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Abstract 36 

Improving year-round data coverage for CO2 and CH4 fluxes in the Arctic is critical for 37 

refining the global C budget but continuous measurements are very sparse due to the remote 38 

location limiting instrument maintenance, to low power availability, and to extreme weather 39 

conditions. The need for tailoring instrumentation, site set up, and maintenance at different 40 

sites can add uncertainty to estimates of annual C budgets from different ecosystems. In this 41 

study, we investigated the influence of different sensor combinations on fluxes of sensible 42 

heat, CO2, latent heat (LE), and CH4, and assessed the differences in annual CO2 and CH4 43 

fluxes estimated with different instrumentation at the same sites. Using data from four sites 44 

across the North Slope of Alaska, we found that annual CO2 fluxes estimated with heated (7.5 45 

±1.4 gC m-2 yr-1) and non-heated (7.9 ±1.3 gC m-2 yr-1) anemometers were within uncertainty 46 

bounds. Similarly, despite elevated noise in 30-min flux data, we found that summer CO2 47 

fluxes from open (-17.0 ±1.1 gC m-2 yr-1) and close-path (-14.2 ±1.7 gC m-2 yr-1) gas 48 

analyzers were not significantly different. Annual CH4 fluxes were also within uncertainty 49 

bounds when comparing both open (4.5 ±0.31 gC m-2 yr-1) and closed-path (4.9 ±0.27 gC m-2 50 

yr-1) gas analyzers as well as heated (3.7 ±0.26 gC m-2 yr-1) and non-heated (3.7 ±0.28 gC m-2 51 

yr-1) anemometers. A continuously heated anemometer increased data coverage (64%) 52 

relative to non-heated anemometers (47-52%). However, sensible heat fluxes were over-53 

estimated by 12%, on average, with the heated anemometer, contributing to the 54 

overestimation of CO2, CH4, and LE fluxes (mean biases of -0.03 µmol m-2 s-1, -0.05 mgC m-
55 

2 hr-1, and -3.77 W m-2, respectively). To circumvent this potential bias and reduce power 56 

consumption, we implemented an intermittent heating strategy whereby activation only 57 

occurred when ice or snow blockage of the transducers was detected. This resulted in 58 

comparable coverage (50%) during winter to the continuously heated anemometer (46%), 59 

while avoiding flux over-estimation. Closed and open-path analyzers showed good 60 
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agreement, but data coverage was generally greater when using closed-path, especially during 61 

winter. Winter data coverage of 26-32% was obtained with closed-path devices, vs 10-14% 62 

for the open-path devices with unheated anemometers or up to 46% and 35% using closed 63 

and open-path analyzers, respectively with heated anemometers. Accurate estimation of LE 64 

remains difficult in the Arctic due to strong attenuation in closed-path systems, even when 65 

intake tubes are heated, and due to poor data coverage from open-path sensors in such a harsh 66 

environment.   67 
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1. Introduction 68 

Assessment of Arctic ecosystem-atmosphere carbon (C) exchange is critical for 69 

refining the global C budget (IPCC 2007, Fisher et al. 2014). Despite the importance of both 70 

CO2 and CH4 emissions from the Arctic and their sensitivity to climate change (Mastepanov 71 

et al., 2013; Ueyama et al., 2013), their annual balances are still largely uncertain (Melton et 72 

al., 2013; Fisher et al. 2014). Although some researchers have had success measuring 73 

ecosystem-scale Arctic CO2 and CH4 fluxes (Oechel et al., 2014; Kutzbach et al., 2007; 74 

Parmentier et al. 2011, Emmerton et al., 2015 Zona et al. 2014, 2016), spatial and temporal 75 

data coverage is still sparse and year-round coverage is especially lacking (Wille et al., 2008; 76 

Oechel et al., 2014; Euskirchen et al., 2012; Luers et al., 2014). The scarcity of continuous, 77 

year-round measurements in the Arctic is due to the extremely harsh environmental 78 

conditions, especially in winter, and relative lack of infrastructure in these remote sites, 79 

preventing regular maintenance of the instruments or making it prohibitively expensive. 80 

These challenges have limited our ability to obtain accurate annual C budgets and assess 81 

interannual variability in greenhouse gas fluxes from Arctic regions.  82 

Currently, important scientific questions on the terrestrial C cycle are based on multi-83 

site syntheses of flux data from eddy covariance tower networks (e.g. FLUXNET, 84 

AmeriFlux, ICOS, AsiaFlux). Although there are ongoing efforts to standardize the sensors 85 

used in these networks (i.e. ICOS, NEON, etc.), a variety of different instruments, and site-86 

dependent processing methods are still employed (Fratini et al. 2014). In addition, as 87 

technology improves and new sensor models become available, instrumentation is often 88 

upgraded after years of field deployment at long-term sites (e.g., Burns et al., 2014). Such 89 

methodological and instrumental differences and updates may contribute to observed 90 

differences in seasonal and annual C budgets, and add uncertainty when comparing C fluxes 91 

from different sites or ecosystems, as well as among years at long-term sites. Bias in 92 
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measurements due to instrumentation changes becomes particularly important in the Arctic 93 

where C fluxes can be very small (especially in winter), and can be considerably influenced 94 

by post-processing corrections (Oechel et al., 2014). 95 

Additionally, the configuration of gas analyzers and sonic anemometers at a given site 96 

often needs to be tailored to the specific requirements of that environment and available 97 

infrastructure, and therefore may vary in different sites even across standardized networks 98 

(e.g. the boreal sites in ICOS will need to rely on heated sonic anemometers, which will not 99 

be needed in the more southern sites). With respect to gas analyzers, both open- and closed-100 

path sensors have been deployed worldwide for CO2 and H2O flux measurements, and both 101 

have shown good performance in the Arctic (Nakai et al. 2011, 2013, Oechel et al. 2014; 102 

Zona et al., 2016). Multiple studies have compared open-path and closed-path analyzers in 103 

different conditions for CO2 fluxes (Leuning and King 1992, Lee et al. 1994, Jarvi et al. 104 

2009, Ueyama et al. 2012, Burns et al. 2014). Open-path analyzers typically require less 105 

overall maintenance, have considerably smaller power demand, better time response and 106 

smaller frequency corrections than closed-path systems due to the absence of pumps, filters, 107 

and intake tubes (Massman 1991, 2000). However, they require larger corrections for density 108 

fluctuations (Webb-Pearman-Leuning correction, WPL, Webb et al. 1980), and older models 109 

may need surface heating corrections, particularly during winter (Grelle and Burba, 2007; 110 

Burba et al., 2008; Oechel et al., 2014). Open-path sensors also lose more data during 111 

precipitation and under high humidity or fog (Jarvi et al. 2009). The annual data coverage of 112 

closed-path systems in harsh environments has been up to 70% (Goulden et al. 2006), while 113 

open-path designs resulted in overall annual data coverage of 44-68% (Oechel et al. 2014; 114 

