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Abstract

Most large-scale planetary magnetic fields are thought to be driven by low Rossby number con-

vection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with

an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low

magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illus-

trate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic

turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convec-

tion to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number,

is observed as the buoyancy forcing is increased. This decreased efficiency may result from both

the loss of correlations associated with the increasingly disordered states of flow that are generated,

and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial

characteristics of α, and thus the large-scale magnetic field, is dependent only weakly on changes

in flow behavior. In contrast to the large-scale magnetic field, the behavior of the small-scale mag-

netic field is directly dependent on, and therefore shows significant variations with, the small-scale

convective flow field. However, our results are limited to the linear, kinematic dynamo regime;

future simulations that include the Lorentz force are therefore necessary to assess the robustness

of these results.
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I. INTRODUCTION

Most planets within the Solar System possess large-scale magnetic fields that are thought

to be the result of dynamo action occurring within their electrically conducting fluid in-

teriors [51]. Detailed spatiotemporal observations of these systems are lacking, therefore

placing emphasis on the development of theory and models for understanding the physical

mechanisms responsible for the generation of planetary magnetic fields [e.g. 65]. Gener-

ally speaking, modeling geo- and astrophysical fluids is difficult due to the broad range of

spatial and temporal scales that must be resolved. Although significant advances in the

understanding of planetary dynamos have been made by direct numerical simulation (DNS)

of the full set of governing magnetohydrodynamic equations, accessing planetary-like flow

regimes with DNS is currently impossible with modern-day high-performance computing

environments [29]. An alternative, but complementary strategy to DNS, is the development

of reduced models that filter dynamically unimportant phenomena and result in simplified

governing equations. One benefit of reduced models is that they are significantly more ef-

ficient to solve numerically given that various terms from the equations are systematically

removed or simplified [e.g. 37]. As a result of these simplifications, reduced models can

provide enhanced physical interpretation and insight into observed hydrodynamic and mag-

netohydrodynamic processes. In the present work we utilize an asymptotic model recently

developed by Calkins et al. [10] to examine the behavior of convection-driven kinematic

dynamo action in the limit of rapid rotation.

It is widely believed that most planetary dynamos are powered by buoyancy-driven mo-

tions associated with the convective transport of heat and chemicals. Moreover, it is thought

that the Coriolis force constrains fluid motions within the interiors of most planets given

that the observed large-scale magnetic fields are predominantly aligned with the rotation

axis of the planet [51]. Indeed, it was recognized early on in the seminal studies of Parker

[44] and Steenbeck et al. [58] that the Coriolis force provides a robust mechanism for break-

ing the reflectional symmetry of fluid motions; this is necessary for large-scale magnetic field

generation.

The rotating convection dynamics of an Oberbeck-Boussinesq fluid depend upon three

non-dimensional parameters

Ra =
gγ∆TH3

νκ
, Ek =

ν

2ΩH2
, P r =

ν

κ
, (1)

where the Rayleigh number Ra controls the strength of the buoyancy force, the Ekman
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number Ek is the ratio of viscous and Coriolis forces, and the thermal Prandtl number

Pr is the ratio of viscous to thermal diffusivity. Here H is the depth of the fluid layer

and ∆T represents the (constant) temperature difference between the lower and upper solid

boundaries. The fluid is characterized by thermal expansion coefficient γ, kinematic viscosity

ν and thermal diffusivity κ. The rotation rate of the system is assumed constant and parallel

to the axial direction ẑ, i.e. Ω = Ωẑ.

The rapidly rotating convection regime is characterized by the asymptotic limits Ek → 0

and Pr ≫ Ek, with Ra = O(Ek−4/3) [13]. In this regime, the Coriolis and pressure

gradient forces are in approximate balance, resulting in quasi-geostrophic (QG) dynamics.

Linear theory has established that the horizontal wavelength in QG convection scales as

L ∼ HEk1/3, such that the aspect ratio H/L = Ek−1/3 ≫ 1. Provided the Rossby number

Ro =
U

2ΩL
, (2)

is also small, these scalings also hold in the nonlinear regime [e.g. 36]. Here U is a char-

acteristic velocity scale of the convection and the Rossby number characterizes the ratio of

inertial forces to the Coriolis force. If we employ a viscous scaling for the velocity U = ν/L,

we have

ǫ ≡ Ro = Ek1/3, (3)

where we have utilized the aspect ratio scaling previously mentioned.

Childress and Soward [15] exploited the asymptotic properties of QG convection to de-

velop the first reduced dynamo model for rotating convection. They focused on small am-

plitude weakly nonlinear motions in which the small-scale (convective) Reynolds number

Re =
UL

ν
, (4)

is small, and the magnetic Prandtl number

Pm =
ν

η
, (5)

where η is the magnetic diffusivity, is order unity. Dynamo action was investigated in detail

by Soward [55] and Fautrelle and Childress [21] for magnetic fields of varying strengths within

the context of the Childress-Soward dynamo model. It was shown that QG convection acts

as an efficient magnetic field generator in the sense that growing magnetic fields are observed

just above the onset of convection with a large-scale magnetic field that oscillates in time.
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The quasi-geostrophic dynamo model (QGDM) recently developed by Calkins et al. [10]

is a fully nonlinear generalization of the Childress-Soward dynamo model, and is valid in the

limit (Ro,Ek) → 0 and Re = O(1), where we stress again that this is the Reynolds number

based on the small, convective scale. The QGDM can thus be used to explore both linear

(i.e. kinematic) and nonlinear dynamo behavior for all rapidly rotating convection regimes

from near the onset of convection to strongly forced, convective turbulence. Distinct versions

of the QGDM were developed for both Pm = O(1) and Pm ≪ 1, and it was shown that

the Lorentz force and the reduced induction equations have unique forms for these two

cases. Calkins et al. [11] used the QGDM to investigate the kinematic problem, in which

the Lorentz force in the momentum equations is neglected, utilizing the single wavenumber

solutions considered by Bassom and Zhang [2] and Julien and Knobloch [33, 34]. It was

shown that low Pm dynamos are readily attainable for low Ro convection, with low Pr

convection the most efficient given the reduced critical Rayleigh number in comparison to

high Pr fluids.

