°N) using satellite-based and ground-based datasets. The Alaskan evergreen
needleleaf forests are sparse and the understory vegetation has a substantial impact on the satellite signal. We
evaluated SOS and EOS of understory and tundra vegetation using time-lapse camera images. From the compar-
ison of three SOS algorithms for determining SOS from two satellite datasets (SPOT-VEGETATION and Terra-
MODIS), we found that the satellite-based SOS timingwas consistentwith the leaf emergence of the forest under-
story and tundra vegetation. The ensemble average of SOS over all satellite algorithms can beused as ameasure of
spring leaf emergence for understory and tundra vegetation. In contrast, the relationship between the ground-
based and satellite-based EOSs was not as strong as that of SOS both for boreal forest and tundra sites because
of the large biases between those two EOSs (19 to 26 days). The satellite-based EOSwas more relevant to snow-
fall events than the senescence of understory or tundra. The plant canopy radiative transfer simulation suggested
that 84–86% of the NDVI seasonal amplitude could be a reasonable threshold for the EOS determination. The lat-
itudinal gradients of SOS and EOS evaluated by the satellite and ground data were consistent and the satellite-
derived SOS and EOS were 3.5 to 5.7 days degree−1 and −2.3 to −2.7 days degree−1, which corresponded to
the spring (May) temperature sensitivity of−2.5 to−3.9 days °C−1 in SOS and the autumn (August and Septem-
ber) temperature sensitivity of 3.0 to 4.6 days °C−1 in EOS. This demonstrates the possible impact of phenology in
spruce forest understory and tundra ecosystems in response to climate change in the warming Artic and sub-
Arctic regions.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the Arctic and sub-Arctic regions, including Alaska, warming
trends have been accelerating and the increased trend in surface tem-
perature in the region over the past decade is twofold higher than that
in the whole northern hemisphere (Bekryaev, Polyakov, & Alexeev,
2010; Hinzman et al., 2013; IPCC, 2013). It is of particular interest
i, Kanazawa-ku, Yokohama,

. This is an open access article under
whether the carbon uptake by terrestrial vegetation increases or de-
creases due to the change in phenology under climate change
(Barichivich et al., 2013; Forkel et al., 2016; Goetz, Bunn, Fiske, &
Houghton, 2005; Oechel, Laskowski, Burba, Gioli, & Kalhori, 2014) be-
cause the impact of earlier spring onset could be moderated by en-
hanced ecosystem respiration in the prolonged autumn period (Piao
et al., 2008; Ueyama, Iwata, & Harazono, 2014).

Observation and modeling of start of growing season (SOS), end of
growing season (EOS), and growing season length provide essential in-
formation on how terrestrial vegetation responds to climate changes
(Buermann et al., 2014; Keenan et al., 2014; Nagai et al., 2013b; Piao
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Fig. 1. Geographical distribution of the time-lapse camera locations. Black circles are
tundra sites and the stars are forest sites. Full site names are provided in Table 1. Some
camera images for individual sites are provided in the supplemental figure.
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et al., 2011; Richardson et al., 2013b; Schwartz, Ault, & Betancourt,
2013; Verbyla, 2008; Xu et al., 2013). In the Arctic and sub-Arctic re-
gions, the earlier SOS trends were found in previous studies
(Buermann et al., 2014; Delbart et al., 2008; Hogda, Tommervik, &
Karlsen, 2013; Myneni, Keeling, Tucker, Asrar, & Nemani, 1997; Piao
et al., 2011). On the other hand, a relatively limited amount of informa-
tion is available on large-scale EOS variations and its long-term trends
(Jeong & Medvigy, 2014). Recent studies have found a trend for later
EOS in many zones in Europe (Garonna et al., 2014), North America
(Zhu et al., 2012), and for temperate vegetation over the northern hemi-
sphere (Jeong, Ho, Gim, & Brown, 2011), suggesting that rising temper-
ature could affect the phenological events. However, the environmental
factors (e.g. photoperiods and temperature changes) that control the
changes in EOS are not clearly understood (Delpierre et al., 2009;
Jeong & Medvigy, 2014; Richardson et al., 2013a).

The estimation of SOS and EOS utilizes the seasonal patterns in sat-
ellite vegetation indices (VIs). In theArctic and sub-Arctic regions, an in-
crease in the normalized difference vegetation index (NDVI) (green-up)
in spring is partially affected by the timing of snowmelt (Dye & Tucker,
2003; Jonsson, Eklundh, Hellstrom, Barring, & Jonsson, 2010; Kobayashi,
Delbart, Suzuki, & Kushida, 2010; Kobayashi, Suzuki, & Kobayashi, 2007;
Suzuki, Kobayashi, Delbart, Asanuma, & Hiyama, 2011). A systematic
bias has also been found at EOS, and snow is thought to affect the
satellite-based EOS estimation (Zhu et al., 2012); however, it has not
been investigated quantitatively.

Because boreal forests in Alaska are sparser than forests in lower lat-
itudes (Canada and the U.S.), the seasonality of understory plants has a
substantial impact on satellite signals (Pisek & Chen, 2009; Rautiainen &
Heiskanen, 2013; Yang, Kobayashi, Suzuki, & Nasahara, 2014). In interi-
or Alaska, black andwhite spruce are the dominant species. The spectral
reflectance of these species with evergreen needles is relatively un-
changed throughout the growing season (Nagai et al., 2012), while it
is likely that satellite phenology metrics should be greatly influenced
by understory plant phenology. However, how the satellite-based phe-
nology metrics are influenced by the forest overstory status, understory
plant phenology and other factors such as snow and observation condi-
tions remains less investigated in Alaska. Thus, comparisons with
ground-based datasets are essential. Time-lapse camera images provide
the seasonal information on surface conditions and have been used
widely for the detection of phenological events at ground level
(Richardson et al., 2007; Woebbecke, Meyer, Vonbargen, & Mortensen,
1995).