Euskirchen et al., 2012) but as low as 15% during winter (Oechel et al. 2014). Increased 115 

maintenance frequency or winterization of the instrument can increase open-path data 116 

coverage, but these are often costly or impractical. 117 
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For CH4 flux measurements, successful inter-comparisons of open-path and closed-118 

path analyzers have also been performed (Detto et al. 2011, Peltola et al. 2013, Iwata et al. 119 

2014). While the open-path design (LI-7700) can lead to substantial data losses due to 120 

precipitation, with data coverage as low as 25% in the harsh Arctic environment (Sturtevant 121 

et al., 2012), it is usually the only option for CH4 flux measurements at remote sites due to 122 

low power consumption and autonomous operation (McDermitt et al., 2011; Burba, 2013). 123 

Furthermore, this sensor was successfully deployed in an alpine wetland (mean annual 124 

temperature = -1.1 °C) attaining data coverage up to 66% (Song et al., 2015). Generally, 125 

closed-path systems have better data coverage in the Arctic with 66 - 85% (Zona et al., 2016; 126 

Zona et al., 2009, Sachs et al., 2008), although depending on the set-up and maintenance 127 

schedule, associated technical and power supply issues can reduce closed-path data capture to 128 

12 - 26% in Arctic and sub-Arctic sites (Hanis et al., 2013; Wille et al., 2008).  129 

Various sonic anemometers have been used extensively in cold environments 130 

(Gazovic et al., 2013; Jackowicz-Korczynsky et al., 2010; Sturtevant et al., 2012, Zona et al., 131 

2009, 2010, Rinne et al., 2007), but a major challenge for measuring fluxes in these regions is 132 

anemometer performance in extreme weather conditions when water, snow, and ice can block 133 

or divert the sonic signals from the transducers. In order to measure fluxes outside the 134 

summer period, the transducers of the sonic anemometer need to be maintained ice-free. 135 

Heating systems for these sensors have generally utilized heating tape wrapped around the 136 

anemometer and, less commonly, the hot film technology (Lekakis et al., 1989, Skelly et al., 137 

2002). Since it has been shown that continuous heating of the anemometer may increase the 138 

apparent sensible heat fluxes (Tammelin et al., 1998; Skelly et al., 2002), an intermittent 139 

heating strategy needs to be explored at cold sites. Although multiple cross-comparisons of 140 

sonic anemometers have been performed in the past (e.g. Kochendorfer et al. 2012, Frank et 141 

al. 2013, El-Madany et al. 2013, Nakai et al. 2014), none have yet tested the impact of 142 
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heating on the sensible heat and gas fluxes in Arctic sites. One of the few commercially 143 

available self-heating anemometers is provided by Metek GmbH (uSonic-3 Class A), which 144 

initiates heating based on air temperature thresholds, whereby the heater is maintained on for 145 

temperatures below 4.5 °C. In the Arctic, this temperature-activated heating would result in 146 

continuous heating for the entire autumn, winter and spring, potentially affecting the fluxes 147 

during the most critical and uncertain periods, emphasizing the need for a better heating 148 

strategy.  149 

To investigate how the choice of gas analyzers and sonic anemometers influences 150 

fluxes of CO2 (FCO2), latent heat (LE), sensible heat (H), and CH4 (FCH4) and to understand 151 

the potential influence of different configurations on the long term C budget, we compared 152 

several recently installed instrument sets to the historically operating sets at four flux sites in 153 

Arctic Alaska. Instrument configuration at each site was selected depending on availability of 154 

line power, climate conditions, and site accessibility. This study reports on the comparability 155 

over half-hourly scales for FCO2, LE, H, and FCH4, and on annual totals of FCO2 and FCH4. The 156 

comparisons are organized as follows: 157 

i) Comparisons of fluxes derived from heated and non-heated anemometers from 158 

half-hourly (all fluxes) to annual time scales (for FCO2 and FCH4).  159 

ii)  Comparisons of FCO2 and LE obtained from closed-path and (en)closed-path 160 

analyzers. 161 

iii)  Comparisons of FCO2, and FCH4 obtained from open-path and closed-path 162 

analyzers. 163 

In addition to direct comparisons of final fluxes, we investigated the influence of site and 164 

sensor specific spectral corrections, which are known to vary greatly depending on the site 165 

(e.g., Ibrom et al., 2007; Leuning and King, 1992). The results of this study should provide 166 

useful and practical considerations for future studies as well as for ongoing instrumental 167 
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updates at long-term measurement sites. These may be particularly helpful for experimental 168 

design, station setup, configuration and maintenance planning, as well as data interpretation 169 

at other remote, high-latitude, cold sites experiencing long periods of small C fluxes. 170 

2. Materials and methods 171 

2.1. Study sites  172 

The eddy covariance (EC) flux towers were located at four sites on the North Slope of 173 

Alaska: two in Barrow (CMDL and BES), one in Atqasuk (ATQ) and one in Ivotuk (IVO). 174 

The CMDL site (71°19’21.10’’ N: 156°36’33.04’’ W, 1 m elevation above sea level) is about 175 

2 km south of the Arctic Ocean. This wet sedge tundra site is characterized by low species 176 

diversity, dominance of grasses and sedges, rare occurrences of tussock, and a lack of shrubs 177 

(Brown et al., 1980). Further site details can be found in Kwon et al. (2006). The BES site is 178 

6.5 km south of the Arctic Ocean (71°16’51.17’’ N, 156°35’47.28’’ W, 3 m elevation) and 179 

dominant vegetation includes grasses, sedges, and mosses along with a few prostrate dwarf 180 

shrubs (Mullier et al. 1999, Raynolds et al. 2005, Zona et al. 2011). More site details are 181 

available in Zona et al. (2012). Both CMDL and BES are located near Barrow, have grid 182 

power and relatively easy access for instrumentation maintenance including during the 183 

winter. The ATQ site (70°28’10.64’’N: 157°24’32.21’’ W, 24m elevation) is located 184 

approximately 100 km south of Barrow, also has access to line power, and is fairly accessible 185 

during the winter. This site is characterized by moist coastal sedge tundra with moist-tussock 186 

vegetation (Kwon et al. 2006). More information can be found in Oechel et al. (2014). The 187 