We stress here that the characteristics of kinematic dynamo action depends crucially on

the value of Pm [65]; for rapidly-rotating flows there is also a sensitivity to the Ekman

number [e.g. 49]. Dormy [19] argues that a distinguished limit should be sought where both

Pm and Ek are small with 1 ≫ Pm ≫ Ek for the dynamics to begin to replicate that of

planetary interiors. As shown by Calkins et al. [10], the dynamo utilized here, in contrast

with virtually all numerical models of planetary dynamos, does satisfy this inequality.

In the absence of magnetic field, the QGDM is equivalent to the QG convection equations

first developed by Julien et al. [36] and extensively explored via simulations in Sprague et al.

[57] and Julien et al. [37]. Neglecting the buoyancy force and dissipation, these equations

are also mathematically identical to those developed by Stewartson and Cheng [61] in their

investigation of low frequency (i.e. geostrophic) inertial waves in deep fluid layers [see also 41].

The linear, spherical convection investigations of Roberts [46] and Busse [5], and later work

by Jones et al. [31] and Dormy et al. [20], utilized a mathematically identical approach that

exploited a leading order geostrophic balance and spatial anisotropy. Moreover, reduced QG

convection equations were recently developed for the three-dimensional cylindrical annulus

geometry [7], extending the small-slope two dimensional model first developed by Busse

[5]. Collectively, these previous investigations highlight the importance of developing and

employing asymptotic models for the purpose of improving our understanding of flow regimes

that are characteristic of planets.

4



Simulations of the QG convection equations have identified four primary flow regimes in

rapidly rotating, non-magnetic Rayleigh-Bénard convection [37, 57]. These regimes can be

identified by the predominance of a given flow morphology, and can be referred to as the (1)

cellular, (2) convective Taylor column, (3) plume and (4) geostrophic turbulence regimes.

Each of these regimes is characterized by unique heat transfer behavior and flow statistics

[35, 42]. The final geostrophic turbulence regime is dominated by an inverse cascade that

generates a depth invariant dipolar vortex which fills the horizontal extent of the compu-

tational domain [48]. An identical inverse cascade mechanism was identified previously in

stochastically-forced, rotating homogeneous turbulence [52, 53], and subsequent DNS stud-

ies have demonstrated it as a robust phenomenon in rapidly rotating convection [24, 27, 60].

DNS investigations [60] and laboratory experiments [1, 14] show excellent agreement with

the simulations of the QG convection equations. In particular, Stellmach et al. [60] showed

that it is necessary to reach very small Ekman numbers (Ek . 10−7) and Rossby numbers

(Ro . 0.05) to reach the asymptotic regime in which the dipolar structure of the inverse-

cascade-generated vortex is preferred over the cyclonic vortices that become predominant in

the broken-symmetry regime present at higher Ekman and Rossby numbers [24, 27, 53, 66].

Many previous DNS dynamo investigations have been undertaken in the Rayleigh-Bénard,

plane layer geometry [12, 28, 30, 47, 59, 62–64]. Investigations in spherical geometries are

of obvious importance for planets, but must employ lower efficiency numerics typically and

are therefore more restricted in parameter space [1]. The DNS investigation of Stellmach

and Hansen [59] confirmed the predictions of Soward [55] that a strong, time-oscillatory

mean magnetic field can be generated near the onset of convection. Tilgner [63, 64] found a

transition from the mean field dynamo mechanism of Childress and Soward [15] to a dynamo

of fluctuation-type. The recent work of Guervilly et al. [28] examined the influence of the

inverse cascade and associated large-scale vortex on the resulting dynamo; they found that

for Pm & 1, the mean magnetic field is weak and the inverse cascade is less pronounced, in

comparison to a case at Pm = 0.2 where a significant inverse cascade and mean magnetic

field are present. It should be noted that all of these investigations, despite the advantage

of being in a computationally simple plane layer, are at parameters well away from those

relevant to planetary interiors.

In the present work we extend the single mode kinematic investigation of Calkins et al.

[11] to the hydrodynamically fully nonlinear, multi-mode case by performing numerical

simulations of the QG convection equations in which all of the dynamically active scales
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are present. As mentioned previously, these equations have been studied in some detail; our

main focus is utilizing the simulations to collect the necessary statistics for studying the

onset of dynamo action. Moreover, we utilize two different Prandtl numbers to illustrate

the influence of fluid properties. We stress that our results are limited to the linear (with

respect to the magnetic field), kinematic dynamo regime in the present work.

II. METHODS

II.1. The quasi-geostrophic dynamo model (QGDM)

A brief overview of the derivation and main features of the QGDM are given in the present

section; for a detailed discussion the reader is referred to Calkins et al. [10]. The basic

premise of the QGDM is similar to the Childress-Soward dynamo model in that we exploit

the anisotropic structure of the convection, whereH/L = ǫ−1 and ǫ = Ro. This characteristic

anisotropy in rotating convection motivates the use of multiple scale asymptotics in the space

(along the axial direction) and time dimensions, and results in the expansions [e.g. 4]

∂z → ∂z + ǫ∂Z , ∂t → ∂t + ǫ3/2∂τ + ǫ2∂T , (6)

where Z = ǫz is the large-scale vertical coordinate over which convection occurs, τ = ǫ3/2t

is the slow mean magnetic field timescale, while T = ǫ2t is the slow mean temperature

timescale. The slow and fast independent variables are therefore denoted by (Z, τ, T ) and

(x, t), respectively. Slow horizontal scales can also be utilized, though we neglect this effect

in the present work [for a more general discussion see 10].

All of the dependent variables are decomposed into mean and fluctuating variables ac-

cording to

f(x, Z, τ, T ) = f(Z, τ, T ) + f ′(x, Z, τ, T ), (7)

with the fast averaging operator defined by

f(Z, τ, T ) = lim
t′,V→∞

1

t′V

∫

t′,V

f(x, Z, t, τ, T ) dx dt, f ′ ≡ 0, (8)

where V is the small-scale fluid volume. Each variable is then expanded as a power series

according to

f(x, Z, t, τ, T ) = f
0
(Z, τ, T ) + f ′

0
(x, Z, t, τ, T )+

ǫ1/2
[
f
1/2(Z, τ, T ) + f ′

1/2(x, Z, t, τ, T )
]
+

ǫ
[
f
1
(Z, τ, T ) + f ′

1
(x, Z, t, τ, T )

]
+O(ǫ3/2).

