
This is a repository copy of Behavioural Models for FMI Co-simulations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/106585/

Version: Accepted Version

Proceedings Paper:
Cavalcanti, A. L. C. orcid.org/0000-0002-0831-1976, Woodcock, J. C. P. orcid.org/0000-
0001-7955-2702 and Amalio, N. orcid.org/0000-0001-8751-5039 (2016) Behavioural
Models for FMI Co-simulations. In: Sampaio, A. C. A. and Wang, F., (eds.) International
Colloquium on Theoretical Aspects of Computing. Lecture Notes in Computer Science .
Springer , pp. 255-273.

https://doi.org/10.1007/978-3-319-46750-4_15

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Behavioural Models for FMI Co-simulations

Ana Cavalcanti, Jim Woodcock, and Nuno Amálio

University of York

Abstract. Simulation is a favoured technique for analysis of cyber-
physical systems. With their increase in complexity, co-simulation, which
involves the coordinated use of heterogeneous models and tools, has be-
come widespread. An industry standard, FMI, has been developed to
support orchestration; we provide the first behavioural semantics of FMI.
We use the state-rich process algebra, Circus, to present our modelling
approach, and indicate how models can be automatically generated from
a description of the individual simulations and their dependencies. We
illustrate the work using three algorithms for orchestration. A stateless
version of the models can be verified using model checking via transla-
tion to CSP. With that, we can prove important properties of these al-
gorithms, like termination and determinism, for example. We also show
that the example provided in the FMI standard is not a valid algorithm.

Keywords: verification, modelling, Circus, CSP

1 Introduction

The Functional Mock-up Interface (FMI) [12] is an industry standard for co-
simulation: collaborative simulation of separately developed models. It has been
applied across a variety of domains, including automotive, energy, aerospace,
and real-time systems integration; dozens of tools support the standard.

An FMI co-simulation [4] is organised around black-box slave FMUs (Func-
tional Mockup Units): effectively, wrappings of models that are interconnected
through their inputs and outputs. FMUs are passive entities whose simulation is
triggered and orchestrated by a master algorithm. A simulation is divided into
steps that serve as synchronisation and data exchange points; between these
steps, the FMUs are simulated independently. The master algorithm communi-
cates with the FMUs via a number of functions that compose the FMI API.

Here, we present the first behavioural formal semantics for FMI-based co-
simulations. We use Circus [21], a state-rich process algebra that combines Z [26]
for data modelling and CSP [23] for behavioural specification. We characterise
formally master algorithms and FMUs that make appropriate use of the FMI
API. These abstract models of a co-simulation can be automatically generated
from the number of FMUs, their inputs and outputs and dependencies.

The general models can be used to verify specific master algorithms and the
adequacy of simulation models for FMUs. We have verified a classic algorithm
from the FMI standard for Simulink [19], and a more robust algorithm that caters
for FMU failures [4]. This revealed that the example in the standard implicitly
assumes that FMUs do not raise fatal errors; it is not a valid algorithm.

Circus models, with abstracted state, can be translated to CSP and verified
using the FDR3 model checker [16]. We prove important properties discussed
in the FMI literature, like termination and determinism using the FDR3 model
checker. Richer models can be verified using a Circus theorem prover [14]. Given
a choice of master algorithm and formal models of the FMUs, our work can
also be used to prove properties of an overall system described by the separate
simulations. Circus can currently cater only for discrete-time models. On the
other hand, a continuous time extension of Circus that can be used to give
semantics to continuous-systems simulations [13] is under development.

Broman [4] has presented the most influential formalisation of FMI to date:
a state-based model of the three main API functions that set and get FMU
variables and trigger a simulation step with two master algorithms and a proof
of core properties. Our model of a co-simulation also has its interface defined by
the interactions corresponding to the simulation steps and the exchange of data
associated with them. Our behavioural model covers a large portion of the FMI
API, defining valid patterns for its usage and error treatment.

Sects 2 and 3 describe FMI for co-simulation and Circus. Sect. 4 describes the
Circus semantics of FMI. The specification and verification of master algorithms
and co-simulations is discussed in Sect. 5. Sect. 6 presents our conclusions.

2 FMI

Modelling and simulating cyber-physical systems (CPSs) [10] involves different
engineering fields: a global system with components tackled by domain engi-
neers using specialised tools. Co-simulation [18] involves tool interoperability for
modelling and simulating heterogeneous components. FMI avoids the need for
tool-specific integration, by exchanging dynamic models, co-simulating heteroge-
neous models, and protecting intellectual property. We deal with co-simulation,
but we can also reason about simulations with model exchange.

A master algorithm orchestrates a collection of FMUs that may be stand-
alone, containing runnable code, or be coupled, in which case it contains a wrap-
per to a simulation tool. Like FMI, our model is agnostic to the particular
realisation of an FMU, and does not cover any communication infrastructure
that may be in place to support distributed co-simulation. We assume that com-
munication between the master algorithm and the various FMUs is reliable.