IVO site (68°29’11.36’’ N: 155°45’0.79’’ W, 543m elevation) is located approximately 300 188 

km south of Barrow, at the foothills of the Brooks Mountain Range. Dominant vegetation 189 

includes tussock species, dwarf and creeping shrubs, mosses and lichen. More site 190 

information is provided in Zona et al., (2016). This site does not have line power access and 191 
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thus is powered by combination of two diesel generators, twelve solar panels, and a wind 192 

turbine. Access to IVO requires chartered flights to a remote air strip, limiting instrument 193 

maintenance to the summer period only.  194 

2.2. Long-term instrumentation at study sites 195 

The initial selection of instrumentation at each site was made largely based on the need to 196 

limit maintenance and servicing of the sensors as well as on power restrictions. We also 197 

endeavored to deploy the most appropriate instrumentation commercially available at the 198 

time of each set-up (spanning approximately 15 years). This necessitated different instrument 199 

configurations over time as well as among the sites (Table 1). 200 

The CMDL site, established in 1997, was upgraded with an LI-7500 CO2/H2O 201 

analyzer in 2001 and with a Gill WindMaster Pro in 2012. The LI-7500 was then replaced by 202 

the (en)closed-path LI-7200 (Burba et al., 2010, 2012) gas analyzer in 2011, and an open-203 

path LI-7700 CH4 analyzer was installed in 2013. BES was established in summer 2005, and 204 

was initially equipped with a Gill WindMaster Pro anemometer and open-path LI-7500 205 

CO2/H2O analyzer (Zona et al. 2012). ATQ was established in 1999, initially equipped with a 206 

Gill R3 anemometer and updated with an open-path LI-7500 CO2/H2O analyzer in 2001. The 207 

gas analyzer was then replaced by an (en)closed-path LI-7200 in 2011. The IVO site was first 208 

installed in 2003 and included an LI-7500 gas analyzer and Gill R3 anemometer. Data 209 

acquisition was nearly continuous at all of these sites, except IVO where data collection was 210 

stopped in summer 2008 and re-started in summer 2013. In all sites, new instrument models 211 

were added in summer/fall 2013 as described below. Data from October 2013 to July 2015 212 

were used for the comparisons of sonic anemometers and gas analyzers in this study. 213 

2.3. Instrumentation for sensor comparison 214 

In 2013, a Metek uSonic-3 Class A non-orthogonal ultrasonic anemometer with self-215 

heating feature (hereafter referred to as Metek) and a CSAT3 anemometer (non-orthogonal) 216 
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were installed at ATQ for comparison along with the non-orthogonal Gill R3. At ATQ, the 217 

Metek was heated continuously until March 2015, when the heating was switched off, 218 

whereas both the Gill R3 and CSAT3 were not heated (Table 1).  219 

At the remote IVO site, a Metek anemometer was also deployed in 2013. To limit 220 

power consumption, we developed an intermittent heating strategy such that heating was 221 

activated only when the transducers were blocked as reported by analog data quality 222 

indicators, rather than the default activation scheme based on the sonic temperature. The 223 

impact of this power-efficient heating strategy was investigated with respect to its 224 

effectiveness for de-icing the anemometer, the resulting data coverage during cold-periods, 225 

and the quality of sensible heat flux measurements.  226 

 As part of a larger effort toward upgrading instrumentation, we installed closed-path 227 

LGR-FGGA-24EP CO2/H2O/CH4 analyzers at the CMDL, BES, and ATQ sites. To assess 228 

data continuity and comparability, we compared CO2 and LE fluxes from the LGR-FGGA-229 

24EP at ATQ to those from the (en)closed-path LI-7200 system (Table 1). At BES, the CO2 230 

fluxes from the LGR-FGGA-24EP were compared to those from the open-path LI-7500 231 

(Table 1). Due to condensation issues within the long inlet tube at BES (the wettest, 232 

inundated site), the signal lag between vertical wind and H2O vapor concentrations became 233 

very large and insurmountable for spectral corrections. LE fluxes therefore, could not be used 234 

from the LGR-FGGA-24EP for direct comparison with the LI-7500 at that site. Finally, at 235 

CMDL, CH4 fluxes from the LGR-FGGA-24EP were compared to those measured by the 236 

open-path LI-7700 analyzer (Table 1). 237 

2.4. Instrumentation set-up 238 

At ATQ, the LI-7200 analyzer utilized insulated unheated tube and rain cup of the 239 

larger pre-2013 design, which were subsequently replaced by a smaller improved design on 2 240 

July 2014. We found that the larger intake tube and rain cup initially used, resulted in 241 
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substantially under-estimated turbulent exchange and fluxes of H2O relative to the LGR-242 

FGGA-24EP with heated tubing (Figures S1 and S2e). Therefore, only data collected after 243 

this change were used for the comparison (LI-7200/LGR-FGGA-24EP). The LI-7200-101 244 

flow module was used to automatically regulate and maintain the flow rate at 15 l min-1. The 245 

LGR-FGGA-24EP analyzer and associated dry-scroll vacuum pump, sampling air at a rate of 246 

20 l min-1 (N 940.5 APE-W, KNF Neuberger AG, Balterswil, Switzerland) were housed 247 

inside water-proof, insulated boxes (Grizzly Coolers, Decorah, Iowa). To minimize 248 

condensation inside the inlet tube of the LGR-FGGA-24EP analyzer, the tubing (PFA 249 

Tubing, 3/8 in. OD x 0.062 in., Swagelok, Solon, Ohio) was wrapped in heating tape, and 250 

both the inlet tube and the heating tape were insulated. The inlet tubing was terminated with 251 

an inverted funnel and protected with flexible mosquito netting to prevent water intake, ice 252 

formation at the inlet of the tubing, and mosquitos from entering the sample line. A 2µm 253 

stainless filter (SS-4FW-2 1/4T x 1/4T, Swagelok) was installed before the analyzer inlet to 254 

prevent sample cell contamination. For the cross-comparison of CO2 and LE fluxes from the 255 

LI-7200 and LGR-FGGA-24EP analyzers at ATQ, we used three-dimensional wind speed 256 

from the CSAT3. Raw signals were collected at 10 Hz using a CR3000 (Campbell Scientific, 257 

Logan, UT, USA).  258 

At BES, the set-up for the LGR-FGGA-24EP was similar to that in ATQ. The open-259 

path LI-7500 at BES was mounted at a 20° angle to minimize water build-up on the windows 260 

of the analyzer. Three-dimensional wind speed was measured with the CSAT3 anemometer 261 

and raw signals of each instrument were collected at 10Hz using a CR3000.  262 

At CMDL, the wind components from the Gill WindMaster Pro were used for flux 263 

calculations. Raw signals of the LI-7700 and WindMaster Pro were collected at 10Hz using 264 

the LI-7550 Analyzer Interface Unit, while a CR3000 also recorded data from the LGR-265 
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FGGA-24EP and WindMaster Pro at 10 Hz. The automated LI7700 sensor mirror washer was 266 

activated based on signal strength of the analyzer to maximize data quality. 267 

At IVO wind components from the intermittently heated Metek uSonic-3 Class A 268 

anemometer were used for flux calculations with CO2/H2O data from an (en)closed-path LI-269 

7200 and CH4 from an open-path LI-7700. Raw 10 Hz signals were collected with the LI-270 