(9)
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We substitute the above expansions for each variable into the governing equations, sepa-

rate into mean and fluctuating equations, and collect terms of equal asymptotic order. By

construction, the leading-order balance in the fluctuating momentum equation is geostrophy

ẑ× u′

0,⊥ = −∇⊥p
′

1
, (10)

where the (fluctuating) geostrophic velocity is u′

0,⊥ = (u′
0
, v′

0
, 0), p′

1
is the fluctuating pressure

and ∇⊥ = (∂x, ∂y, 0). Mass conservation at leading-order is horizontally non-divergent

∇⊥ · u′

0
= 0, (11)

which allows us to define the geostrophic streamfunction u′

0,⊥ = −∇ × ψ′
0
ẑ and the corre-

sponding axial vorticity ζ ′
0
= ∇2

⊥
ψ′
0
. Vortex stretching is captured via mass conservation at

order ǫ,

∇ · u′

1
+ ∂Zw

′

0
= 0, (12)

where the higher order ageostrophic velocity field is given by u′
1
.

The prognostic momentum equation is obtained at O(1) in the asymptotic expansion.

Closure of this equation is obtained by imposing solvability conditions; the end result is

that the three components of the momentum equation are reduced to a vertical vorticity

equation and a vertical momentum equation that do not depend upon the small-scale ver-

tical coordinate z. Similar reductions are performed for the heat and magnetic induction

equations.

Hereafter, we drop subscripts denoting asymptotic ordering. The complete set of reduced

equations, non-dimensionalized using the small-scale viscous diffusion time L2/ν, is given

by

D⊥

t ∇2

⊥
ψ′ − ∂Zw

′ = B · ∇⊥j
′

z +∇4

⊥
ψ′, (13)

D⊥

t w
′ + ∂Zψ

′ =
R̃a

Pr
ϑ′ +B · ∇⊥b

′

z +∇2

⊥
w′, (14)

D⊥

t ϑ
′ + w′∂Zϑ =

1

Pr
∇2

⊥
ϑ′, (15)

∂Tϑ+ ∂Z(w′ϑ′) =
1

Pr
∂2Zϑ, (16)

∂τB = ẑ× ∂ZE +
1

P̃m
∂2ZB, (17)

0 = B · ∇⊥u
′ +

1

P̃m
∇2

⊥
b′. (18)
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Here the temperature and magnetic field vector are given by ϑ = ϑ+ǫϑ′ and B = B+ǫ1/2b′,

respectively. The components of the mean and fluctuating magnetic field vectors are denoted

by B = (Bx, By, 0) and b′ = (b′x, b
′
y, b

′
z) and the corresponding fluctuating current density is

j′ = (j′x, j
′
y, j

′
z) = (∂yb

′
z,−∂xb′z, ∂xb′y − ∂yb

′
x). The mean electromotive force (emf) is denoted

by E = (u′ × b′).

The reduced Rayleigh number and the reduced magnetic Prandtl number appearing in

the above system of equations are defined by

R̃a = ǫ4Ra, Pm = ǫ1/2P̃m. (19)

The asymptotically reduced wavenumber and frequency are defined by k̃ = Ek1/3k and

ω̃ = Ek2/3ω, where k and ω are the unscaled values. The critical reduced Rayleigh number,

wavenumber and frequency characterizing the onset of convection are denoted as R̃ac, k̃c and

ω̃c. The onset of convection is steady (ω̃c = 0) for Pr & 0.68, in which case R̃ac ≈ 8.6956

and k̃c ≈ 1.3048 [13, 33]. In the present work we discuss results for Pr = 1 and Pr = 10.

The boundary conditions for the reduced system are impenetrable, stress-free, fixed-

temperature and perfectly electrically conducting,

w′ = 0 at Z = 0, 1, (20)

ϑ = 1 at Z = 0, and ϑ = 0 at Z = 1, (21)

∂ZB = 0 at Z = 0, 1. (22)

Due to the asymptotic reduction procedure, the reduced fluctuating heat and magnetic

field equations (15) and (18) do not contain vertical derivatives with respect to the fluc-

tuating temperature and magnetic field variables. As a result of this fact, no boundary

conditions are explicitly enforced for these variables. However, evaluating and analyzing

equations (15) and (18) at the top and bottom boundaries shows that both the fluctuating

temperature and fluctuating magnetic field will have the same class (e.g. perfectly conduct-

ing) of boundary conditions enforced implicitly as are applied to their mean counterparts

explicitly in equations (21) and (22). For instance, evaluating equation (15) at the bottom

boundary utilizing (20) gives

D⊥

t ϑ
′|Z=0 =

1

Pr
∇2

⊥
ϑ′|Z=0. (23)

This is an advection diffusion equation with no inhomogeneous source terms; we must there-

fore have ϑ′|Z=0 → 0 as t → ∞. The same condition holds at the top boundary (Z = 1)
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given the impenetrable boundary conditions on the fluctuating velocity. The implicit fixed

temperature boundary conditions for the fluctuating temperature are then

ϑ′ = 0 at Z = 0, 1. (24)

Taking the axial derivative of the horizontal components of equation (18) gives

0 = ∂ZB · ∇⊥u
′

⊥
+B · ∇⊥ (∂Zu

′

⊥
) +

1

P̃m
∇2

⊥
(∂Zb

′

⊥
) , (25)

where b′

⊥
= (b′x, b

′
y, 0). Since ∂ZB = ∂Zu

′

⊥
= 0 at both the top and bottom boundaries, we

must therefore have

∂Zb
′

⊥
= 0 at Z = 0, 1. (26)

Similarly, evaluating the vertical component of equation (18) at the top and bottom bound-

aries shows that

b′z = 0 at Z = 0, 1. (27)

Along the same line of reasoning, one can show that b′ will also satisfy perfectly electri-

cally insulating boundary conditions if such boundary conditions are imposed on the mean

magnetic field.

We note that neither the thermal boundary conditions nor the magnetic boundary con-

ditions influence the main results of the present work. In the limit of rapid rotation, fixed

temperature and fixed heat flux thermal boundary conditions become equivalent provided

that no large-scale horizontal modulation is present [6]. Moreover, for the present kinematic

dynamo problem both perfectly conducting and perfectly insulating electric boundary con-

ditions yield identical stability criteria [e.g. see 22].