In this study, we quantified the latitudinal gradient of SOS, EOS, and
the timing of snow cover in Alaska using ground-based time-lapse dig-
ital camera images, and then compared these events with SOS and EOS
determined using the satellite data. In the ground-based analysis, we
used firsthand time-lapse camera images obtained at 17 sites (six tun-
dra sites and eleven boreal evergreen forest sites) along a latitudinal
transect through the state of Alaska, USA (61°N to 71°N), which covers
the boreal forest and tundra ecosystems (Fig. 1). We evaluated SOS and
EOS by the three phenology algorithms using two satellite datasets
(Terra-moderate resolution imaging spectroradiometer (MODIS) and
SPOT-VEGETATION). Through the comparison, we investigated the dis-
crepancies in satellite phenology metrics and the influence of snow and
understory phenology in tundra and boreal forests. To quantitatively
evaluate those impacts, we performed a detailed radiative transfer
simulation.

2. Materials and methods

2.1. Study area

The study sites are distributed on a north–south transect acrossAlas-
ka between a latitudinal range of 61°N to 71°N (Fig. 1). All ground ob-
servation sites are within a longitudinal band between 144°W to
157°W. These sites contain two distinct ecosystems: evergreen
needleleaf forest and tundra. Evergreen needleleaf forests are found in
the south of the Brooks Range (68°N), while the tundra ecosystem is
typical of the north. The dominant overstory tree species in interior
Alaska is black spruce (Picea mariana). Most of the understory layer is
covered with rusty peat moss (Sphagnum fuscum) and splendid feather
moss (Hylocomium splendens). The colors of rusty peat moss and splen-
did feathermoss vary spatially and seasonally (brown to green). The un-
derstory layer is also partly covered with tussocks formed by
herbaceous perennial cotton-grass (Eriophorum vaginatum) (Kim,
Kodama, Shim, & Kushida, 2014; Nakai et al., 2013). The dominant vas-
cular plants of theunderstory are low shrubs andherbs such as Labrador
tea (Ledum groenlandicum), bog bilberry (Vaccinium uliginosum), dwarf
birch (Betula nana), and cloudberry (Rubus chamaemorus) (Kim et al.,
2014; Nakai et al., 2013). These vascular plants are deciduous. The cam-
era observation sites in the tundra are located in heath tundra andmoist
acidic tundra areas. The moist acidic tussock tundra is dominated by
tussock sedge (Eriophorum vaginatum), and dwarf shrubs (Betura
nana, Carex bigelowii, Vaccinium vitis-idaea, and Ledum palustre)
(Euskirchen, Bret-Harte, Scott, Edgar, & Shaver, 2012; Kim et al., 2014;
Oechel et al., 2014). The dry heath tundra is dominated byDryas spp., li-
chen, and dwarf shrubs (Environmental Data Center Team, 2014;
Euskirchen et al., 2012).
2.2. Datasets

2.2.1. Time-lapse photography
We used time-lapse camera images obtained from 17 sites across

Alaska (Table 1 & Fig. 1). The 6 northern sites (denoted as T-1 to T-6)
are located in tundra and the other 11 sites are in boreal forests (denot-
ed as F-1 to F-11). At these sites, there are three different time-lapse
camera systems: GardenWatchCams (Brinno Inc., Taiwan), webcams,
and a fish-eye camera (Nikon Coolpix 4500 with an FC-E8 fisheye
lens) (Table 1). These camera systems took the images of tundra and
forest understory vegetation at a nadir or horizontal view. The sampling
interval was from 15 min to 6 h depending on the camera setting. Im-
ages that were bright enough to obtain color information and in
which there were no distinct sunlit or shade variations were selected.



Table 1
Site location, vegetation, and phenology camera system used in this study.

ID Site Latitude Longitude Camera system Year Vegetation type Reference

T-1 Barrow (BRW) 71.323 −156.626 Webcam 2006 Wet sedge tundra Zona et al. (2009)
T-2 Coastal tundra (CT) 69.962 −148.726 GardenWatchCam 2011–2013 Wet sedge tundra Kim (2014)
T-3 Upland tundra (UT) 68.899 −148.867 GardenWatchCam 2011, 2013 Tussock tundra Kim (2014)
T-4 Brooks range (BRK) 68.626 −149.594 Webcam 2011–2012 Heath tundra a

T-5 Toolik lake (TLK) 68.626 −149.594 Webcam 2010, 2012–2013 Moist acidic tundra a

T-6 Atigun (ATG) 68.453 −149.367 Webcam 2009–2010 Health tundra a

F-1 Transect-A (T-A) 68.008 −149.736 GardenWatchCam 2011 Understory plantsb Sugiura et al. (2013)
F-2 Tundra-boreal forest ecotone (TZ) 67.991 −149.760 GardenWatchCam 2012–2013 Understory plantsc Kim (2014)
F-3 Boreal forest at Coldfoot (BC) 67.180 −150.307 GardenWatchCam 2012–2013 Understory plantsb Kim (2014)
F-4 Transect-B (T-B) 65.901 −149.764 GardenWatchCam 2011 Understory plantsb Sugiura et al. (2013)
F-5 Transect-C (T-C) 65.825 −144.071 GardenWatchCam 2011–2012 Understory plantsb Sugiura et al. (2013)
F-6 Poker Flat (PFA) 65.123 −147.487 Fish-eye camera 2012 Black spruce and understory plants Nagai et al. (2013a, 2013b)
F-7 Poker Flat burnt site (PFAb) 65.117 −147.433 GardenWatchCam 2012 Understory plantsd Iwata et al. (2013)
F-8 Univ. Alaska, Fairbanks (UAF) 64.867 −147.850 GardenWatchCam 2011–2013 Understory plantsb Ueyama et al. (2014)
F-9 Transect-F (T-F) 64.481 −149.084 GardenWatchCam 2011 Understory plantsb Sugiura et al. (2013)
F-10 Transect-H (T-H) 62.746 −150.127 GardenWatchCam 2011 Understory plantsb Sugiura et al. (2013)
F-11 Transect-I (T-I) 61.816 −150.089 GardenWatchCam 2011 Understory plantsb Sugiura et al. (2013)

a Environmental Data Center Team (2014).
b Black spruce forests.
c White spruce forests.
d Black spruce burned site.
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Areas within images showing tundra or understory vegetationwere ex-
tracted for analysis.