7550 Analyzer Interface Unit. A 5-gallon jug was installed to supplement the washer fluid 271 

basin used with the automated LI-7700 sensor mirror washer, which was activated based on 272 

the signal strength of the analyzer. 273 

2.5. Data quality control, processing, and analyses 274 

The LGR-FGGA-24EP sensors were calibrated by the manufacturer just before being 275 

shipped to Alaska. The LI-7500 and LI-7200 analyzers were all calibrated at least twice per 276 

year in the laboratory in Barrow during 2013 – 2015. Half-hourly eddy covariance fluxes 277 

were calculated using EddyPro® (www.licor.com/eddypro). De-spiking and absolute limit 278 

determination were included in the preliminary processing of raw signals (Vickers and Mahrt, 279 

1997) and outliers were discarded. Angle of attack errors were corrected according to Nakai 280 

et al. (2006) and Nakai and Shimoyama (2012), respectively for the Gill R3 and WindMaster 281 

Pro anemometers. A double axis rotation of the wind vector was performed (Wilkzac et al. 282 

2001) and the block-averaging method was used to extract turbulent fluctuations from time 283 

series (Gash and Culf, 1996). Time lags between vertical wind speed and the variable of 284 

interest were determined for each averaging period by covariance maximization. Low 285 

frequency spectral corrections were applied according to the analytic method described in 286 

Moncrieff et al. (2004). High frequency spectral corrections were applied depending on the 287 

setup: the fully analytic method of Moncrieff et al. (1997) was adopted for the open-path 288 

systems (LI-7500, LI-7700), which includes a correction for sensor separation effects; an in-289 

situ spectral correction method (Ibrom et al. 2007) was used for the closed-path analyzers 290 
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(LI-7200, LGR-FGGA-24EP) as it is a more suitable method to describe attenuation along 291 

the intake tube walls. For the closed-path analyzers, a correction was also applied to account 292 

for sonic anemometer and analyzer separation according to Horst and Lenschow (2009). 293 

For the open-path LI-7500 analyzer at BES, the WPL correction (Webb et al. 1980) and 294 

the self-heating correction adapted to Arctic conditions were also applied (Burba et al. 2008, 295 

Oechel et al. 2014). Mixing ratio data were used from closed-path analyzers (LI7200) or data 296 

were converted to mixing ratios (LGR-FGGA), thus avoiding the need for WPL corrections. 297 

For the open-path LI-7700, a spectroscopic correction was computed with the WPL 298 

correction to account for the modification in the shape and width of the absorption line due to 299 

changes in temperature-pressure-water vapor (McDermitt et al. 2011). As a QA/QC test of 300 

the final fluxes, we used the standard flags (0-1-2) defined by Mauder and Foken (2004) and 301 

data with a flag = 2 were discarded. Remaining flux data were filtered for insufficient 302 

atmospheric turbulence (Reichstein et al., 2005) with a friction velocity threshold of 0.1 m s-1. 303 

Remaining spikes were removed using a 30-day moving window that advanced one day at a 304 

time and any half-hours that exceeded ±2 standard deviations from the mean for that half-305 

hour were discarded.  306 

In ATQ, the anemometer flux comparisons were limited to the wind sector between the 307 

roughly perpendicularly oriented CSAT3 and Metek (Table 1) to minimize flow distortion 308 

effects. We performed orthogonal regression analyses, as there was no true dependent 309 

variable or a control, and we therefore needed to account for errors in both flux estimates. 310 

Since R2 values cannot be obtained from orthogonal regression, we have reported Pearson’s 311 

correlation coefficient (r) associated with each comparison. In addition to the 1:1 regression 312 

comparisons, we analyzed the differences between flux measurement pairs by plotting the 313 

distribution of differences (ǻ flux values) and fitting Laplace (double exponential) probability 314 
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density functions to obtain the mean difference (bias) and spread (variance) of differences for 315 

each comparison.  316 

To compare annual estimates of CO2 derived from various sensor combinations, we filled 317 

gaps in the half-hourly fluxes using the online eddy covariance gap-filling tool 318 

(http://www.bgc-jena.mpg.de/~MDIwork/eddyproc) which employs standard methods of 319 

Reichstein et al. (2005). Methane fluxes were gap-filled using an artificial neural network 320 

(ANN) (Dengel et al., 2009; Zona et al., 2016). Meteorological inputs to the ANN included 321 

air temperature, soil temperature at 10cm depth, photosynthetic photon flux density (PPFD), 322 

vapor pressure deficit (VPD), and two sonic cross wind components, (u and v). The ANN 323 

was run 25 times and the median value was used to fill gaps in half-hourly flux time series.  324 

To assess the uncertainty associated with each annual sum, we applied the ‘paired days’ 325 

approach to estimate random uncertainty of measured fluxes (Hollinger and Richardson, 326 

2005). We used a Monte Carlo simulation to sample randomly from double-exponential 327 

distributions defined by the sigma values that resulted from the paired-days analysis (Dragoni 328 

et al., 2007). The median half-hourly uncertainty from 250 simulations was used in the 329 

annual assessment. The uncertainty associated with the gap-filling approach was assessed by 330 

simulating gaps and comparing synthetic data to observations (Reichstein et al., 2005), and 331 

half-hourly uncertainties were propagated in quadrature (Taylor, 1997) to obtain annual 332 

values. All data analyses were performed with Matlab (R2014a, MathWorks, Natick, MA, 333 

USA). 334 

3. Results 335 

3.1. Sonic anemometer comparisons 336 

The half-hourly sensible heat fluxes (H) calculated with the unheated anemometers 337 

(CSAT3 and Gill R3) revealed a good comparison, with a slope of 1.01 and Pearson’s r of 338 
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0.96 (Figure 1a). The sensible heat fluxes derived from the continuously heated Metek were 339 

higher on average than the (unheated) CSAT3, with a slope of 1.12 and intercept of 7.27 W 340 

m-2 (Figure 1b). Further comparison between these two sonic anemometers, revealed that 341 

differences in the variance in sonic temperature (Ts) were negligible (Figure 2a), whereas 342 

there was higher variance in the vertical wind component (w) measured by the heated Metek 343 

than the CSAT3 (red line; slope = 1.17 and intercept = -0.01 m2 s-2) (Figure 2b).  344 

We explored the effect of heating the Metek at ATQ and potential influence of over-345 

estimated fluctuations in w on the gas fluxes by comparing FCO2, LE, and FCH4 derived from 346 

both the CSAT3 and the heated Metek, paired with the LGR-FGGA-24EP closed-path gas 347 

analyzer. We found that the heated Metek resulted in higher LE than the unheated CSAT3-348 

derived fluxes, with a slope of 1.19 (Figure 3a) and a mean bias (ǻLE) of -3.77 W m-2 349 