When the co-simulation is started, the models of the FMUs are solved in-
dependently between two discrete communication points defined by a step. For
that, the master algorithm reads the outputs of the FMUs, sets their inputs,
and then waits for all FMUs to simulate up to the defined communication point,
before advancing the simulation time. Master algorithms differ in their approach
to handling the definition of the step sizes and any simulation errors.

Although the FMI standard does not specify any particular master algo-
rithms, or the technology for development of FMUs, it specifies an API that can
be used to orchestrate the various simulations. Restrictions on the use of the
API functions specify, indirectly and informally, how a master algorithm can be

channel : setT : TIME ; updateSS : NZTIME ; step : TIME × NZTIME ; end
process Timer =̂ ct , hc, tN : TIME • begin

stateState == [currentTime, stepSize : TIME]
Step =

setT?t : t ≤ tN −→ currentTime := t ; Step
@ updateSS?ss −→ stepSize := ss; Step
@ step!currentTime!stepSize −→ currentTime := currentTime + stepSize; Step
@ currentTime = tN N end −→ Stop

• currentTime, stepSize := ct , hc; Step
end

Fig. 1. Circus specification of a Timer process

defined and how an FMU may respond. Our model captures a significant subset
of the FMI API, and defines formally validity for algorithms and FMUs.

3 Circus

The main construct of Circus is a process, used to specify a system and its com-
ponents. Processes communicate with each other via channels. Communications
are instantaneous and synchronous events. A process can have a state, defined
using a Z schema, and a behaviour, defined using an action.

To illustrate Circus, Fig. 1 presents the model of a Timer from a valid master
algorithm. Timer takes as parameters the current time ct , the step size hc, and
the end time tN of the simulation. Although it is possible to set up experiments
without an end time, we restrict ourselves to experiments that are time bounded.

Timer ’s state contains two components: currentTime and stepSize. Its be-
haviour is defined by the action at the end. After initialising currentTime and
stepSize using ct and hc, it calls the local action Step. It takes inputs on chan-
nels setT and updateSS to update the current time and step size. The channel
declarations define the type of the values that can be communicated through
them: TIME is the set of natural numbers, and NZTIME excludes 0. Step sizes
cannot be 0. It uses a channel step to output the current time and step size. After
a communication on step, the current time is advanced to the next simulation
step; at the end of the experiment (currentTime = tN), it synchronises on end .

The action Step offers communications on the above channels in external
choice (@). The time t input through setT cannot exceed the end time tN of the
simulation. The offer of synchronisation on end is guarded by currentTime = tN

and only becomes available if this condition holds. After the event end , the timer
deadlocks: behaves like the action Stop.

Processes can also be defined by combination of other processes. For ex-
ample, the specification of the process TimedInteractions below combines three
processes Timer , endSimulation and Interaction.

TimedInteractions =̂ t0, tN : TIME •

(Timer(t0, 1, tN) ∆ endSimulation)
J{| step, end , setT , updateSS , endsimulation |}K

Interaction

 \ {| step, end , setT , updateSS |}

fmi2Get FMI2COMP.VAR.VAL.FMI2ST
fmi2Set FMI2COMP.VAR.VAL.FMI2STF
fmi2DoStep FMI2COMP.TIME .NZTIME .FMI2STF
fmi2Instantiate FMI2COMP.Bool
fmi2SetUpExperiment FMI2COMP.TIME .Bool.TIME .FMI2ST
fmi2EnterInitializationMode FMI2COMP.FMI2ST
fmi2ExitInitializationMode FMI2COMP.FMI2ST
fmi2GetBooleanStatusfmi2Terminated FMI2COMP.Bool.FMI2ST
fmi2GetMaxStepSize FMI2COMP.TIME .FMI2ST
fmi2Terminate FMI2COMP.FMI2ST
fmi2FreeInstance FMI2COMP.FMI2ST
fmi2GetFMUState FMI2COMP.FMUSTATE .FMI2ST
fmi2SetFMUState FMI2COMP.FMUSTATE .FMI2ST

Table 1. Channels that model FMI API functions

TimedInteractions has two parameters: a start and an end time t0 and tN .
It uses Timer defined above with arguments t0, 1, and tN . Timer can be in-
terrupted (∆) by the process endSimulation. It, however, runs in parallel (J K)
with the process Interaction. They synchronise on communications on step, end ,
setT , updateSS , and endsimulation, but otherwise proceed independently. The
process that results from the parallelism hides (\) communications on step, end ,
setT , and updateSS , which are used just internally by Timer and Interaction.

A complete account of Circus can be found in [8]. We explain any extra
notation not explained here as needed.

4 A model of FMI

The FMI API consists of functions used by the master algorithm to orchestrate
the FMUs. In our model, these functions are defined as channels whose types
correspond to the input and output types of the functions; see Table 1.