2.2.2. Installation conditions of time-lapse cameras
T-4, T-5, and T-6were located near Toolik Lake (Environmental Data

Center Team, 2014). The camera system in T-6 (Atigun Gorge) was
mounted on a 10 m tower near the Atigun River bridge crossing of
the Dalton highway. The two other cameras (T-4 and T-5) were
mounted on towers attached to buildings at the Toolik Field Station.
The T-5 cameras faced toward Toolik Lake and surrounding shrubs,
and the T-4 cameras faced south toward the Brooks Range. The cam-
era images taken at around noon are available publicly (http://toolik.
alaska.edu/edc/abiotic_monitoring/image_library.php). The other
three tundra sites were located to the north of Toolik Lake. The T-2
and T-3 sites were wet sedge and tussock tundra, respectively. At
these sites, GardenWatchCams (Brinno Inc., Taiwan) were installed
roughly 1 m above the ground (Kim, 2014). For the T-1 (Barrow)
site, images were taken from a web camera installed near the eddy
covariance tower in moist acidic tundra (Kwon, Oechel, Zulueta, &
Hastings, 2006; Zona et al., 2009). Images were recorded every
15 min from April to September 2006. Data around noontime were
used in this study.

The sites F-1 to F-11 were located in black spruce forests in inte-
rior Alaska (Iwata et al., 2011; Iwata, Ueyama, Iwama, & Harazono,
2013; Kim, 2014; Nagai et al., 2013a; Sugiura, Nagai, Nakai, &
Suzuki, 2013; Ueyama et al., 2014). The F-6 and F-7 sites are close
to each other; however, the forest conditions are different: F-6 is a
matured black spruce forest and F-7 is a pre-matured black spruce
forest after the fire in 2004. Except for F-6, the time-lapse camera im-
ages were installed at the forest understory. These time-lapse cam-
eras monitored understory conditions from a nearly horizontal
view and any changes in the land surface, such as the snow cover
and understory vegetation changes, were easily identified. Images
were recorded every 1–4 h throughout the season from 2010 to
2012. However, because these cameras were installed in remote
sites under severe climate conditions, there were several large gaps
in the data due to technical problems, such as disorientation of the
camera by gusts of wind and damaged batteries in cold weather.
We selected the years and sites (Table 1) for which understory im-
ages provided adequate seasonal coverage. The camera at the F-6
site was a fish-eye camera (Nikon Coolpix 4500 with an FC-E8
fisheye lens) installed at a height of 17 m on the eddy covariance
tower of the Ameriflux site (US-Prr) (Ikawa et al., 2015; Nagai
et al., 2013a). The camera faced down and captured an image of the
understory surface every hour. The exposure and white balance
were set to automatic over the growing season (Nagai et al., 2013a).

2.2.3. Terra-MODIS and SPOT-VEGETATION
Two independent satellite-based surface reflectance datasets, the

Terra-MODIS 8-day (MOD09A1) and SPOT-VEGETATION 10-day maxi-
mum compositing data (S-10), were used to determine satellite-based
SOS and EOS. We collected these satellite datasets for the observation
periods of the time-lapse camera: in 2006 and 2010–2013. The
MOD09A1 is an atmospherically corrected surface reflectance dataset
with a spatial resolution of 500 m (MODIS) (Vermote & Vermeulen,
1999). The SPOT-VEGETATION S10 (1/112 degree) is a 10-day dataset
in which the reflectances are calculated by applying the atmospheric
correction method of Rahman and Dedieu (1994), which uses fixed
values of aerosol optical thickness (AOT). The spectral reflectances in
the corresponding locations and observation periods of the time-lapse
cameras were extracted. The NDVI and normalized difference infrared
index (NDII) (Hardisky, Klemas, & Smart, 1983) were computed from
red (RED, 620–670 nm for MODIS and 610–680 nm for VEGETATION),
near infrared (NIR, 841–876 nm for MODIS, 780–890 nm for VEGETA-
TION), and shortwave infrared (SWIR, 1628–1652 nm for MODIS and
1580–1750 nm for VEGETATION) reflectances. NDVI and NDII were de-
fined as follows:

NDVI ¼ NIR−REDð Þ= REDþ NIRð Þ ð1Þ

NDII ¼ NIR−SWIRð Þ= NIRþ SWIRð Þ: ð2Þ

2.2.4. Air temperature data
Monthly 0.5° air temperature data from the Climate Research Unit

(Harris, Jones, Osborn, & Lister, 2014) were used to evaluate the latitu-
dinal gradient of air temperature. We extracted the temperature
datasets close to the study sites. To compare with phenological events,
we used themonthly temperature inMay for SOS and an average of Au-
gust and September in EOS.

2.3. Determination of phenological events

2.3.1. Determination of SOS and EOS
SOS and EOS were determined using time-lapse camera data and

satellite datasets. For time-lapse camera data, we first extracted solar
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noontime images because they exhibited the best brightness condition.
Then we defined the region of interest (ROI) from the images to extract
the red, green, and blue digital numbers. The image areas with spruce
tree branches and sky were excluded. The true SOS and EOS values
were determined by a visual interpretation (DSOS_V and DEOS_V). This
was performed for the selected sites (F-1, F-4, F-5, F-7, F-9, F-10, and
F-11 in Table 1), where the cameras were installed close to the herba-
ceous plants and deciduous dwarf shrubs. The dates of DSOS_V and
DEOS_V were recorded when the leaf emergence and senescence were
recognized clearly in the ROI. This visual interpretation was performed
for herbaceous plants and deciduous dwarf shrubs within ROI to ex-
clude seasonal color changes in moss and lichen. In autumn, we deter-
mined EOSwhen all leaves in the ROIwere senesced and turned brown.

At sites where it was not possible to conduct a visual interpretation,
SOS and EOSwere determined from the empirical relationship between
phenology metrics derived from a camera-based phenology index (the
green excess index [GEI] (Richardson et al., 2007; Woebbecke et al.,
1995) and the visually determined SOS andEOS. This empirical relation-
shipwas established at sites where visual interpretationwas performed
(F-1, F-4, F-5, F-7, F-9, F-10, and F-11) and was applied to the rest of the
sites (see Section 3.1). The phenology metrics proposed by Zhang et al.
Zhang et al. (2003)were applied to theGEI. Phenologymetrics were de-
rived by the logistic function fitted to the seasonal change in GEIs.