(Figure 4a). Discrepancies in CO2 and CH4 fluxes from the two sensor pairs were smaller, 350 

with slopes of 1.09 and 1.07 in the regressions, respectively (Figure 3c and e), and delta flux 351 

values were also small for FCO2 (-0.03 µmol m2 s-1) and FCH4 (-0.05 mgC m-2 hr-1) (Figure 4c 352 

and e). Given this smaller offset in the direct comparison of C fluxes, the annual sums of FCO2 353 

from these two sensor pairs were also very similar (within 5%). Specifically, from 1 October 354 

2013 to 30 September 2014 at ATQ, the heated Metek – LGR sensor pair resulted in an 355 

estimated loss of 7.5 ± 1.4 gC-CO2 m
-2 yr-1 and the CSAT3 – LGR sensor pair resulted in an 356 

estimated loss of 7.9 ± 1.3 gC-CO2 m
-2 yr-1 (Table 2). This small difference in annual FCO2 357 

resulted from the compensating effect of slightly higher uptake during the day and slightly 358 

higher losses at night estimated from the Metek-derived fluxes, a consequence of the higher 359 

variance in the vertical wind component (w). For example, winter CO2 losses were 9.2% 360 

higher and summer uptake was 6.7% higher when estimated from the Metek – LGR sensor 361 

pair (Figure 5a). Additionally, when isolating data from June, July and August 2014, the 362 
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mean daytime CO2 uptake and mean night time CO2 losses were also approximately 0.1 µmol 363 

m-2 s-1 larger from the Metek – LGR pair.  364 

The annual FCH4 at ATQ from the heated Metek and unheated CSAT3 were identical 365 

(3.7 gC m-2 yr-1) (Table 2). Furthermore, there was very little temporal shift in the FCH4 366 

cumulative time series from these two sensor pairs (Figure 5b). Therefore, timing and 367 

seasonal comparisons are also constrained for FCH4 between the heated and unheated setup.  368 

To separate the impact of heating from the potential differences in the performance of 369 

the Metek and CSAT3, we de-activated heating of the Metek from 17 March 2015 to the 370 

present day. Using the same QA/QC protocol, we found better agreement in H, whereby the 371 

the regression slope was reduced 1.06 (Figure 1b), suggesting the continuous heating was 372 

responsible for at least half of the over-estimation of ı2w (Figure 2b), in addition to reducing 373 

heating-related errors. However, over-estimation of LE persisted even after the heating of the 374 

Metek was deactivated (slope = 1.20, Figure 3b), with only a slight improvement in the mean 375 

bias to -3.21 W m-2 (Figure 4b). Finally, the comparison of FCO2 and FCH4 between the heated 376 

and unheated setup remained very good (slopes of 1.06 and 0.99, respectively) (Figure 3d and 377 

f). The mean bias for FCO2 dropped to 0, while that for FCH4 was reduced to -0.01 mgC m-2 hr-378 

1 (Figure 4d and f). 379 

The intermittent heating system for the Metek at IVO successfully de-iced the 380 

transducers during cold periods (Figure 6), bypassing the observed biases to the fluxes. The 381 

very noisy flux data associated with ice build-up was minimized during the short periods 382 

when heating was activated, and the post-heating sensible heat fluxes were comparable to 383 

pre-heating values (Figure 6), suggesting only a temporary influence, and no long-term biases 384 

on the fluxes. Despite losing 3.2% of data from the Metek at IVO during heating activation 385 

(which we removed during prost-processing), the annual data coverage of H from that site 386 

was the same as that of the continuously heated Metek at ATQ (64%) and the winter data 387 
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coverage was similar (50% and 46% for IVO and ATQ, respectively) (Table 3). However, it 388 

should be noted that due to unrelated technical issues at ATQ that led to data losses during 389 

winter, the available data before QA/QC and filtering was lower at that site than IVO (Table 390 

3). 391 

3.2. Gas analyzer comparisons   392 

3.2.1. Closed-path and (en)closed-path CO2 and H2O analyser comparison 393 

We compared fluxes from the closed-path LGR-FGGA-24EP and the (en)closed-path 394 

LI-7200 at ATQ using the CSAT3 anemometer. FCO2 was very similar between the two 395 

sensor pairs with a slope of 0.99 and -0.01 intercept (r = 0.87, P < 0.001) (Figure 7a). The 396 

ǻFCO2 distribution also suggested very low bias (µ = 0.01 µmol m-2 s-1) with generally tight 397 

spread (ı = 0.53 µmol m-2 s-1) (Figure 8a). The resulting annual total CO2 fluxes derived 398 

from the two sensor pairs were within 1.4 gC m-2 yr-1, with the LI-7200 resulting in slightly 399 

larger CO2 loss (9.3 ± 1.1 gC m-2 yr-1) than the LGR-FGGA-24EP (7.9 ± 1.3 gC m-2 yr-1) 400 

(Table 2). Primary differences in the cumulative CO2 flux trajectories were slightly higher 401 

respiratory losses of late autumn CO2 from the LGR-FGGA-24EP with subsequent greater 402 

spring CO2 uptake (Figure 5a).  Latent heat fluxes at ATQ from the LI-7200 were generally 403 

somewhat higher than from the LGR-FGGA-24EP with a slope of 0.86 from the regression (r 404 

= 0.98, P < 0.001) (Figure 7c). This was also reflected in the mean bias in ǻLE of 3.22 W m-
405 

2, with tight spread (ı = 7.60 W m-2) (Figure 8c).  406 

3.2.2. Open-path and closed-path CO2 and CH4 analyser comparison 407 

We used data from BES to compare FCO2 derived from the closed-path LGR-FGGA-408 

24-EP and the open-path LI-7500, both paired with the CSAT3 anemometer. There were less 409 

available data form the LI-7500 and more noise in fluxes from both sensor pairs at BES than 410 

was observed at ATQ, and thus the amount of data used in these comparisons was smaller 411 
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(Table 3). As a result, the regression comparison showed considerable scatter with a slope of 412 

1.28 and 0.29 µmol m-2 s-1 intercept (r = 0.61, P < 0.001) (Figure 7b). Despite the high degree 413 

of spread in the distribution of ǻFCO2 (ı = 1.13 µmol m-2 s-1), the mean bias was low (µ = -414 

0.04 µmol m-2 s-1) (Figure 8b).  415 

Ice and snow build-up on the windows of the open-path LI-7500, for which no 416 

winterization was attempted during 2013-2015, led to particularly poor data coverage during 417 

cold periods at BES and as little as 10% of CO2 flux data remained after quality control 418 

filtering for the period from 1 October 2013 to 23 Apr 2015 (i.e. winter). We therefore 419 

estimated integral CO2 fluxes only for late spring and summer (1 May to 31 October 2015) at 420 