In the present investigation we consider only the kinematic dynamo problem in the sense

that the Lorentz force terms appearing in equations (13)-(14) are ignored. This is done to

determine the region of parameter space for which exponentially growing magnetic fields are

present. The equations are therefore linear in the magnetic field vectors B and b′, whose

solutions can be sought via an eigenvalue formulation of equations (17)-(18) and (22) once

u′ is determined from equations (13)-(16) and (20)-(21).

With the use of (18) we can eliminate b′ and the two components of the emf become

E i = αijBj, (28)

where the pseudo-tensor αij is given by

αij = P̃m


 w′∇−2

⊥
∂xv′ − v′∇−2

⊥
∂xw′ w′∇−2

⊥
∂yv′ − v′∇−2

⊥
∂yw′

−w′∇−2

⊥
∂xu′ + u′∇−2

⊥
∂xw′ −w′∇−2

⊥
∂yu′ + u′∇−2

⊥
∂yw′


 , (29)
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and ∇−2

⊥
denotes the inverse horizontal Laplacian operator.

For sufficiently long simulation times of the hydrodynamic problem, the numerical simu-

lations show that, as expected, the alpha tensor is diagonal, symmetric and isotropic such

that α12 = α21 = 0 and α11 = α22 = α. The induction equations then simplify to become

∂τBx = −∂Z
(
αBy

)
+

1

P̃m
∂2ZBx, (30)

∂τBy = ∂Z
(
αBx

)
+

1

P̃m
∂2ZBy, (31)

where the alpha tensor will now be referred to solely by the single pseudo-scalar quantity α

hereafter. For specificity, in what follows we refer to α = α11 as defined in equation (29),

which can also be written more simply as

α = P̃m
(
w′∇−2

⊥
∂xv′ + ∂xv′∇−2

⊥
w′
)
. (32)

The particularly simple form of α given by equation (32) allows us to solve the kinematic

dynamo problem via a generalized eigenvalue formulation of equations (30)-(31). Here we

take the typical ansatz for the mean magnetic field such that

B(Z, τ) = B̂(Z) exp (στ), (33)

where B̂(Z) is the complex vertical eigenfunction, the complex eigenvalue is σ = σg + iσd,

and the growth rate and dynamo oscillation frequency are denoted by σg and σd, respectively.

We present results only for the marginal state of dynamo action in which σg ≡ 0.

That α can be written solely in terms of the velocity field is a direct result of the small

magnetic Prandtl number limit that leads to the simplified fluctuating induction equation

(18). Equation (18) is often referred to as the quasi-static form of the induction equation and

is well known from previous investigations as a limit associated with requiring the small-scale

magnetic Reynolds number

Rm = RePm, (34)

to be asymptotically small. In the present work we assume Re = O(1) so that Pm ≪ 1

if we are to have Rm ≪ 1. The quasi-static form of the induction equation has been

discussed previously with regards to the mean field theory of Steenbeck et al. [58] and

Moffatt [39]. Like the asymptotic theory utilized in the development of the QGDM, these

previous investigations required scale separation to justify the splitting of the dependent

variables into mean and fluctuating components. In Calkins et al. [10] it was shown that
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scale separation can also be assured when Rm = O(1) (i.e. Pm = O(1)) for the case

of rapidly rotating, anisotropic motions, though for this case α can no longer be written

in a form as simple as that given by equation (32). Moreover, the first-order-smoothing

approximation, characterized by the absence of terms involving products of u′ and b′ in

the fluctuating induction equation (e.g. b′ · ∇⊥u
′), is a fundamental characteristic of the

quasi-static form of the induction equation, but is no longer valid when Rm = O(1) [e.g. see

10].

It is informative to discuss the asymptotic relationship between non-dimensional param-

eters based on the small, convective length scale, with those based on the large depth of the

fluid H. In particular, the large- and small-scale magnetic Reynolds numbers are related by

RmH =
Rm

ǫ
, (35)

where RmH = UH/η. For the small magnetic Reynolds number limit employed in the

present work this relationship becomes

RmH =
R̃m

ǫ1/2
, (36)

where R̃m = O(1) is the reduced magnetic Reynolds number. The above relationship shows

that RmH ≫ 1 despite the fact that Rm ≪ 1. Similarly, the small-scale and large-scale

Reynolds numbers are related by

ReH =
Re

ǫ
, (37)

and thus ReH ≫ 1 given that Re = O(1) and ǫ≪ 1.

The vertically averaged mean magnetic energy equation is given by 〈B·(17)〉 to give

∂τ

〈
1

2
B

2

〉
=

〈
αB · J

〉
− 1

P̃m

〈
J
2
〉
, (38)

where the angled brackets denote a vertical average and the mean current density is J =
(
−∂ZBy, ∂ZBx, 0

)
. Marginal stability thus corresponds to

〈
αB · J

〉
= P̃m

−1
〈
J
2
〉
, showing

that there must be a non-zero vertically averaged alignment between the two currents αB

and J for large-scale dynamo action to occur, as noted by Moffatt [39].

A quantity that is thought to be important in dynamo theory is the (mean) kinetic

helicity H = u′ · ζ ′ [e.g. 40], where the asymptotically reduced velocity and vorticity vectors

are given by

u′ = −∂yψ′ x̂+ ∂xψ
′ ŷ + w′ẑ, (39)
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ζ ′ = ∂yw
′ x̂− ∂xw

′ ŷ + ζ ′ẑ. (40)

We then have

H = 2w′ζ ′. (41)

This simplified form of the helicity results from the fact that the horizontal components of u′

and ζ ′ can both be represented by the gradients of two scalars, and only the fast horizontal

derivatives are present. For single wavenumber solutions it was shown that α ∝ H [11].

Comparison of equations (32) and (41) shows, however, that α and H are not as simply

related for general, multi-mode convection. Indeed, we show below that the kinetic helicity

and α exhibit significant differences in spatial structure and temporal variations, though the

magnitudes of the two quantities do show similar trends with increasing R̃a.

We also utilize the relative kinetic helicity defined as

Hr =
u′ · ζ ′

√
u′ · u′

√
ζ ′ · ζ ′

. (42)

A maximally helical flow is one in which |Hr| = 1 at some point in space. For convection

at onset R̃a ≈ R̃ac, the (linear) functional forms of ζ ′ and w′ result in maximum helicity

at two axial positions (Z ≈ 0.3041 and 0.6959 for k̃c = 1.3048) where the two functions are

perfectly correlated; as R̃a is increased this correlation becomes reduced (e.g. see Figure 5).