GEIfit ¼
c

1þ eaþbt
þ d ð3Þ

where GEIfit and t are a fitted GEI and day of the year, respectively. The a,
b, c, and d are site- and season (spring or autumn)-dependent constants
for each GEI time series. Two spring (green-up D1 and maturity D2) and
autumn (senescence D3 and dormancy D4) events were then extracted
as rate of change in curvature derived from the third order derivative
(Fig. 2). The ground-based SOS and EOS were determined based on
the empirical relationship between the visually determined DSOS_V and
DEOS_V and phenology metrics (D1, D2, D3, and D4).

For time-series satellite datasets, we applied three algorithms to de-
termine SOS: the local NDVI threshold method (White, Thornton, &
Running, 1997), the NDII method (Delbart, Kergoat, Le Toan, Lhermitte,
& Picard, 2005), and the method of Zhang et al. (2003). In the local
NDVI threshold method, SOS was determined when normalized NDVI
exceeded 0.5. In the NDII method, SOS was determined as the point
when the NDII in spring reached a minimum value and then increased
above a spring threshold. This threshold was determined by the method
Fig. 2. An example of seasonality in green excess index (GEI), and rate of change in
curvatures in spring and autumn periods at the site F-1 in 2011. Gray dotted lines show
the SOS and EOS determined visually by the time-lapse camera. D1 and D2 are the two
spring phenology metrics (green-up D1 and maturity D2) derived from the rate of
change in curvature, and D3 and D4 are the two autumn phenology metrics (senescence
D3 and dormancy D4) derived in the same manner as D1 and D2.
used in Delbart et al. (2005), which is 20% of the seasonal NDII amplitude.
The method of Zhang et al. (2003) was applied to NDVI datasets. Green-
up (D1) and maturity (D2) were estimated by the fitting method de-
scribed by Eq. (3). The satellite-based SOS estimate was determined as
themidpoint of D1 and D2 following a study of reflectance and NDVI sea-
sonality in Siberia (Kobayashi et al., 2007). Fig. 3 shows examples of the
seasonal variations in NDVI, NDII and GEI. For autumn timings, the local
NDVI threshold method was used to determine EOS. The method of
Zhang et al. (2003) should be theoretically applicable in the samemanner
as for SOS. However, in our study area, the temporal patterns of NDVI in
autumn were complex due to multiple occurrences of snowfall and
snowmelt until the ground was covered with lingering snow. Thus the
NDVI fitting using the logistic function frequently failed.

The errors of three satellite-based methods from two satellite
datasets were evaluated using two statistical metrics (mean bias and
root mean square error (RMSE)). The mean biases were computed by:

Mean bias ¼ 1
N
∑
N

i¼1
Xg;i � Xsat;i

� �
ð4Þ

where Xg,i and Xsat,i are either SOS or EOS obtained from the time-lapse
camera and satellite for the ith estimated cases. Positive bias indicates
that the satellite-based estimates of SOS or EOS tend to be earlier than
the ground-based estimates. The RMSE was computed by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑
N

i¼1
Xg;i � Xsat;i

� �2
:

s
ð5Þ

The estimated SOS and EOS from satellites can be affected by clouds
(Kobayashi & Dye, 2005). The effects of clouds during ±2 compositing
periods (a total of five consecutive samples: ±16 days for MODIS and
±20 days for SPOT-VEGETATION) around SOS and EOS were evaluated
based on the cloud flag information. For MODIS, when the two cloud-
Fig. 3. (a) Comparison among GEI, NDVI, and NDWI seasonality at F-1, 2011. VIs from
SPOT-VEGETATION are plotted. (b) Solar and view zenith angles.



Table 2
Seasonal periods, solar zenith angles (SZA), optical parameters of understory vegetation, and overstory LAI seasonality employed in the radiative transfer simulation.

DOY SZA Understory reflectance Leaf area index

Red NIR Canopy Cover = 15% Canopy Cover = 45%

20% change 50% change 20% change 50% change

Spring-1 w/snow 140 (May 20th) 47.57° 0.561 0.466 0.58 0.37 1.9 1.2
Spring-2 140 (May 20th) 47.57° 0.0737 0.294 0.58 0.37 1.9 1.2
Summer-1 182 (Jul. 1st) 44.31° 0.0527 0.330 0.73 0.73 2.4 2.4
Summer-2 213 (Aug. 1st) 49.14° 0.0527 0.330 0.73 0.73 2.4 2.4
Autumn-1 244 (Sep. 1st) 58.62° 0.0737 0.294 0.58 0.37 1.9 1.2
Autumn-2 274 (Oct. 1st) 69.93° 0.0737 0.294 0.58 0.37 1.9 1.2
Autumn-3 w/snow 274 (Oct. 1st) 69.93° 0.561 0.466 0.58 0.37 1.9 1.2
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related bits in the State Flag datawere both zero,we considered the data
to have no cloud contamination; otherwise, the observationwas consid-
ered to be partially or fully affected by clouds. Similarly, for SPOT-
VEGETATION data, when the two cloud-related bits in the Status Map
(SM) datawere both zero, we considered the data to be cloud-free; oth-
erwise, the observation was considered to be partially or fully affected
by clouds. Cloud fractions (%) for each location were quantified as the
proportion of the number of cloudy samplings in ±2 compositing pe-
riods during SOS and EOS events.

2.3.2. Determination of the snow events
The last and first dates of lingering snowpack were evaluated by the

time-lapse camera images. We followed the criteria provided by Sugiura
et al. (2013), which is: (1) when the length of lingering snowpack cover
exceeds 30 consecutive days, the period from the first day to the last
day is the period of lingering snowpack and (2) “the existence of snow
cover” is the condition, in which more than half of the surface is covered
by snow. Based on their criteria, we determined the last (snowmelt) and
first (snowfall) dates of lingering snowpack from time-series images.