We use the given type FMI 2COMP to represent an instance of an FMU. In
FMI, these are pointers to an FMU-specific structure that contains the informa-
tion needed to simulate it. Here, we use identifiers for such components.

Valid variable names and values are represented by the sets VAR and VAL.
We do not model the FMI type system, which includes reals, integers, booleans,
characters, strings, and bytes; however, it is not difficult to cater for this type
system. Extensions to the type system are expected in future versions of FMI.

The type FMI 2ST contains flags of the FMI type fmi2Status that are re-
turned by the API functions. We include fmi2OK, fmi2Error, and fmi2Fatal,
which indicate, respectively, that all is well, the FMU encountered an error, and
the computations are irreparable for all FMUs. The extra flag fmi2Discard is
also included in the superset FMI 2STF ; it can only be returned by fmi2Set

and fmi2DoStep. fmi2Set indicates that a status cannot be returned, and in
the case of fmi2DoStep that a smaller step size is required or the requested in-
formation cannot be returned. We do not include fmi2Warning, used for logging,
and fmi2Pending, used for asynchronous simulation steps.

FMUSTATE contains values that represent an internal state of an FMU. It
comprises all values (of parameters, inputs, buffers, and so on) needed to continue
a simulation. It can be recorded by a master algorithm to support rollback.

Cosimulation

MAlgorithm

FMIWrapper

FMUInterface(1) FMUInterface(2) FMUInterface(3)

endsimulation,fmi2∗
fmi2Set, fmi2Get, fmi2DoStep

Fig. 2. Structure of a co-simulation model

The signature of the channels impose restrictions on the use of the API. It is
not possible to call fmi2DoStep with a non-positive step size. Given a particular
configuration of FMUs, we can define the types of the fmi2Get and fmi2Set

channels so that setting or getting a variable that is not in the given FMU
is undefined. Without this fine tuning, such attempts lead to deadlocks in our
model: a check for deadlock freedom ensures the absence of such problems. The
API actually includes specialised fmi2Get and fmi2Set functions for each data
type available. As already said, we do not cater for the FMI type system.

The function fmi2Instantiate returns a pointer to a component, and null
if the instantiation fails. Since we do not model pointers, we use a boolean to
cater for the possibility of failure. The function fmi2GetMaxStepSize is not part
of the standard; we use it to implement the rollback algorithm in [4].

The overall structure of our models of a co-simulation is shown in Fig. 2.
The visible channels are fmi2Get, fmi2Set, and fmi2DoStep. So, we can use our
model to verify properties of co-simulations that can be described in terms of
these interactions, and involving variables from any of the FMUs involved.

The other channels enforce the expected control flow of a master algorithm.
They are used for communication between the process MAlgorithm that models
a master algorithm and each process FMUInterface(i) that models the FMU
identified by i . We call FMIWrapper the collection of FMU interfaces: they
execute independently in parallel, that is, in interleaving.

The control channel endsimulation is used to shutdown the simulation. Since
an FMU may fail, its termination may not be carried out gracefully (with
fmi2Terminate and fmi2FreeInstance). So, endsimulation is used to indicate
the end of the experiment in all cases and shutdown the model processes.

In what follows, we describe our specifications of MAlgorithm (Sect. 4.1)
and FMUInterface (Sect. 4.2), which provide a correctness criterion for these
components. In Sect. 4.3, we describe how to construct models of specific FMUs.
Applications of our models are described in Sect. 5.

ErrorHandler

ErrorMonitor FatalErrorMonitor

∆ ErrorManager

FMUStatesManager
fmi2GetFMUState

fmi2SetFMUState

Timer ∆ endSimulation Interaction
fmi2.∗

TimedInteraction

error

fmi2∗
endsimulation

step, end,SetT
updateSS

endsimulation

endsimulation

fmi2∗, endsimulation

Fig. 3. Structure of a model of a master algorithm

4.1 Master algorithms

Amaster algorithm is a monolithic program that defines the connections between
the FMUs and the time of the simulation steps, and handles any errors raised by
an FMU. In our model, we consider each of these aspects of a master algorithm
separately. The overall structure of theMAlgorithm process is described in Fig. 3.
It provides a general characterisation of the valid history of interactions of a
master algorithm. It does not commit to specific policies to define step sizes and
error handling in case an API function returns fmi2Discard. The treatment of
fmi2Error and fmi2Fatal is restricted by the standard.

MAlgorithm has three main components described next. TimedInteractions

specifies the co-simulation steps and orchestration of the FMUs. FMUStates-
Manager controls access to the internal state of the FMUs. ErrorHandler mon-
itors the occurrence of an fmi2Error or fmi2Fatal from the API functions.

TimedInteractions has two components. Timer is presented in Sect. 3. It uses
step and end to drive the Interaction process, which defines the orchestration
of the FMUs. This is the core process that restricts the order in which the API
functions can be used. Timer also exposes channels setT and updateSS to allow
Interaction to define algorithms will rollback or a variable step size. The timer
can be terminated by the signal endsimulation raised by Interaction.