II.2. Numerical Methods

The velocity field is computed by solving equations (13)-(16) in the absence of the Lorentz

force terms. The equations are discretized in the horizontal and vertical dimensions with

Fourier series and Chebyshev polynomials, respectively. The time-stepping is performed

with a third order Runge-Kutta scheme developed by Spalart et al. [56]. The reader is

referred to Sprague et al. [57] for further details of the numerical methods employed in the

simulations. A summary of the numerical simulations used in the present work is given in

Table I.

The horizontal dimensions of the computational domain are specified in terms of multiples

of the critical horizontal wavelength of the convection, L̃c; for steady convection L̃c =

2π/k̃c ≈ 4.8154. With respect to collecting useful statistics in as short a wall-clock time as

possible (given a statistically stationary convective state), there is a trade-off between the

required simulation time and the horizontal dimensions. For Pr = 10 cases we found that
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Pr R̃a Box Dimensions Nx ×Ny ×NZ Re P̃md σd Hr,rms

1 10 10L̃c × 10L̃c 64× 64× 65 0.68 4.42 3.12 0.667

1 20 10L̃c × 10L̃c 96× 96× 65 3.40 1.12 12.69 0.341

1 30 10L̃c × 10L̃c 96× 96× 129 7.01 0.75 19.28 0.160

1 40 10L̃c × 10L̃c 128× 128× 129 10.4 0.64 22.93 0.0989

1 50 20L̃c × 20L̃c 256× 256× 129 13.8 0.55 26.78 0.0763

1 60 20L̃c × 20L̃c 256× 256× 193 16.6 0.47 31.46 0.0622

1 80 20L̃c × 20L̃c 384× 384× 193 22.8 0.37 39.95 0.0482

1 100 20L̃c × 20L̃c 384× 384× 257 31.8 0.32 46.58 0.0418

10 10 10L̃c × 10L̃c 64× 64× 65 0.065 39.30 0.35 0.680

10 20 10L̃c × 10L̃c 64× 64× 65 0.29 9.39 1.51 0.582

10 30 10L̃c × 10L̃c 96× 96× 97 0.56 5.13 2.80 0.541

10 40 10L̃c × 10L̃c 96× 96× 97 0.88 3.26 4.43 0.539

10 50 10L̃c × 10L̃c 96× 96× 97 1.25 2.33 6.21 0.511

10 60 10L̃c × 10L̃c 96× 96× 97 1.68 1.98 7.32 0.405

10 80 10L̃c × 10L̃c 128× 128× 129 2.51 1.48 9.82 0.311

10 100 10L̃c × 10L̃c 128× 128× 129 3.34 1.28 11.35 0.233

10 150 10L̃c × 10L̃c 256× 256× 257 5.33 0.96 15.11 0.165

10 200 10L̃c × 10L̃c 384× 384× 385 6.96 0.88 16.80 0.119

TABLE I: Details of the numerical simulations used in the present study. Here Pr is the

Prandtl number, R̃a is the asymptotically scaled Rayleigh number, Nx = Ny is the

horizontal spatial resolution and NZ is the vertical spatial resolution. The numerical

output is the small-scale Reynolds number Re, the critical reduced magnetic Prandtl

number P̃md, the oscillation frequency of the dynamo σd and the vertical rms relative

helicity Hr,rms. In each case the non-dimensional horizontal box dimensions are given in

integer multiples of the critical horizontal wavelength L̃c = 4.1854.

10L̃c×10L̃c dimensions is sufficient to collect converged statistics. For Pr = 1 and R̃a < 50,

10L̃c × 10L̃c dimensions is also sufficient. For R̃a ≥ 50 the presence of the inverse cascade

resulted in the requirement of impractical wall-clock times for the collection of statistics; the

dimensions were then increased to 20L̃c × 20L̃c, which greatly accelerated the convergence
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rate of the statistics.

Solving the generalized eigenvalue problem requires that α is averaged over horizontal

planes and for sufficiently long integration times. A strategy that we employ to speed up

the convergence of α to a well-defined statistically steady state is to reflect the profile about

the Z-midplane (Z = 0.5), multiply by negative one and take the average of the resulting

profiles. In particular, this procedure allows us to obtain an α profile that is perfectly

antisymmetric with respect to Z = 0.5, and therefore more representative of the stationary

state.

The generalized eigenvalue problem for the complex eigenvalue σ and the mean mag-

netic field eigenfunction B̂ is solved utilizing MATLAB’s sparse eigenvalue solver ‘sptarn’.

Chebyshev polynomials were used to discretize the vertical derivatives appearing in the gov-

erning equations. We use the same number of Chebyshev polynomials to solve the eigenvalue

problem as are used for the numerical simulations (see Table I). To generate a numerically

sparse system, we use the Chebyshev three-term recurrence relation and solve directly for

the spectral coefficients with the boundary conditions enforced via ‘tau’-lines [25]. The non-

constant coefficient terms appearing in the mean induction equations are treated efficiently

by employing standard convolution operations for the Chebyshev polynomials [3, 43]. An

identical approach was used in Calkins et al. [11] and also for the linear stability of com-

pressible convection [8, 9].

III. RESULTS

III.1. Convection characteristics

It is helpful to review some of the important characteristics of the non-magnetic convec-

tion that are pertinent to the dynamo problem. Figure 1 illustrates each of the four flow

regimes with volumetric renderings of the axial vorticity ζ ′. The cellular regime shown in

Figure 1(a) is distinguished by the cellular horizontal structure of the flow and the rela-

tive unimportance of inertia and thermal advection. The convective Taylor column (CTC)

regime is exemplified by Figure 1(b) in which the flow is characterized by sparsely popu-

lated, axially coherent structures. The plume regime of Figure 1(c) occurs as the Rayleigh

number is increased further and the CTCs become unstable and lose axial alignment. For

Pr = 1 the flow transitions to a state of geostrophic turbulence near R̃a ≈ 50, and the
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(a) (b)

(c) (d)

FIG. 1: Volumetric renderings of the small-scale vertical vorticity ζ ′ illustrating each of the

four flow regimes observed in the convection simulations. (a) Cellular regime: Pr = 1,

R̃a = 10; (b) convective Taylor column regime: Pr = 10, R̃a = 60; (c) plume regime:

Pr = 10, R̃a = 200; (d) geostrophic turbulence regime: Pr = 1, R̃a = 100.
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FIG. 2: Convective-scale Reynolds number for all of the simulations. Re is calculated from

the vertically averaged root-mean-square (rms) vertical velocities.
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strongly turbulent case shown in Figure 1(d) is representative of the flow morphology in this

regime. For a detailed report of flow morphology, statistics, and balances in rapidly rotating

convection we refer the reader to Julien et al. [37].