2.4. Radiative transfer simulation

A three-dimensional Monte Carlo ray-tracing radiative transfer sim-
ulation was performed to examine the cause of seasonality in satellite
spectral reflectance over sparse black spruce forest sites. In this study,
Fig. 4. Summary of the satellite-derived SOS and EOS (green diamond), the last (spring) and firs
The black bars indicate the growing season determined by the ground-based time-lapse camer
satellite datasets (SPOT-VEGETATION and Terra-MODIS).
a spatially explicit three-dimensional model, the Forest Light Environ-
mental Simulator (FLiES), was employed to simulate bidirectional re-
flectance seasonality in red and NIR (Kobayashi & Iwabuchi, 2008;
Kobayashi et al., 2012). The performance and reliability of FLiES for
simulating light transmittance through a canopy and bidirectional re-
flectance factors have been investigated in the previous works
(Widlowski et al., 2011, 2013). Required inputs for the model include
simulated forest landscape data including individual tree position and
size. The shape of the tree crown was abstracted as a spheroid and the
crown objects were divided into two domains: the outer domains
were filled with leaves and inner domains were filled with woody
materials.

Forest landscape data were constructed based on the field census
measurements at the F-6 site (PFA), which located ~32 km from Fair-
banks, interior Alaska. Individual tree positions, canopy heights, and
crown widths were based on the data of Kobayashi, Suzuki, Nagai,
Nakai, and Kim (2014). The tree density, canopy cover, and maximum
overstory leaf area index (LAI) were 3967 trees ha−1, 15% and 0.73, re-
spectively. We also constructed a denser forest landscape simulation
based on the abovementioned data to understand how the characteris-
tics of sparse tree stands in a black spruce affect the determination of
SOS and EOS. In this landscape data, we maintained an identical tree
density as the original data and doubled the size of crown heights and
crown widths. The canopy cover and maximum overstory LAI of this
denser landscape were 45% and 2.4, respectively. There are minor, but
t (autumn) snow timings (red rectangle), and the ground-based SOS and EOS (blue circle).
as. The satellite-derived SOSs and EOSs were the average of all methods derived from two



Table 3
Comparison of visually determined SOS and EOS (DSOS_V andDEOS_V)with GEI-based onset
and offset timings. We examined this visual interpretation only for the sites (F-1, F-4, F-5,
F-7, F-9, F-10, and F-11 in Table 1), at which cameras were installed near the target plants.

Site Year DSOS_V D1 D2 D1 75% +
D2 25%

DEOS_V D3 D4

F-1 2011 149 131 173 141.5 234 169 238
F-4 2011 150 144 176 152.0 234 207 247
F-5 2011 136 118 181 133.8 254 206 252

2012 132 128 185 142.3 – – –
F-7 2012 139 131 166 137.8 – – –
F-9 2011 122 109 186 128.3 281 195 247

2012 145 120 190 137.5 – – –
F-10 2011 146 136 158 141.5 269 222 262
F-11 2011 124 135 166 142.8 – – –

2012 147 135 166 142.8 – – –
Average – 139.0 128.7 174.7 140.2 254.4 199.8 249.2
Bias – – −10.3 46.0 1.2 – −54.6 −5.2
RMSE – – 13.2 37.2 7.8 – 58.1 16.7

D1: green-up, D2: maturity, D3: senescence, D4: dormancy.
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non-negligible seasonal changes of overstory LAI even in boreal ever-
green forests (Chen, 1996). To consider this seasonal changes and the
potential contamination of minor deciduous trees in evergreen spruce
forests, we performed the simulation for three different seasonal over-
story LAI conditions: (1) constant overstory LAI throughout the season,
(2) overstory LAI changes seasonally by 20%, and (3) overstory LAI
changes seasonally by 50% (Table 2).

Seasonal changes in understory optical data are summarized in
Table 2 based on measurements reported in Kobayashi et al. (2014).
Other optical variables—such as needle reflectance and transmittance,
and woody reflectance—were 0.0741, 0.0232, and 0.0509 in red and
0.466, 0.387, and 0.0906 in NIR, respectively. These variables were con-
stant throughout the season.We simulated five days from spring to au-
tumn. In spring (DOY 140) and autumn (DOY 274) (Table 2), two
understory conditions were simulated: with and without snow. The re-
flectance of snow value usedwasmeasured by Suzuki et al. (2011). The
solar zenith angles of the simulated conditions were near the satellite
overpass time (LST 10:30 am).

3. Results

The satellite-based SOS and EOS, the ground-based SOS and EOS, and
the last (spring) and first (autumn) lingering snowpack dates estimated
for each site and year are summarized in Fig. 4. The growing season
lengths (the black bar between SOS and EOS) from the ground-based
time-lapse images were quantified for 21 out of 31 cases (site × year)
(see Supplemental Fig. 1). For the other 10 cases, due to bad quality or
missing images, the image data from spring to autumn were not fully
available. For those sites, we only estimated one of two phenology tim-
ings (SOS or EOS) depending on the data availability. The date of
ground-based SOS and EOS were determined by the analysis shown in
the following section (Section 3.1). The satellite-based SOS and EOS in
Fig. 4 are the ensemble of all methods estimated from two satellite
datasets (SPOT-VEGETATION and Terra-MODIS). Overall, correlation co-
efficients (R) of ground-based and satellite-based events were 0.64 for
SOS and 0.49 for EOS, respectively. The error estimates for the methods
used are described in Section 3.2 and Fig. 5.

3.1. SOS and EOS derived from time-lapse photography

In the spring period, D1was 10.3 days earlier than DSOS_V and D2was
46.0 days later thanDSOS_V on average. TheDSOS_Vwas thus consequent-
ly represented by D1_75% + D2_25% (the weighted average of D1 [75%
weight] and D2 [25% weight]). The mean bias of D1_75% + D2_25% was
1.2 days (Table 3). In the autumn period, both D3 and D4 were earlier
Fig. 5. Themean bias and rootmean square errors of the satellite-derived SOS and EOS results. T
indicates that the satellite-derived SOS and EOS timings are earlier than ground-based timings
than DEOS_V (54.6 days for D3 and 5.2 days for D4). The ground-based
EOS was represented by D4 – 5.2 days.