Interaction is the sequential composition of Instantiation, InstantiationMode,
InitializationMode, and slaveInitialized , which correspond to states that define

the stages of a co-simulation [12, p.103]. The definitions of these processes depend
on the configuration of the FMUs. Given such a configuration, they can be auto-
matically generated as indicated below. A configuration is characterised by a se-
quence of FMU identifiers (FMUs : seqFMI 2COMP), and sequences that define
the parameters and their values (parameters : seq(FMI 2COMP×VAR×VAL)),
inputs and their initial values (inputs : seq(FMI 2COMP × VAR × VAL)), out-
puts (outputs : seq(FMI 2COMP×VAR)), and an input/output port dependency
graph [4] pdg . Some of this information is also needed to generate automatically
a sketch of the models of the FMUs (see Sect. 4.3).

The port dependency graph pdg is a relation between outputs and inputs
defined by a pair of type FMI 2COMP × VAR. The graph establishes how the
inputs of each of the FMUs depend on the outputs of the others. It must be
acyclic, and this can be automatically checked using the CSP model checker.
Using the port dependency graph, once we retrieve the outputs, via the fmi2Get
function, we know how to provide the inputs, via the fmi2Set function.

Instantiation, defined below, instantiates the FMUs. It is an iterated sequen-
tial composition (;) of actions fmi2Instantiate.i?sc−→Skip, where i comes from
FMUs and Skip is the action that terminates immediately.

InstantiationMode and InitializationMode allow the setting up of parameters
and initial values of inputs before calling the API function that signals the start
of the next phase. We show below InitializationMode. For an element inp of
inputs, we use projection functions FMU , name and val to get its components.

(; inp : inputs • fmi2Set !(FMU inp)!(name inp)!(val inp)?st −→ Skip);
(; i : FMUs • fmi2ExitInitializationMode!i?st −→ Skip)

We can easily generalise the model to allow an interleaving of the events in-
volved. The value of such a generalisation, however, is unclear (and it harms the
possibility of automated verification via model checking).

The process slaveInitialized is sketched in Fig. 4; it is driven by the Timer .
Its state contains a component rinps: a function that records, for each FMU
identifier a function from the names of its inputs to values. This function is de-
fined by taking the value of each output from the FMUs, and updating rinps to
record that value for the inputs associated with the output in the port depen-
dency graph. If the Timer signals the end, slaveInitialized finishes. Otherwise,
it collects the outputs, distributes the inputs, and carries out a step.

Similarly to that of InitializationMode, the definition of TakeOutputs uses
an iterated sequence, now over outputs: the sequence of pairs that identify an
FMU and an output name. Once the value v of an output out is obtained, it is
assigned to each input inp in the sequence pdf (out) associated with out in the
port dependency graph pdg . We use ⊕ to denote function overriding.

DistributeInputs uses inp to set the inputs of the FMUs using fmi2Set . Step
proceeds with the calls to fmi2DoStep and if all goes well, recurses back to the
Main action of slaveInitialized . Their definitions are omitted for brevity.

FMUStatesManager controls the use of the functions fmi2GetFMUState and
fmi2SetFMUState for each of the FMUs. It is an interleaving of instances of the

process slaveInitialized =̂
state State == [rinps : FMI 2COMP 7→ (VAR 7→ VAL)]
· · ·
TakeOutputs =̂
; out : outputs • fmi2Get .(FMU out).(name out)?v−→

; inp : pdg(out) •
rinps := rinps ⊕ { (FMU inp) 7→ ((rinps (FMU inp))⊕ {(name inp) 7→ v}) }

Main =̂ end −→ Skip

@ step?t?hc −→ TakeOutputs; DistributeInputs; Step
• Main

end

Fig. 4. Sketch of slaveInitialized

process FMUStatesManager =̂ i : FMI 2COMP • begin

AllowAGet =̂ fmi2GetFMUState.i?s?st −→ AllowsGetsAndSets(s)

AllowsGetsAndSets =̂ s : FMUSTATE •
fmi2GetFMUState.i?t?st −→ AllowsGetsAndSets(t)
@ fmi2SetFMUState.i !s?st −→ AllowsGetsAndSets(s)

• fmi2Instantiate.i?b −→ AllowAGet

end

Fig. 5. Model of FMUStateManager

process FMUStateManager(i) in Fig. 5 for each of the FMUs. Once an FMU
is instantiated, then it is possible to retrieve its state. After that, both gets
and sets are allowed. The actual values of the state are defined in the FMUs,
but recorded in the master algorithm via fmi2GetFMUState for later use with
fmi2SetFMUState as defined in FMUStateManager(i).

For complex internal states, model checking can become infeasible (although
we have managed it for simple examples). To carry out verifications that are
independent of the values of the internal state of the FMUs, we need to adjust
only this component. Some examples, explored in the next section, are properties
of algorithms that do not support retrieval and resetting of the FMU states,
determinism and termination of algorithms, and so on.