In Figure 2 we show the convective-scale Reynolds number as a function of R̃a for all

of the cases investigated. Note that in the rapidly rotating, quasi-geostrophic limit the

Reynolds number based on the depth of the fluid layer is given by ReH = ǫ−1Re, and thus

intrinsically large for Re = O(1). The plotted values of Re were obtained by taking vertical

averages of the root-mean-square (rms) vertical velocities, where the mean is defined as an

average over the horizontal plane and time. The Reynolds numbers for the different Prandtl

number cases are separated approximately by an order of magnitude for a given value of

R̃a, and the data points for both cases show the same general trend with increasing R̃a.

For Pr = 1, the turbulent regime (R̃a & 50) is characterized by Re & 13. For Pr = 10

the highest Reynolds number simulation carried out was for R̃a = 200 where Re ≈ 7; in

comparison, a similar value of the Reynolds number is observed for Pr = 1 at a much lower

Rayleigh number of R̃a = 30.

Profiles of H and α are shown in Figure (3) for all of the simulations. We do not find a

significant change in the shape of α as R̃a is increased, though the location of the maximal

values does exhibit a shift towards the boundaries of the domain with increasing R̃a. The H
boundary layer is more pronounced for Pr = 1 where higher Reynolds numbers are accessed.

The H profiles show more obvious boundary layer behavior for both Prandtl numbers. That

α and H possess a remarkably smooth spatial structure for the entire investigated range of

R̃a is likely a result of the fact that they are both large-scale (mean) quantities that require

spatiotemporal averaging. Similar behavior for other mean quantities, such as the mean

temperature profile ϑ, is also observed [e.g. see 37].

In Calkins et al. [11] kinematic dynamo action of the QGDM was investigated for the

specific case of single wavenumber (single mode) solutions. In this case the advective non-

linearities vanish, but the wavenumber k̃ remains a variable parameter. To determine the

influence of k̃ on dynamo behavior two types of solutions were investigated: (1) the hori-

zontal wavenumber was fixed at the critical (linear) value k̃ = k̃c for all R̃a; and (2) the

wavenumber was calculated to maximize the heat transfer as R̃a increased [e.g. see 26, 32].

For brevity we denote the single mode solutions with a fixed horizontal wavenumber by

SM and those solutions in which k̃ is varied to maximize the heat transfer as SMmax. We

find that the H profiles for the multi-mode results investigated in the present study closely
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FIG. 3: Vertical profiles of helicity for (a) Pr = 1 and (b) Pr = 10; and vertical profiles of

α/P̃m for (c) Pr = 1 and (d) Pr = 10 for all investigated Rayleigh numbers.

resemble the SMmax helicity profiles given in [11]. In contrast, the α profiles are more rem-

iniscent of the SM solutions which become self-similar with increasing R̃a [e.g. see Figure 4

of 11].

The rms values of H and α are given in Figure 4 and show that both functions have

nearly identical scaling behavior with increasing Rayleigh number, though we find that H
increases slightly more rapidly when viewed on a linear abscissa scale. As for the Reynolds

number based on the rms convective velocity shown in Figure 2, the influence of the Prandtl

number appears only to influence the magnitude of the rms values for each function, but

the general qualitative increase with R̃a is found for both Prandtl numbers.

Figure 5 shows profiles of the relative helicity Hr. For both Prandtl numbers the general

trend observed is an overall decrease in the magnitude of Hr and a shift towards the bound-

aries of the maximum value of Hr; these results are in excellent agreement with the DNS

study of Schmitz and Tilgner [50]. For Pr = 10 we find that the two profiles for R̃a = 30
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FIG. 4: Vertical rms values of the helicity H and α as a function of R̃a for the two

different Prandtl numbers.
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FIG. 5: Profiles of the relative helicity Hr for (a) Pr = 1 and (b) Pr = 10 for all of the

investigated R̃a; higher values of R̃a have smaller overall values of Hr (see Figure 6).

and R̃a = 40 possess nearly identical Hr profiles despite the fact that the magnitudes of

both α and H are different. This situation will arise if the solutions have the same spatial

form, but differing amplitudes.

Vertical rms values of the relative helicity Hr,rms are given in Figure 6. Given the results

of Figure 5 it is unsurprising to see the general decrease of Hr,rms with increasing R̃a;

this result is again in excellent agreement with Schmitz and Tilgner [50] and the spherical

investigation of Soderlund et al. [54] where the same behavior was observed. We find that

Hr,rms decreases more rapidly for Pr = 1 than for Pr = 10; the same Prandtl number trend

was also observed in Schmitz and Tilgner [50]. The more rapid Hr,rms decrease observed
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FIG. 6: Vertical rms values of the relative helicity, Hr,rms, as a function of R̃a for all of the

cases investigated.

for Pr = 1 is due likely to the enhanced role of inertia and more irregular flows. Given

that the reduced system of equations model convection only in the low Rossby number

regime, we can say that the overall decrease in Hr,rms need not be associated with a loss in

rotational constraint. Rather, the decrease of Hr,rms is due to the change in convective flow

behavior to more disordered states where the maximally helical nature of convection near

onset (R̃a ≈ R̃ac) is lost. Nevertheless, it should be recalled that the rms values of both H
and α still show a monotonic increase with R̃a (see Figure 4), though the rate of growth

appears to slow with increasing R̃a.