3.2. Comparison of various satellite-based SOSs and EOSs with ground-
based SOS (DSOS_V) and EOS (DEOS_V)

The biases of the estimated SOS and EOS were diverse among the
methods (Fig. 5). Among three satellite-basedmethods for determining
SOS and EOS, no particular method was most consistent with the
ground-based measurement. In spring, the satellite-based SOS was be-
tween 2.9 and 12.7 days earlier (positive biases) than the ground-
based SOS in boreal forest sites, excepting the NDII method. In tundra
sites, direction of the biases varied by the methods employed. Three
methods (NDVIs, NDIIS, NDIIM) calculated SOS later than the ground-
based SOS (bias = −6.9 days [SOS (NDVIs)], −16.4 days [SOS
(NDIIS)], and −13.3 days [SOS (NDIIM)]) and three methods (NDVIM,
LogisticS, LogisticM) calculated an earlier SOS than the ground-based
SOS (bias = 10.2 days [SOS (NDVIM)], 3.4 days [SOS (LogisticS)], and
10.0 days [SOS (LogisticM)]).

The NDII method showed the smallest biases (0.26 days for SOS
(NDIIS) and −0.58 days for SOS (NDIIM)) and RMSEs (9.4 and
10.0 days) for forest sites. However, in tundra sites, both the biases
and RMSE for the NDII method were largest among the methods
(−16.4 days for SOS (NDIIS) and −13.3 days for SOS (NDIIM)) and
RMSEs (30.3 and 20.4 days). The surface inmost tundra sites is inundat-
ed just after snowmelt and NDII is sensitive to not only the amount of
he subscripts “S” and “M” stand for SPOT-VEGETATION and Terra-MODIS. The positive bias
. (a) Forest sites, (b) tundra sites.



Fig. 6. Normalized frequency of cloud fractions (CF, %). Cloud fractions were quantified as
the proportion of the number of cloudy samplings in ±2 compositing periods during the
SOS and EOS events.

166 H. Kobayashi et al. / Remote Sensing of Environment 177 (2016) 160–170
vegetation but also the surfacewetness. Therefore, theNDII did not drop
rapidly after snowmelt, but rather gradually decreased as a combined
effect of wetness and green vegetation development from spring to
Fig. 7. Latitudinal gradients of satellite-derived SOS and EOS, last and first snow timings, and ph
satellite-derived SOS and EOS are the averages of three method and two satellite datasets. Gr
confidence intervals are also plotted.
summer. Consequently, the date of theminimumNDII, which is consid-
ered as SOS, was delayed until around the early summer.

For autumn EOS, the large differences between satellite-based and
ground-based EOSs were found for both boreal forest (mean bias
−25.7 days and RMSE 30.2 days for SPOT-VEGETATION and mean
bias −26.0 days and RMSE 30.7 days for MODIS) and tundra sites
(mean bias −16.0 days and RMSE 18.4 days for SPOT-VEGETATION
and mean bias−20.3 days and RMSE 22.3 days for MODIS). The differ-
ences for boreal forest sites were 5.7 days (MODIS) to 9.7 days (SPOT-
VEGETATION) days greater than those of tundra. The possible causes
of these EOS differences are analyzed in Section 3.4.

Persistent cloud cover potentially introduces errors to the estimation
of the increase in SOS and EOS. In our study sites and periods, 78.5% of
SOSs and EOSswere estimated under low cloud atmospheric conditions
(CF b 20%) (Fig. 6). As the SPOT-VEGETATION S10 has longer composit-
ing periods, the cloud fraction of SPOT-VEGETATION was less than that
of MODIS. For both SPOT-VEGETATION and MODIS, the cloud fractions
during EOS were larger than during SOS. The increase in cloud fraction
is prone to cause later SOS or earlier EOS estimates, which is the oppo-
site of the bias direction in our results (Fig. 5). Thus, our result implies
that, while the effects of cloud were marginal at our study sites, the ef-
fects of the cloud cover potentially underestimated the bias in SOS and
EOS evaluated in Fig. 5.

3.3. Latitudinal gradient of snow and phenology timings

The timing of snow cover and phenological events in 2011 and 2012
showed consistent latitudinal gradients across the forest-tundra eco-
tone in the study area (Fig. 7). The relative timing of snow (snowmelt
in spring and snowfall in autumn) versus ground-based and satellite
based phenology differed between spring and autumn periods. In
spring, the snowmelt preceded satellite-based and ground-based SOS
by 16 to 19 days. In autumn, the ground-based EOS preceded satellite-
based EOS by 19 to 26days and the satellite-based EOS almost coincided
with the snow events. For both years, the latitudinal gradient of pheno-
logical events (slopes shown in Fig. 7) were steeper in spring than those
in autumn, except for the case of spring snowmelt in 2011. The
enological timings (SOS and EOS) derived from time-lapse cameras in 2011 and 2012. The
ay dotted lines show the forest-tundra ecotone. For ground-based SOS and EOS, the 95%



Fig. 8.The relationship between the snow timings (the last and thefirst snow) and plant phenologymetrics (SOS and EOS). The correlation coefficients for the SOS satellite and SOS ground
camera are R=0.79 (p b 0.01) and 0.58 (p b 0.01), respectively. The correlation coefficients for the EOS satellite and EOS ground camera are R=0.63 (p=0.017) and R=0.19 (p=0.88),
respectively.
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latitudinal gradients of the ground-based SOS and EOS were
3.4 days degree−1 and −2.7 days degree−1 for 2011 and
4.9 days degree−1 and −3.7 days degree−1 for 2012, respectively. The
latitudinal gradients of air temperature in spring (May) and autumn
(an average of August and September) were −1.4 °C degree−1 and
−0.89 °C degree−1 in 2011 and −1.3 °C degree−1 and
−0.81 °C degree−1 in 2012, respectively. Thus, the changes in SOS
with regard to air temperature (dSOS/dTa) were −2.5 days °C−1 in
2011 and −3.9 days °C−1 in 2012. The changes in EOS with regard to
air temperature (dEOS/dTa) were 3.0 days °C−1 and 4.6 days °C−1 in
2011 and in 2012, respectively.