BES. Total flux calculated for this period from the LGR-FGGA-24-EP was -14.2 ± 1.7 gC m-421 

2 summer-1 and from the LI-7500 was -17.0 ± 1.1 gC m-2 summer-1, with most of this 422 

difference derived from slightly larger spring thaw-out CO2 losses and summer uptake 423 

measured by the LI-7500 (Figure 5c). Generally, despite potentially large differences in 424 

instantaneous measurements between these two set-ups, and larger spectral corrections 425 

required for LGR-FGGA-24EP flux calculations (Table 4), mean flux values from longer 426 

periods (seasonal) converge to values within uncertainty ranges.    427 

Methane fluxes were compared at CMDL using the LGR-FGGA-24EP closed-path 428 

analyser and the LI-7700 open-path sensor. The regression comparison resulted in a slope of 429 

0.86 with an intercept of 0.05 mgC m-2 hr-1 (r = 0.68, P < 0.001) (Figure 7d). The 0.02 mgC 430 

m-2 hr-1 mean ǻFCH4 suggested a very small bias toward higher fluxes derived from the open-431 

path LI-7700 (Figure 8d). However, the data coverage in CMDL was markedly better from 432 

the LGR-FGGA-24EP with 54% coverage over the entire measurement year, whereas 433 

coverage was 26% for the open-path LI-7700 (Table 3). As expected, the seasonality in flux 434 

data coverage from these two sensors showed much higher cold-season data capture rates 435 

with the closed-path LGR-FGGA-24EP. Using the seasonal breakdown based on PPFD and 436 
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temperature described in Oechel et al. (2014), we found the LGR-FGGA-24EP data coverage 437 

was 40, 58, 81, and 65% for winter, spring, summer, and fall, respectively. Whereas the data 438 

capture rates from the LI-7700 at CMDL during those seasons were 14, 46, 49, and 27%, 439 

respectively. On the other hand, at IVO the annual data coverage obtained by the open-path 440 

LI-7700 paired with the intermittently heated Metek anemometer was 47% and winter 441 

coverage was 35% (Table 3), indicating that good coverage is possible with open-path CH4 442 

analysers farther inland from the coast, with lower humidity (annual average RH of 75% and 443 

87% at IVO and CMDL, respectively) and less influence of salt spray.  Furthermore, despite 444 

the small bias in the fluxes at CMDL toward higher LI-7700 FCH4, and lower data coverage 445 

during cold periods, the annual sums from the open and closed-path set-ups were not 446 

significantly different (Table 2), with only slight deviations in the cumulative trajectory in 447 

winter and autumn (Figure 5d).  448 

  449 
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Tables 450 

Table 1. Sensor configurations and distances between analyzers at each site. Heated  
intake tubes are indicated by subscript ‘H’. The LGR-FGGA-24EP was manufactured by Los 
Gatos Research Inc., CA, USA; the LI-7500, LI-7200, and LI-7700 by LI-COR Biosciences 
Inc., NE, USA; the CSAT3 by Campbell Scientific Inc., UT, USA; the Gill WMP and R3 by 
Gill Instruments Ltd., Hampshire, UK; and the Metek uSonic-3 Class A by Metek GmbH, 
Elmshorn, DE.  
Sonic anemometers 

    
Site Model Height (m) Orientation (°) 

Heating 
(dist. to Metek (m)) 

 CMDL Gill WMPa 4.17 35 non-heated 
 

BES CSAT3a 2.18 60 non-heated 
 

  CSAT3a 2.28 175 non-heated (0.35) 
 

ATQ Gill R3 2.28 0 non-heated (0.56) 
 

  Metek 2.28 94 continuous 
 IVO Meteka 3.42 205 intermittent 
 

Gas analyzers 
    

Site Model Height (m) Gas species 
Tube length (m) 
(dist. to CP (m))b 

Dist. to primary  
anemometer 

(m) 

CMDL 
LGR-FGGA-24EP 4.18 CO2/H2O/CH4 5.71H 0.18 

LI -7700 4.12 CH4 (0.23) 0.23 

BES 
LI -7500 1.60 CO2/H2O (0.37) 0.20 

LGR-FGGA-24EP 2.00 CO2/H2O/CH4 4.50H 0.17 

ATQ 
LI -7200 2.25 CO2/H2O 1.20 (0.07) 0.44 

LGR-FGGA-24EP 2.30 CO2/H2O/CH4 3.12H 0.43 

IVO 
LI -7200 3.22 CO2/H2O 1.20 0.14 
LI -7700 3.12 CH4 - 0.45 

aPrimary anemometer used for flux calculation in gas analyzer comparisons. 
 bDistance to the closed or (en)closed-path (CP) analyzer used in comparisons. 
  451 

 452 
 453 
  454 
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Table 2. Annual total FCO2 and FCH4 estimated with different sensor combinations at ATQ, BES, and 455 
CMDL. See section 2.5 for a description of the uncertainty estimation. 456 

Site Gas 
analyzer Anemometer Annual NEE 

[gC m-2 yr-1] 
Annual FCH4 
[gC m-2 yr-1] 

ATQ 

LGR CSAT 7.9 (±1.3) 3.7 (±0.28) 

LGR Metek (heated) 7.5 (±1.4) 3.7 (±0.26) 

LI-7200 CSAT 9.3 (±1.1) - 

BES* 
LGR CSAT -14.2 (±1.7) - 

LI-7500 CSAT -17.0 (±1.1) - 

CMDL 
LGR Gill WMP - 4.9  (±0.27) 

LI-7700 Gill WMP - 4.5  (±0.31) 
 457 
* Flux integrals for BES were calculated for 1 May to 31 October.  458 
  459 
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Table 3. Data coverage for fluxes calculated with each sensor configuration. The continuously heated 460 
Metek is indicated by (con), the intermittently heated Metek is indicated by (int), closed- and 461 
(en)closed-path gas analyzers are indicated by (CP), and open-path analyzers are indicated by (OP). 462 
The available data column excludes only those for which a flux could not be calculated due to loss of 463 
power (< 5% for all sites), instrument malfunction, and active rain or heavy fog, which causes high 464 
frequency data to be out of range.   465 

Site Flux Sensor (pair) 
Available 
data (%) 

Annual 
coverage 
following 

QA/QC, spike 
removal (%) 

Winter 
coverage 

(%) 

ATQ 
H CSAT 66 52 31 
H Metek (con) 76 64 46 
H Gill R3 64 47 25 

IVO H Metek (int) 91 64 50 

BES 
FCO2 LI -7500 (OP) - CSAT 51 30 10 

FCO2  LGR (CP) - CSAT 88 70 41 

ATQ 

FCO2 LI -7200 (CP)  - CSAT 66 48 27 

FCO2  LGR (CP)  - CSAT 53 53 32 

FCO2  LGR  (CP) - MTK (con) 76 61 46 

ATQ 
LE  LI-7200 (CP)  - CSAT 66 46 26 

LE  LGR (CP) - CSAT 66 52 35 

LE  LGR (CP)  - MTK (con) 76 67 46 

ATQ 
FCH4  LGR (CP) - CSAT 66 52 31 

FCH4  LGR (CP) - MTK (con) 76 61 44 

BRW 
FCH4  LI -7700 (OP) - Gill WP 27 26 14 

FCH4  LGR  (CP) - Gill WP 55 54 40 

IVO FCH4  Metek (int) 65 47 35 
  466 
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Table 4. Comparison of summary statistics associated with 
spectral correction factors applied to fluxes at each site with 
different gas analyzers. 