The simulations show that α is characterized by more pronounced temporal variations in

comparison toH, which converges much more rapidly over the course of a simulation. This is

similar behavior to that observed by Cattaneo and Hughes [12] who compared the statistical

properties of α in relation to those for H for moderately rotating turbulent convection. In

Figure 7 we have plotted both the instantaneous, horizontally averaged (in gray) profiles and

the time and horizontally averaged profiles (in black). One of the most obvious differences

between α and H is the extreme temporal variability shown in the former quantity where

large variations in the profile are observed. For H the instantaneous profiles possess the

same general characteristics as the time-averaged profile, whereas the same cannot be said

of α. This difference in behavior may be due to the presence of the inverse Laplacian in the

definition of α (see equation (32)) since this operator tends to enhance low wavenumber,

large-scale structures that possess significant kinetic energy and large temporal fluctuations.
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FIG. 7: Comparison of the instantaneous, horizontally averaged (gray) and time and

horizontally averaged (black) (a) α/P̃m and (b) H profiles for Pr = 1 and R̃a = 100. Note

the significant variation in the instantaneous (gray) α profiles relative to the time-averaged

(black) profiles in (a); significantly less temporal variation is observed for H in (b).

III.2. Kinematic dynamos

For a given value of R̃a, we compute the minimum value of P̃m that yields a mean

magnetic field with zero growth rate (i.e. marginal stability with σg ≡ 0); the corresponding

critical value of the magnetic Prandtl number is denoted as P̃md. As in Calkins et al. [11],

all of the dynamos are found to be oscillatory with a critical dynamo frequency σd. Figures

8a and b show P̃md and σd versus R̃a. The results from the steady single mode solutions

of Calkins et al. [11] are also shown. Despite the observed changes in flow regime over the

investigated range of R̃a, we find little evidence for these changes in the dynamo behavior;

for steady single mode solutions these results are insensitive to Pr. This observation might

have been anticipated given the similarities found in the α profiles for all R̃a of Figure 3.

For instance, for Pr = 1 the flow transitions to turbulence near R̃a = 50, yet the P̃md

and σd data do not show any pronounced changes in this region of parameter space. This

result might seem surprising given that such transitions in flow regime are characterized by

distinct statistics [37, 42].

In general, the results show that the magnitude of the P̃md − R̃a slope is a decreasing

function of R̃a, resulting in a general decrease in the efficiency of the convection-driven

dynamo. It’s possible that this behavior is linked to the rapid decrease in Hr observed in
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FIG. 8: Kinematic dynamo results showing (a) the critical magnetic Prandtl number P̃md

and (b) the critical dynamo frequency σd versus R̃a. The steady single mode solutions of

Calkins et al. [11] are shown by the broken curves: SMmax are those solutions that

maximize the heat transfer and have wavenumbers k̃ which vary (increase) with increasing

R̃a; solutions SM have a fixed horizontal wavenumber of k̃ = k̃c = 1.3048 for all R̃a.
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FIG. 9: Critical reduced magnetic Reynolds number R̃md versus (a) R̃a and (b) Re for all

of the cases investigated. The steady single mode solutions of Calkins et al. [11] are shown

by the broken curves.

Figures 5(a) and 6. Figure 8(b) shows that lower values of P̃m are also associated with

higher values of the dynamo frequency σd, since higher values of Re are required.
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FIG. 10: (a) x-component of the marginally stable mean magnetic field eigenfunction B̂x

for Pr = 1 and R̃a = 100. The real, ℜ
(
B̂x

)
, and imaginary, ℑ

(
B̂x

)
, parts of the solution

are shown by the solid black and solid red curves, respectively, and the modulus is given by

the dashed black curves. (b) Mean ohmic dissipation J
2

for the eigenfunction shown in (a).

The critical reduced magnetic Reynolds number,

R̃md = P̃mdRe, (43)

is shown as a function of R̃a and Re in Figures 9a and b, respectively. In general, we find

that R̃md increases with R̃a (and Re), with the most significant increases observed for the

Pr = 1 cases. The Pr = 10 cases show a similar trend as the Pr = 1 cases when viewed

from the perspective of Figure 9(b). The Pr = 10 cases closely follow the SM solutions

up to R̃a = 50, where the curve then shows a more substantial increase in R̃md; this is

the region in parameter space where the flow begins to transition from the CTC regime to

the plume regime [37, 42]. We also find a change in behavior at R̃a = 50 for the Pr = 1

simulations where the flow transitions to turbulence, and the rate of increase in R̃md slows

briefly before picking up again at R̃a = 100. The SMmax solutions do exhibit the same

general trend of increasing R̃md with R̃a and Re as the numerical simulations, in contrast

to the fixed wavenumber SM solutions which asymptote to a constant value of R̃md ≈ 2.9

as (R̃a, Re) → ∞. In contrast to the P̃md results shown in Figure 8, here we find that the

R̃md behavior is, at least to some extent, reflective of flow regime behavior.

Profiles of the marginally stable mean magnetic field and ohmic dissipation J
2

are given

in Figure 10 for R̃a = 100 and Pr = 1. In accordance with the observed properties of the α
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(a) (b)

FIG. 11: Mean electromagnetic vectors: (a) mean magnetic field B; and (b) emf E = αB

(yellow) and mean current density J (blue) for Pr = 1 and R̃a = 50.

profiles shown in Figure 3, we find that the mean magnetic field structure does not change

significantly as the Rayleigh and Prandtl numbers are varied; the case shown is therefore

representative of all the cases investigated to a high degree of approximation. The profile

shown in Figure 10(a) is nearly identical in structure to the mean magnetic field profiles

obtained from the SM solutions of Calkins et al. [11] (see their Figure 11) and also previous

weakly nonlinear [38] and linear investigations [23]. For the perfectly conducting boundary

conditions employed here, the mean magnetic field is antisymmetric with respect to the

midplane (Z = 0.5) of the fluid layer, leading to a mean current density that is symmetric

across the midplane. The ohmic dissipation J
2

shown in Figure 10(b) reaches maximum

values where vertical gradients in B are largest (Z ≈ 0.1, 0.9 for the case shown).

Three-dimensional visualizations of the mean electrodynamic vectors are shown in Figure

11. The spiral structure of all the vector fields is evident. We see that E · J = 0 at

Z = 0.5 where both vectors approach zero and point in nearly antiparallel directions as

one approaches this point. In accordance with the mean energy equation (38), E and J are

predominantly aligned in regions where J
2

(shown in Figure 10(b)) is largest.