The ErrorHandler process contains two components: monitors for fmi2Error
and fmi2Fatal . If any of the API functions returns an error, they signal that
to the ErrorManager via a channel error . Upon an error, the ErrorManager

interrupts the main flow of execution. In the case of an fmi2Fatal error, the
simulation is stopped via endsimulation. In the case of an fmi2Error , a call to
fmi2FreeInstance is allowed, before the simulation is ended.

4.2 FMU interfaces

The model of a valid FMU is simpler. It captures the control flow of an FMU,
specifying, at each stage, the API functions to which it can respond. Unsurpris-

ingly, it has some of the restrictions of a master algorithm, but it is much more
lax, in that it captures just the expected capabilities of an FMU.

At first, the only API function that is available is fmi2Instantiate. The
simple action below specifies this behaviour.

Instantiation =

fmi2Instantiate.i?b −→

b N status := fmi2OK ; Instantiated
@
¬ b N status := fmi2Fatal ; RUN (FMUAPI (i))

A state component status records the result of the last call to an API function.
In this case, it is updated based on the boolean b returned by fmi2Instantiate.
If the instantiation is successful, the behaviour is described by Instantiated ,
sketched below; otherwise, it is unrestricted: specified by RUN (FMUAPI (i)),
which allows the occurrence of any API functions, in any order.

Instantiated = status = fmi2Fatal N RUN (FMUAPI (i))
@ status 6∈ {fmi2Error , fmi2Fatal}N

fmi2Get .i?n?v?st −→ status := st ; Instantiated
@ fmi2DoStep.i?t?hc?st −→ status := st ; Instantiated
@ · · ·

@ st 6= fmi2Fatal N fmi2FreeInstance!i?st −→ · · ·

Again, if there is a fatal error, the behaviour is unrestricted. If there is no error,
all functions except fmi2Instantiate are available. Finally, if there is a non-
fatal error, only fmi2FreeInstance is possible.

While a pattern of calls is defined by a master algorithm, so that, for example,
all outputs are obtained before the inputs are distributed, the FMU is passive
and does not impose such a policy on its use. So, the various actions enforce
only the restrictions in the standard [12, p.105].

Although it is possible to specify a more restricted behaviour for FMUs, such
a specification rules out robust FMU implementations that handle calls to the
API functions that do not necessarily follow the strict pattern of a co-simulation.
Next, we describe how to generate FMU models that follow a more restricted
pattern that is adequate for use with valid master algorithms.

4.3 Specific FMU models

In the previous section, we have presented a general model for an FMU. The
particular model of an FMU depends, of course, on its functionality, and must
conform to (trace refine) our general model. This can be proved via model check-
ing for stateless models of FMUs that do not offer the facility to retrieve and set
its internal state. In this case, the models do not offer the choices of communi-
cations fmi2GetFMUState.i?st and fmi2SetFMUState.i?st . The availability of
such facilities is defined by capability flags of the FMU.

We can, however, generate a sketch of the model of an FMU using informa-
tion about its structure: lists of parameters pi , inputs inpi , and outputs outi .

process FMUSketch =̂ i : FMI 2COMP • begin

stateState = [currentTime, endTime : TIME ; cpi , cinpi , cevi , couti]

Instantiation = fmi2Instantiate.i !true −→ Skip

InstantiationMode =
fmi2Set .i .pi?v !fmi2OK −→ cpi := v ; InstantiationMode

@ fmi2SetUpExperiment .i?t0!true?tN !fmi2OK−→
currentTime, endTime := t0, tN ;
fmi2EnterInitializationMode.i !fmi2OK −→ Skip

InitializationMode =
fmi2Set .i .inpi?v !fmi2OK −→ cinpi := v ; InitializationMode

@ fmi2ExitInitializationMode.i !fmi2OK −→ UpdateState

slaveInitialized =
fmi2Get .i .outi !couti !fmi2OK −→ slaveInitialized

@ fmi2Set .i .inpi?v .fmi2OK −→ cinpi := v ; slaveInitialized
@ fmi2DoStep.i?t?ss!fmi2OK −→ (UpdateState; slaveInitialized)

• Instantiation; InstantiationMode; InitializationMode;
(slaveInitialized ∆

fmi2Terminate.i !fmi2OK −→ fmi2FreeInstance.i !fmi2OK −→ Stop)

end

Fig. 6. Sketch of a model for a specific FMU

This information is used to construct a master algorithm (see Sect. 4.1). Fig. 6
shows the sketch of a Circus process with the FMU behaviour. Its state includes
components cpi , cinpi , and couti , besides the current and end simulation time.

Its structure is similar to that of the Interaction process used to model a
master algorithm. In all cases, the interactions flag success (fmi2OK). If an FMU
makes assumptions about its inputs, the possibility of error can be modelled. For
example, Instantiation indicates success, but to explore the possibility of failure,
we can define it as fmi2Instantiate.i?b −→ Skip. The action UpdateState is left
unspecified. It is this action that specifies the functionality of the FMU. It can
be automatically generated if there is a more complete model of the FMU. For
example, [7] shows the case if a discrete-time Simulink model is available.