    Spectral correction factors 

Site Flux & sensor Median 1st quartile 3rd quartile 

BES 
FCO2 LI -7500 1.14 1.13 1.16 

FCO2 LGR 1.29 1.23 1.35 

ATQ 
FCO2 LI -7200 1.15 1.11 1.20 

FCO2 LGR 1.34 1.25 1.47 

BES 
LE LI -7500 1.14 1.13 1.15 

LE LGR 3.33 2.63 3.99 

ATQ 
LE LI -7200  2.34 1.99 2.89 

LE LGR 2.07 1.78 2.48 

CMDL 
FCH4 LI -7700 1.15 1.13 1.17 

FCH4 LGR 1.49 1.38 1.65 

 467 
 468 
  469 
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Figure captions   470 
 471 

Figure 1. Comparisons of half-hourly sensible heat fluxes (H) at ATQ derived from the (unheated) 472 
CSAT3 anemometer and the (unheated) Gill R3 (n = 634) (a) and the heated Metek (n = 634) (b) from 473 
1 October 2013 to 30 September 2014. The red line in panel b corresponds to the heated Metek data 474 
while the grey line and symbols represent data after heating of the Metek at ATQ was fully de-475 
activated from 17 March to 11 June 2015 (n = 581). Regression coefficients with the ‘con’ subscript 476 
indicates results from the continuously heated Metek data. In this and all of the following regression 477 
figures, ‘I’ denotes the fitted intercept in units given on the x and y-axes, and ‘S’ denotes the slope of 478 
the regression.    479 

Figure 2. Comparisons of the CSAT3 and the heated Metek at ATQ of half-hourly variance in Ts (n = 480 
634) (a) and w  (n = 554) (b) from 1 October 2013 to 30 September 2014. The red line in panel b 481 
corresponds to the heated Metek data while the grey line and symbols represent data collected after 482 
heating of the Metek at ATQ was fully de-activated from 17 March to 11 June 2015 (n = 543). 483 
Regression coefficients with the ‘con’ subscript represent results from the continuously heated Metek 484 
data. 485 
 486 
Figure 3. Comparison of 30-min average LE (n = 2316) (a), FCO2 (n = 2167) (b), and FCH4 (n =3563) 487 
(c) fluxes derived from the heated Metek sonic anemometer (y-axis) and the unheated CSAT3 488 
anemometer, and LE (n = 2969) (b), FCO2 (n = 2689) (d), and FCH4 (n = 2058) (f) from the unheated 489 
Metek and unheated CSAT3, in all cases paired with the LGR closed-path analyzer at ATQ from 1 490 
October 2013 to 22 July 2015.  491 
 492 
Figure 4. Distributions of flux differences (ǻflux) from the analyzer pairs being compared in Fig. 3. 493 
Delta values were calculated as CSAT3 LE – Metek LE (a, b), CSAT3 FCO2 – Metek FCO2 (c, d), and 494 
CSAT3 FCH4 – Metek FCH4 (e, f). Distributions were fitted with Laplace (double exponential) 495 

maximum likelihood ܮܯ ൌ ͳൗʹ ȁ௫ିఓȁି݁ߚ ఉΤ , where ߪ ൌ  ξʹ496 .ߚ 

 497 
Figure 5. Cumulative CO2 from the open and closed-path analyzers in BES paired with the CSAT3 498 
(Table 2) (a), FCO2 from the closed and (en)closed-path analyzers and heated and unheated 499 
anemometers in ATQ (c). Cumulative CH4 fluxes from the open and closed-path analyzers in CMDL 500 
(b), and from the heated and non-heated anemometers in ATQ (d).  501 
 502 
Figure 6. Sensible heat fluxes from IVO during a heating activation of the intermittently heated 503 
Metek anemometer. The solid red line shows the duration of heating as 30-min average values of the 504 
heating flag, which was set to 0 (off) or 1 (on) depending on the activation status. Grey points show 505 
noisy data resulting from the build-up of ice and snow and the resulting activation of anemometer 506 
heating. 507 
 508 
Figure 7. Comparisons of 30-min average FCO2 (n = 5036) (a) and LE (n = 2837) (c) between closed 509 
and (en)closed-path sensors ATQ, and comparisons of FCO2 (n = 790) (b) and FCH4 (n = 1681) (d) 510 
between open and closed-paths sensors at BES and CMDL, respectively.  511 

 512 
Figure 8. Distributions of flux differences (ǻflux) from the analyzer pairs being compared in Fig. 6. 513 
Delta values were calculated as (en)closed-path – closed-path fluxes (ba and c) and open-path – 514 
closed path fluxes (b and d). 515 

  516 
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4. Discussion 517 

4.1. Sonic anemometer comparisons  518 

Continuous heating of the Metek sonic anemometer at ATQ considerably increased 519 

the data coverage, especially in winter, relative to the unheated CSAT3 and Gill R3 520 

anemometers (Table 3), however sensible heat and gas fluxes were over-estimated with the 521 

heated Metek. Recently, Frank et al. (2013) suggested that non-orthogonal sonic 522 

anemometers may under-estimate the vertical wind component and H, which was also found 523 

by Mauder et al. (2007) for two non-orthogonal designs. However, Loescher et al. (2005) 524 

found higher H from the CSAT3 compared to orthogonal anemometers. All of the 525 

anemometers compared in this study were non-orthogonal, however our results suggest that 526 

the anemometer geometry (horizontal head vs. vertical head) had a relatively small impact, 527 

on wind components and sensible heat and C fluxes at ATQ. The anemometer heating had the 528 

most important influence on comparisons. A similar result was reported from the BOREAS 529 

IV campaign, where several heated anemometers, including an earlier Metek model (USA-1 530 

55W), were compared to unheated anemometers (including a Gill R3) and a heightened 531 

sensitivity to the vertical wind component was noted in the heated models (Tammelin et al., 532 

1998). Nonetheless, the observed over-estimation of vertical wind variations by the heated 533 

Metek in this study led only to a relatively small increase in FCO2 (both uptake and losses) 534 

and FCH4 (Figure 3c and e). As a result, there was a small difference in the estimated annual 535 