Volumetric renderings of the small-scale vertical current density j′z are shown in Figure

12 for each of the four basic convective flow regimes shown in Figure 1. Taking the vertical

component of the curl of equation (18), and inverting for j′z yields

j′z = −P̃m∇−2

⊥
B · ∇⊥ζ

′, (44)
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FIG. 12: Volumetric renderings of the small-scale vertical current density j′z for each of the

four flow regimes. (a) Cellular regime: Pr = 1, R̃a = 10; (b) convective Taylor column

regime: Pr = 10, R̃a = 60; (c) plume regime: Pr = 10, R̃a = 200; (d) geostrophic

turbulence regime: Pr = 1, R̃a = 100.

showing that j′z is directly controlled by the structure of ζ ′. Of particular note is the trend of

increasing scale of j′z shown in Figure 12 as the flow becomes more turbulent with increasing

R̃a. The presence of the inverse Laplacian in equation (44) implies that j′z is sensitive to

the presence of large-scale structures in this low Pm limit.

The DNS study of Guervilly et al. [28] (G15) found that for sufficiently small values of

Pm the large-scale vortex can aid in the generation of a significant mean magnetic field. In

the present work we find that the large-scale vortex is not necessary for the generation of the

mean magnetic field, though it does influence the structure of the small-scale electromagnetic

fields. There are, however, many differences between the present investigation and that of

G15. First, the present investigation is limited to the low Rossby number regime in which the

large-scale vortex is dipolar in structure, whereas in G15 the Rossby number is high enough

(though still less than unity) to break this symmetry resulting in a predominantly cyclonic
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(positive vorticity) vortex. Furthermore, we focus on the small magnetic Reynolds number

limit in the present work and in G15 they study the Rm = O(1) regime. However, we note

that in Calkins et al. [10] a Rm = O(1) QGDM was also developed; future simulations of

this model, though less relevant for geophysical applications, will be helpful for comparison

with DNS studies.

IV. CONCLUSIONS

The characteristics of α and the mean magnetic field are found to be weakly sensitive to

the transitions in flow morphology and convective dynamics that occur as the Rayleigh and

Prandtl numbers are varied. Indeed, we find qualitatively similar behavior in the dynamo

properties for both laminar cellular convection near R̃ac where Re ≪ 1 and for turbulent

flows at R̃a ≫ R̃ac in which Re ≫ 1. In this latter case an inverse cascade and associated

domain-scale vortex is present, which has little influence on the large-scale magnetic field,

but does control directly the structure of the small-scale electromagnetic fields. A similar

observation was made in the single mode investigation of Calkins et al. [11], where, for a

particular class of solutions, the α profiles became self similar functions of R̃a. Though

it is merely speculative given the neglect of the Lorentz force in the present work, the

relative insensitivity of the large-scale field to the small-scale convective dynamics may

suggest why DNS studies, though vastly different in parameter space to natural dynamos, can

closely approximate many of the observed properties of the geodynamo and other planetary

dynamos [e.g. 29].

We find a decrease in the efficiency of the convection for sustaining magnetic field growth

as the Rayleigh number is increased, as characterized by an increasing critical magnetic

Reynolds number. A similar trend was observed in one class of single mode solutions of

Calkins et al. [11], where the enhancement of large-scale magnetic diffusion due to boundary

layers was offered as a possible cause. In the present work this reasoning may also apply,

though the boundary layers associated with α are much less pronounced. The rise in critical

magnetic Reynolds number might also result from the more disordered states of convection

that occur at higher Rayleigh numbers, with a possible quantitative measure of this behavior

being the substantial decrease in relative kinetic helicity amplitude with increasing Rayleigh

number.

The Prandtl number controls the relative importance of inertia for a given value of the
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Rayleigh number, with higher values of Pr leading to an increased range of R̃a over which

inertia plays a weak role in the convective dynamics. For instance, an order of magnitude

difference in the Prandtl number leads to an order of magnitude approximate difference

in the observed Reynolds numbers at comparable values of the Rayleigh number (e.g. see

Figure 2). This effect of Pr has a direct influence on the critical magnetic Prandtl number

required for dynamo action, with lower Pr fluids capable of sustaining dynamo action at

lower values of Pm (or P̃m) for a given value of the Rayleigh number. These findings

suggest that compositional convection, which is characterized by Pr ∼ O(100) [e.g. 45],

requires very large values of R̃a to drive a dynamo in comparison to liquid metal thermal

convection which is characterized by Pr ∼ 10−2.

The QGDM is an asymptotic mean field model, and offers the possibility of simulat-

ing magnetohydrodynamic flows that are not currently accessible with DNS. No ad-hoc

assumptions are necessary to parameterize the α-effect since the equations are mathemat-

ically closed through the asymptotic reduction procedure. Moreover, these models allow

for a more direct appraisal of dynamo physics given the simplified set of equations. Of

course, it is necessary to extend the present model to the more realistic case of spherical

geometry to allow direct comparison with geo- and planetary magnetic field observations.

The three-dimensional cylindrical annulus model developed by Calkins et al. [7] offers an

intermediate stage between the development of a global spherical model and the plane layer

model investigated in the present work. Christensen [16] argues that, providing the flow is

sufficiently rotationally influenced, the large-scale dynamo properties in spherical shell dy-

namo calculations may be relatively insensitive to the hydrodynamic Reynolds number and

the magnetic Prandtl number. However, computational limitations restrict DNS studies to

relatively narrow ranges of these parameters; the QGDM may therefore help us to further

our understanding of the influence that these parameters have on the resulting dynamo.

The asymptotic kinematic dynamo model for rapidly rotating low Pm convection provides

much insight into the structure and morphology of magnetic fields at the onset of dynamo

action. The observed relative insensitivity of the large-scale magnetic field to changes in

flow regime may provide a strategy for parameterizing the effects of small-scale, low Rossby

number convection for the purpose of simulating only the large-scale dynamo behavior.

However, it is clearly necessary to extend these results into the nonlinear regime in which

the Lorentz force is included and the magnetic field can feed back onto the convective

dynamics, and to investigate the influence of large-scale horizontal modulations that will

26



allow for a fully multiscale representation of the mean magnetic field [e.g. see 10]. Of

particular importance is to determine the behavior of these nonlinear, multiscale solutions

and their associated influence on the properties of α and hence the large-scale dynamo.
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