The correlation between EOS and the timing of snow cover onset
was weaker than that between SOS and the timing of snowmelt
(Fig. 8). The correlation coefficients of satellite-based and ground-
based SOSs against the latest continuous snow date were 0.79
(p b 0.01) and 0.58 (p b 0.01), respectively. On the other hand, the cor-
relation coefficients of satellite-based and ground-based EOSs against
Fig. 9. The simulated seasonal patterns inNDVI (lines) for two different canopy (overstory) cove
cover=45% and (d-f) canopy cover=15%. (a) and (d) Constant overstory LAI throughout the s
seasonally. The three lines in each figure show the different view zenith angles (VZAs) and sate
contribution of reflected radiance in the red and NIR spectral regions.
the earliest continuous snow date were 0.63 (p = 0.017) and 0.19
(p = 0.88), respectively.

3.4. Simulated seasonal variations in NDVI and phenology timing

The simulated NDVI displayed seasonal patterns that were typical of
those observed in the satellite NDVI data (Fig. 9). Although NDVI de-
pends on satellite view angles, those geometries (three view zenith
and azimuthal angle cases in Fig. 9) did not result in substantial differ-
ences in NDVI (coefficient of variation b3.5%) except for the snow pe-
riods (up to 28%).

The understory reflectivity accounts for 86–99% in red and 65–83%
in NIR (canopy cover = 15%) (Fig. 9d–f) and 48–97% in red and
25–66% in NIR (canopy cover = 45%) (view zenith angle and azimuth
angle = 0°) (Fig. 9a–c). After the snowmelt, NDVI increased during
the summer (summer-2) because of the decrease in understory red re-
flectance and increase in the NIR reflectance (Table 2). However, this
rages and three different seasonal changes in overstory leaf area index (LAI). (a–c) Canopy
eason; (b) and (e) overstory LAI varies 20% seasonally; (c) and (f) overstory LAI varies 50%
llite azimuth angles relative to the sun (RAA). The dark and light gray colored bars are the
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NDVI increase (spring-1 to summer-2) accounted for only 8.6–17% of
total NDVI seasonal amplitude (Fig. 9a–f).

Seasonal variations in NDVI were caused by the contribution of un-
derstory observed from the satellite (Fig. 9). The results slightly
depended on the zenith and azimuth angles, but the seasonal changes
were similar among the satellite view angles. The reflectance contribu-
tion of the understory gradually decreased from spring-1 to autumn-2,
indicating that satellites view more of the canopy overstory (greener-
needles) rather than brownish understory. Moreover, this seasonal
change of overstory and understory contributions was larger in the
red domain than that in the NIR domain. Consequently, the NDVI in
late autumn was greatly influenced by the greener overstory needles.
In addition, the NDVI in late autumn (autumn-2) increased again
under both canopy cover of 15% and 45% conditions due to the very
high solar zenith angle.

The seasonality in overstory LAI caused the changes in the NDVI sea-
sonality. For example, the constant overstory LAI case (Fig. 9a) exhibits
almost constant NDVI throughout the growing season (from spring-2 to
autumn-1). In contrast, the overstory LAI with 50% seasonality exhibits
the bell-shaped NDVI seasonal patterns (Fig. 9c). Changes of up to 50%
in overstory LAI caused 6.0–9.0% differences in the NDVI for a canopy
cover of 45% (Fig 9a-c), and 3.3–4.9% differences for a canopy cover of
15% (Fig. 9d–f). As the LAI seasonality increased, the reflectance was
more influenced by the understory in the spring and autumn rather
than greener overstory, and the seasonal amplitude ofNDVI (NDVImax−
NDVImin) was enhanced from 0.55 to 0.66 (with snow season) and
0.078 to 0.106 (snow free period) for a canopy cover of 45% and 0.73
to 0.78 (with snow season) and 0.096 to 0.125 (snow free period).

4. Discussion

In spring phenology, satellite-based SOS metrics are known to be
partially affected by the snowmelt in the Arctic and sub-Arctic regions
(Dye & Tucker, 2003). Despite this issue, the satellite-based SOS may
be related to leaf emergence in spring because leaf emergence happens
immediately after the snowmelt. We estimated SOSs using multiple
methods and data in Alaska to avoid the bias due to the method
employed (White et al., 2009). Based on the comparison of six
satellite-based SOSs (Fig. 5), we recommend using an ensemble average
SOS because individualmethods showed relatively high errors and their
tendencies variedwith the ecosystem type (forest or tundra). In fact, the
ensemble SOS was the best performing of the methods employed
(Fig. 5). NDVIs showed a relatively good performance in our comparison
(Fig. 5); however, a single method and satellite data potentially leads to
erroneous results due to atmospheric influence (e.g. residual clouds).
Indeed, our comparison revealed that the NDII based methods (NDIIS
and NDIIM) had the largest biases (−13.3 to −16.4 days) while
Delbart and Picard (2007) found that the bias between satellite-based
SOS calibrated by NDII and the ground SOS measurements near the
Toolik lake (close to the T-4 & T-5 sites) was less than our results
(−3.25 days). This was potentially caused by the periods compared,
the difference in the satellite data used, atmospheric conditions, and
the differences of the ground phenology observation methods. The
satellite-based SOS was slightly earlier than the ground-based SOS,
but its latitudinal gradient was consistent with the leaf appearance of
the forest understory and tundra vegetation (Fig. 7). Thus the
satellite-based SOS can be useful as a measure of spring tundra and for-
est understory leaf emergences.

The consistency between the ground-based and satellite-based EOSs
was weaker than the relationship of ground-based and satellite-based
SOS for boreal forest and tundra sites because of large biases between
those two EOSs (19 to 26 days, Fig. 7). The satellite-based EOS was
more relevant to the first date of lingering snowpack. On the other
hand, the ground-based EOS was independent of snow events (Fig. 8).
At tundra sites, the EOS biases were smaller than those of boreal forest
sites. This is because, unlike the black spruce forests, the deciduous
plants are directly exposed on the canopy surface. The leaf color change
can be directly viewed from satellites. However, due to the abrupt de-
crease in NDVI caused by snowfall, the NDVI threshold (defined as
50% of the NDVI seasonal amplitude) did not correspond with EOS
events. In addition to the lingering snowpack, theremay be other issues
on the uncertainty of the EOS estimation. Nagai et al. (2014) found that
the autumnphenology in a cool-temperate deciduous broad-leaved for-
est occurred continuously because of different phenological timings
among species and their spatial heterogeneities. This causes the addi-
tional uncertainty in determining the EOS.