If the FMU supports retrieval and update of its state, we need to add the
following choices to InstantiationMode, InitializationMode, and slaveInitialized .

· · ·
@ fmi2GetFMUState.i ! θ State!fmi2OK −→ · · ·
@ fmi2SetFMUState.i?s?st −→ θ State := s; · · ·

Via fmi2GetFMUState, it outputs the whole state record, that is, θ State, and
via fmi2SetFMUState, we can update it.

If the state, either via setting of parameters and input or via an update, may
become invalid, we can flag fmi2Fatal and deadlock. For example, we consider
the test case shown in Fig. 7 taken from [5]. It has been designed to show that

Fig. 7. Test case for sampling of discrete event signals [5]

components with discrete timed behaviour coordinate their representation of
time. There are three main components: two periodic discrete signal generators,
both generating the same signal, one with period one time unit and the other two
time units; and a discrete sampler. The test criterion is that the output of the
Sampler should equal the output of the second periodic discrete signal generator
at all superdense times. There is an implicit constraint that the period p should
not be 0; therefore, we specify its InstantiationMode action as follows.

InstantiationMode =
fmi2Set .i .a?v !fmi2OK −→ a := v −→ InstantiationMode

@ fmi2Set .i .p?v !fmi2OK −→ p := v −→ InstantiationMode

@ p 6= 0 N fmi2SetUpExperiment .i?t0!true?tN !fmi2OK−→
currentTime, endTime := t0, tN ;
fmi2EnterInitializationMode.i !fmi2OK −→ Skip

@ p = 0 N fmi2SetUpExperiment .i?t0!true?tN !fmi2Fatal −→ Stop

In this case, if the experiment is set up when p is 0, we have a fatal error.

An FMU model generated as just explained trace refines FMUInterface(i).
This means that all possible histories of interactions of the FMU are possible
for FMUInterface(i) and, therefore, valid according to that criterion. We have
proofs of refinement for all FMUs in Fig. 7 and for a data-flow network.

5 Evaluation: verification applications

In this section, we show how we can use our formal semantics for FMI to verify
master algorithms and to study system properties via their co-simulations. For
automation, our semantics can be translated from Circus to CSPM (the input
language for the model checker FDR3), using a strategy similar to that of [20],
so that it can be both model checked in FDR3 and executed in ProBe (FDR’s
process behaviour explorer), for suitably chosen model parameters.

5.1 Master algorithms

As well as giving a correctness criterion for a master algorithm, the model pre-
sented in Sect. 4 gives an indication of how to construct models for particular
algorithms. We consider here three examples.

Classic brute-force The simplest algorithm uses a fixed step size, has no access
to the state of the FMUs, and queries them for termination if fmi2Discard is
flagged. To model this algorithm, we define a process ClassicMAlgorithm with
the same structure shown in Fig. 3, but more specific components.

ClassicMAlgorithm uses a simple timer that does not use setT or updateSS .
For the FMUStatesManager , we use a simple process that just terminates imme-
diately. Finally, for Interaction, we use the parallel composition of Interaction
itself with a process DiscardMonitor , whose main action is Monitor defined be-
low, followed by an action Terminated that shuts down the FMUs.

Monitor =̂
fmi2DoStep?i?t?hc?st : st 6= fmi2Discard −→Monitor

@ fmi2DoStep?i?t?hc.fmi2Discard−→(
fmi2GetBooleanStatusfmi2Terminated .i .true?st −→ ToDiscard

@ fmi2GetBooleanStatusfmi2Terminated .i .false?st −→Monitor

)

@ stepAnalysed −→Monitor @ step?t?hc −→Monitor

@ end −→ Skip

Monitor ignores all flags st returned by fmi2DoStep except fmi2Discard . If this
flag is returned, it queries the FMU using fmi2GetBooleanStatusfmi2Terminated .
If the FMU requests termination, Monitor behaves like ToDiscard whose sim-
ple definition we omit. In ToDiscard , when completion of the step is indicated
via either a stepAnalysed or a step?t?hc event, the co-simulation is terminated.
The signal stepAnalysed is not part of the Interaction interface, but is used to
indicate that fmi2DoStep has been carried out for all FMUs, and we are now in
a position to decide how to continue with the co-simulation.

Since ClassicMAlgorithm has the same structure as MAlgorithm, we can
prove refinement by considering each of the components in isolation. While proof
of refinement by model checking for the whole model is not feasible, it is feasible
for the individual components. In the sequel, we use the same approach to analyse
more complex algorithms. It is also feasible to prove that ClassicMAlgorithm

terminates, but otherwise does not deadlock, and is deterministic.
The example in the FMI standard is a classic algorithm with a fixed step

and handling of fmi2Discard, but does not include error management. So, its
specification does not include the ErrorHander and the ErrorManager . Model
checking can show that this is not a valid algorithm. A simple counterexample
shows that it continues and calls fmi2Instantiate a second time even after the
first call returns an fmi2Fatal flag. This is explicitly ruled out in the standard.