CO2 fluxes compared to the CSAT-derived fluxes, and the two estimates had overlapping 536 

uncertainties (Table 2). This result suggests that despite a small over-estimation of C gas 537 

fluxes derived from a continuously heated anemometer, the increase in data coverage with 538 

continuous heating and the comparable annual sums that result can still lead to defensible 539 

annual estimates of C gas fluxes using heated sonic anemometers. 540 
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Despite improved data coverage and relatively small effects on long-term fluxes 541 

observed at ATQ, continuous heating may not be the optimal choice, particularly for remote 542 

flux towers where power consumption is critical for site operation. An intermittent heating 543 

approach, such as that devised in this study, provides a better alternative. This minimizes 544 

power consumption, reduces heating-related errors in fluxes, and retains very similar data 545 

coverage compared to continuously heated systems (Figures 2 and S3; Table 3). We 546 

recommend that intermittent heating be implemented in all sites operating in cold climates, to 547 

increase data coverage during the cold season and avoid overestimating fluxes in all periods. 548 

4.2. Gas analyzer comparisons 549 

 We found that despite the potential for relatively large instantaneous differences in 550 

fluxes as well as the larger spectral corrections required for longer-tube LGR-FGGA-24EP 551 

fluxes due to sensor time response, tubing and filter attenuation, and intake assembly, the 552 

resulting annual CO2 fluxes did not differ significantly from the shorter-tube LI-7200. Burns 553 

et al. (2014) also found good comparisons between the LI-7200 and an older model LI-6262 554 

close-path analyzer with a longer intake tube after data treatment and post-processing were 555 

properly accounted for, despite differing spectral response. These results provide a measure 556 

of confidence in carbon flux estimates obtained by closed-path gas analyzers of various 557 

designs when upgrading long-term sites or planning new experiments, provided that careful 558 

spectral corrections are applied to each design using data-driven, in-situ methods. On the 559 

other hand, latent heat fluxes from the LGR-FGGA-24EP with heated tube in this study were 560 

slightly under-estimated compared to the LI-7200 with a shorter, unheated tube (ATQ) 561 

(Figures 7c and 8c). The longer tube length (3.12 m compared to 1.2 m) of the LGR-FGGA-562 

24EP  (Table 1) at ATQ likely contributed to more attenuation of the H2O signal compared to 563 

the LI-7200, leading to spectral correction factors that did not fully compensate for this signal 564 

loss (Table 3, Figure S2). This was noted in other comparisons (Burns et al., 2014), and the 565 
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attenuation of H2O signals due to intake tubing remains a trade-off in eddy covariance 566 

systems where increased data coverage is desired (Lenschow and Raupach, 1991; Leuning 567 

and Judd, 1996). At the wettest site, BES, H2O signal attenuation was so severe that spectral 568 

corrections factors of 300-400% applied to the closed-path LGR-FGGA-24EP LE fluxes 569 

(Table 3) were insufficient to calculate comparable direct comparisons with the LI-7500 (not 570 

shown). Other studies have found similar under-estimation of LE from closed-path systems 571 

relative to open-path (Halswanter et al., 2009; Ueyama et al., 2012). The BES site exhibits 572 

more extensive inundated areas relative to the other study sites (Zona et al., 2009; Zona et al., 573 

2016), and the attenuation of H2O signals can be strongly influenced by relative humidity 574 

(Runkle et al., 2012), especially if the heating of the intake tube is not uniform (Mammarella 575 

et al., 2009). Reductions in intake tube lengths and funnel sizes as well as improvements to 576 

the tube heating system should be investigated in order to improve H2O flux measurements in 577 

future work at these cold, inundated sites. 578 

Fluxes of CO2 from the open and closed-path systems at BES compared well after 579 

applying differing spectral correction factors (Table 4), while more noise in the fluxes was 580 

observed at this site leading to a large spread in ǻFCO2. A primary concern between sensor 581 

configurations for CO2 fluxes at BES was data coverage during cold periods. The lack of 582 

reliable CO2 flux data from the non-winterized open-path analyzer for a large part of the 583 

winter precluded the estimation of a full annual CO2 budget at this site. Despite this, 584 

comparable flux integrals were obtained during warmer seasons and estimates from the 585 

different sensor combinations had overlapping uncertainties. Oechel et al. (2014) noted the 586 

difficulty in maintaining open-path analyzers during the Arctic winter and found that data 587 

capture rates fell below 15% during this period. This was, in part, due to the inability to 588 

safely access and maintain instrumentation at the tower, which is especially necessary for 589 

open-path sensors to keep the windows clean and unobstructed by snow and ice.  590 
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The open and closed-path FCH4 compared well at CMDL (Figure 5d and 7d). A 591 

number of eddy covariance CH4 sensors have also successfully measured comparable fluxes 592 

(Detto et al., 2011; Peltola et al., 2011; Iwata et al. 2014). Therefore the choice of sensor may 593 

be adapted to the specific conditions and requirements (e.g. power availability) at a site if the 594 

research focus is on C-CH4 gas fluxes and budgets. However, with increasing evidence for 595 

the importance of cold season emissions in the Arctic (Mastepanov et al., 2008; Mastepanov 596 

et al., 2013; Sturtevant et al., 2012; Zona et al., 2016), the most reliable data coverage during 597 

such periods currently requires closed-path analyzers, although heavily winterized open-path 598 

analyzers were not examined in this study. Coastal areas are particularly problematic in this 599 

regard given the higher humidity and the salt spray that affect the mirrors of open-path 600 

analyzers, leading to substantially higher data losses than areas farther inland, even when 601 

automated mirror cleaning is employed. For the inland sites, where low power availability 602 

prevents the use of close path CH4 analyzers, we have found in this, and other studies (Zona 603 

et al., 2016), that the open path LI-7700 was able to successfully measure fluxes year-round 604 

with reasonable data coverage. 605 

5. Conclusions 606 

Using different eddy covariance sensor combinations on the same towers, we have 607 

shown that seasonal and annual CO2 and CH4 fluxes estimated using different gas analyzers 608 

and from heated and non-heated anemometers were within uncertainties. The remote 609 

locations and harsh winter conditions in the Arctic often necessitate the use of different site-610 

specific instrumentation at each site. However, this does not preclude the ability to obtain 611 

comparable C fluxes if instruments are properly setup and fluxes are carefully processed. 612 

Heating sonic anemometers intermittently for de-icing, and excluding minimal data during 613 

the heating (~3% of the total data set), is the optimal solution for minimizing biases in wind 614 

components while maximizing data coverage (e.g. obtaining similar data coverage to a 615 
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continuously heated anemometer). If sufficient power is available at the site, closed-path and 616 

(en)closed-path gas analyzers should be used to provide better data coverage than non-617 

winterized open-path analyzers, especially in cold and wet environments, where 90% of data 618 

can be lost.  619 
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