Beck et al. (2007) proposed a different threshold for spring and au-
tumn phenology events. Using their approach the EOS is determined
by a higher threshold value. If the variation in reflectance in tundra
plants is similar to the understory reflectance in boreal forests
(Table 2), the EOS in tundra sites may be estimated to be 84% of the
NDVI seasonal amplitude. In boreal forest sites, however, it may not be
straightforward to calibrate the biases between satellite-based and
ground-based EOS in boreal forests by simply adjusting the threshold.
The plant canopy radiative transfer simulation suggests that the appro-
priate NDVI threshold can vary with the canopy cover, overstory LAI
seasonality, and solar zenith angles (Fig. 9). Assuming that the crown
cover of 15% in Fig. 9 is more common in Alaska, the EOS in forest
sites may be estimated to be 86% of the NDVI seasonal amplitude
when overstory LAI is assumed to be constant throughout the growing
season. For the determination of the appropriate threshold, a reliable
forest cover map is required. Also, evergreen boreal forests show a little
LAI seasonality (Chen, 1996). Thisweak seasonality does not significant-
ly affect the NDVI threshold in sparse forest; however, as the canopy
cover increases or minor deciduous trees contaminate the spectral sig-
nals, the NDVI threshold is likely to be affected by those overstory sea-
sonal changes.

The time-lapse cameras provide precise in-situ phenology measure-
ments that can be used for the validation of satellite phenology esti-
mates. When applying this technique to boreal forest understory,
there are several issues to be carefully considered due to the limitations
of image quality and the region of interest in camera images. The species
composition within the camera images influences the timing of pheno-
logical events. At our study sites, the regions of interest of the understo-
ry vegetation within the camera images were defined to be as large as
possible to avoid an irregular phenological pattern of particular plants
and to obtain the average signature of different plants. Although most
evergreen forest understory is covered with herbaceous plants, decidu-
ous dwarfs, moss, and lichen as described in Section 2.1, the species
composition in camera images was not identical. This could cause un-
certainty in obtaining the average understory phenology in each forest
site. Likewise, we focused on the phenology of herbaceous plants and
dwarf trees. While Moss and lichen also show seasonally, it was not
taken into consideration in this study. However, even ifmoss and lichen
are present, because they grow under the herbaceous plants and dwarf
trees, their phenological changes may have less impact on the satellite
signal. The effect of moss and lichen should be investigated further
through much finer-resolution images, with information regarding the
spatial fraction of each element.

The timings of SOS and EOS along 61°N to 71°N derived from satel-
lite and time-lapse camera images revealed the latitudinal gradients
from both measurements were almost consistent. Zhu et al. (2012) es-
timated the latitudinal gradients of SOS and EOS across the North
American continent from 35°N to 70°N. The exact comparison may
not be appropriate because of the difference in satellite data used
(NOAA-AVHRR GIMMS), study periods (1982 to 2006) and area
(North America). However, it is interesting to compare the consistency
of both results. The rate of change calculated by Zhu et al. (2012) was
2.6 days degree−1 for SOS and −2.8 days degree−1 for EOS for 35°N
to 70°N. When evaluated from 60°N to 70°N (from Fig. 2 in Zhu et al.
(2012)), both SOS and EOS were approximately 2.5 days degree−1

and −2.5 days degree−1. This study showed 3.5 to 5.7 days degree−1
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for SOSs and −2.3 to −2.7 days degree−1 for EOSs, respectively. Zhu
et al. (2012) reported latitudinal symmetry for SOS and EOS, but we
found a higher latitudinal gradient in SOS than in EOS, indicating that
the SOS was less sensitive to changes in air temperature (dSOS/dTa of
−2.5 to −3.9 days °C−1) than EOS (dEOS/dTa of 3.0 to 4.6 days °C−1).

The average air temperature in the Arctic region rose up to 1.36 °C
in the first decade of the 21st century (Bekryaev et al., 2010;
Hinzman et al., 2013). If the timings of SOS and EOS were only regu-
lated by air temperature, it would be expected that the temperature
increase would have an impact on the timing of phenological events
in the Arctic. Assuming dSOS/dTa and dEOS/dTa evaluated from the
latitudinal gradient of phenology and air temperature (Fig. 7) are
used for decadal scale phenology change, in the first decade of the
21st century SOS may be 4.4 days earlier and EOS 5.2 days later fol-
lowing a 1.36 °C warming across the state of Alaska. This assumption
derived from the temperature dependency of phenology should be
validated by a more detailed analysis based on long-term ground-
based observations.
5. Conclusion

The satellite-retrieved SOS and EOS have been extensively used for
large-scale phenological studies. Despite their numerous spatial and
trend analyses in SOS and EOS, there is still little information on how
the latitudinal gradient of satellite-based SOS and EOS are related to
changes in seasonal surface condition (e.g., snow), plant phenology,
and satellite observation conditions in the Arctic and sub-Arctic regions.
Using time-lapse camera images collected at 17 sites across Alaska, we
quantified the phenological events along the latitudinal range from
61°N to 71°N. In SOS events, we found that the satellite-based SOS can
be a measure of spring understory and tundra plants green-up when
the SOS values estimated bymultiplemethods are averaged. A large dif-
ference was revealed between ground-based and satellite-based EOS.
The satellite-based EOS was much more relevant to snowfall events
than the senescence of understory and tundra plants in Alaska. While
there are several limitations in using satellite- and ground-based phe-
nology estimates, quantification of latitudinal gradient of phenology
can be useful information in understanding the influence of warming
to plant phenological timings. As understory plants in black spruce for-
ests have a significant impact on the carbon exchanges, the reliable in-
formation of understory plants phenology is important. Our study
demonstrates the possible impact of phenology in spruce forest under-
story and tundra ecosystems in response to climate change in the
warming Artic and sub-Arctic regions.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2016.02.020.
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