Simulink This is a widely used tool for simulation based on control law dia-
grams [19]. A popular solver uses a variable-step policy based on change rate

processVaryStep =̂ threshold : VAL; initialSS : NZTIME • begin

state

State = [oldOuts,newOuts : (FMI 2COMP × VAR) 7→ VAL; currentSS : NZTIME]

Init

State ′

dom oldOuts ′ = ran outputs ∧ ran oldOuts = ǫ ∧ newOuts ′ = ∅

currentSS ′ = initialSS

Monitor =̂; out : outputs •
fmi2Get .(FMU out).(name out)?nv?st −→ newOuts := newOuts ⊕ {out 7→ nv}

Adjust =̂ if delta(oldOuts,newOuts) ≥ threshold−→
currentSS := newstep(delta(oldOuts,newOuts), currentSS);
updateSS !currentSS −→ Skip

8 delta(oldOuts,newOuts) > threshold −→ Skip

fi

Step = Monitor ; Adjust ; Step

• Init ; (Step ∆ endSimulation)

end
Fig. 8. Model of VaryStep

of the state. To model this algorithm, we use a process SimulinkMAlgorithm,
which is similar to ClassicMAlgorithm, but has another monitor VaryStep, spec-
ified in Fig. 8. It is composed in parallel with Interaction to define a process
VariableStepInteraction used in SimulinkMAlgorithm.

VaryStep takes as parameters a threshold for change and the initial value
of the step size initialSS . Taking a simple approach, we define a state that
records the old (oldOuts) and new (newOuts) values of the outputs, besides the
current step size currentSS . After the state is initialised (using the action Init) to
record undefined (ǫ) old values for the outputs, no new values (empty function
∅), and the initial step size, the monitor steps by recording the new output
values (Monitor) and then changing the step size (Adjust). Adjustment is based
just on a comparison between the old and new values defined by an (omitted)
function delta. If the threshold is reached, a new step size is defined by another
function newstep and informed to the Timer .

We have established that SimulinkMAlgorithm is valid, that is, it refines
MAlgorithm, by proving that the newVariableStepInteraction refines Interaction.
We have also proved termination, deadlock freedom, and determinism.

Rollback In the same way as illustrated by VaryStep in Fig. 8, we can model
a sophisticated algorithm suggested in [4]. We define a Rollback monitor that
has the same structure as VaryStep. Its Monitor (a) saves the state using
fmi2GetFMUState before each step of co-simulation, and (b) queries the maxi-
mum step size that each FMU is prepared to take. This uses an extra FMI API

function fmi2GetMaxStepSize. In Adjust , if any of the maximum values returned
is lower than that originally proposed, the states of the FMUs are reset using
fmi2SetFMUState, and the time as well as the step size are adjusted (using setT

and updateSS). We have again proved validity, termination, and determinism.
In [4], determinism is also based on the FMU states, which are visible via

fmi2Get and fmi2Set. On the other hand, that work considers determinism
with respect to the order of retrieval and update of variables and execution
of the FMUs. In our models, this order is fixed. To establish determinism in
that sense, we need to consider a highly parallel model with all valid execution
orders respecting the port dependency graph. This is the approach in [7], where
verification uses theorem proving. The approach taken here is more amenable to
model checking and sufficient to verify sequential implementations of simulations.

As explained in the previous section, the definition of Interaction is deter-
mined by structural information about the FMUs configuration. Using that in-
formation, and a choice of master algorithm (fixed or variable step, treatment of
fmi2Discard, and so on), we can obtain a model. For the FMUs, in the previous
section, we have explained how to derive (sketches of) models.

5.2 Co-simulations

Our semantics is also useful for analysis using FDR of the FMU compositions
in co-simulations for deadlock, livelock, and determinism. We have done this
verification, for instance, for the discrete event signal example in Fig. 7.

The semantics can also be used to validate the results of co-simulation runs.
For example, Fig 9 describes a short scenario involving two co-simulation steps.
We specify it using CSP-M, rather than Circus, and write the traces refine-
ment ([T=) assertion we use for verification. The assertion says that this scenario
is a possible trace of the model: it is a correct co-simulation run. (We may check
this by noting that the final two operations set the same inputs for FMU 4 (Check
Equality)—the FMU that checks equality in the simulation model.) To facilitate
model checking, we use numbers for the names of the variables. With this ap-
proach, we validate our model against an actual co-simulation.

Moreover, we can go further and check behavioural correctness too. The
specification of an FMI composition C is an assertion over traces of events corre-
sponding to the FMI API, principally doStep, get, and set. A similar technique
is used for specification of processes in CSPm based on traces of events [17], and
in CCS, using temporal logic over actions [3].

An alternative is to use a more abstract composition of FMUs A as a speci-
fication. A can be used as an oracle in testing the simulation: do a step of C and
then compare it with a step of A. A and C can be used even more directly in
our model by carrying out a refinement check in FDR3.

Consider a dataflow process taken from [17, p.124] and depicted in Fig. 10
that computes the weighted sums of consecutive pairs of inputs. So, if the input is
x0, x1, x2, x3, . . ., then the output is (a∗x0+b∗x1), (a∗x1+b∗x2), (a∗x2+b∗x3), . . .,
for weights a and b. The network has two external channels, left and right , and
three internal channels. X 2 multiplies an input on channel left1 by a and passes

DSynchronousEventsSpec =

-- Set parameters

fmi2Set.1.1.1.fmi2OK -> fmi2Set.1.2.1.fmi2OK ->

fmi2Set.2.1.1.fmi2OK -> fmi2Set.2.2.2.fmi2OK ->

-- Set initial values of inputs

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.1.1.fmi2OK -> fmi2Set.4.2.1.fmi2OK ->

-- Steps

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

fmi2DoStep.1.0.2.fmi2OK -> fmi2DoStep.2.0.2.fmi2OK ->

fmi2DoStep.3.0.2.fmi2OK -> fmi2DoStep.4.0.2.fmi2OK ->

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

fmi2DoStep.1.2.2.fmi2OK -> fmi2DoStep.2.2.2.fmi2OK ->

fmi2DoStep.3.2.2.fmi2OK -> fmi2DoStep.4.2.2.fmi2OK -> SKIP

assert Cosimulation(0,2) [T= SynchronousEventsSpec

Fig. 9. Scenarios for Fig 7: sampling of discrete event signals

the result to X 3 on mid . X 3 multiplies an input on the left2 channel by b and
adds the result to the corresponding value from the mid channel. X 1 duplicates
its inputs and passes them to the other two processes (since all values except
the first and last are used twice), where the multiplications can be performed in
parallel. A little care needs to be taken to get the order of communications on
the left1 and left2 channels right, otherwise a deadlock soon ensues.

The CSP specification of this network remembers the previous input.

DFProc(a, b) = left?x −→ P(x)
P(x) = left?y −→ right !(a ∗ x + b ∗ y)−→ P(y)

The key part of the main FMU in this specification is shown in Fig 11.
Once the slave FMU has been initialised, the master algorithm can instruct

it to perform a simulation step (fmi2DoStep). The FMU fetches the state item,
gets the next input, fetches the parameters a and b, performs the necessary
computation, and stores it as the current output.

We have been able to encode both the specification and implementation
of the data flow network, with small values for maxint , and check behavioural
refinement. We have identified the problem alluded to above, in getting the com-
munications on left1 and left2 in the wrong order; issues to do with determinism
concerning hidden state in our model; and termination issues to do with the
end of the experiment and closing down resources. We have also been able to
demonstrate in a small way the consistency of the semantics model.

The transformation from Circus to CSPM corresponding to the FMI API
requires the identification of barrier synchronisations that correspond to the
doStep commands. An appropriate strategy is outlined in [6].

X 1

X 2

X 3

left1

left

left2

mid

right

Fig. 10. A data-flow example

DFSPECFMUProc(i) =

let

slaveInitialized(hc) =

...

[]

fmi2DoStep.i?t?ss!fmi2OK -> (UpdateState; slaveInitialized(ss))

UpdateState =

get.i.1?x:INPUTVALP ->

getinput.i.1?y:INPUTVALP ->

getparam.i.1?a:PARAMVAL -> getparam.i.2?b:PARAMVAL ->

setoutput.i.1!(a*x+b*y) -> SKIP

within

Instantiation; InstantiationMode(eps,eps);

InitializationMode; slaveInitialized(0)

Fig. 11. Data flow specification

6 Conclusions

We have provided a comprehensive model of the FMI API, characterising for-
mally valid master algorithms and FMUs. We can use our models to prove valid-
ity of master algorithms and FMU models. For stateless models, model checking
is feasible, and we can use that to establish properties of interest of algorithms
and FMU models. For state-rich models, we need theorem proving.

Given information about the network of FMUs and a choice of master algo-
rithm, it is possible to construct a model of their co-simulation automatically
for reasoning about the whole system. This is indicated by how our models are
defined in terms of information about parameters, inputs, and so on, for each
FMU, and about the FMU connections. A detailed account of the generation
process and its mechanisation are, however, left as future work.

We have discussed a few example master algorithms. This includes a sophisti-
cated rollback algorithm presented in [4] using a proposed extension of the FMI.
It uses API functions to get and set the state of an FMU. In [4], this algorithm
uses a doStep function that returns an alternative step size, in case the input

step size is not possible. Here, instead, we use an extra function that can get
the alternative step size. This means that our standard algorithms respect the
existing signature of the fmi2DoStep function. As part of our future work, we
plan to model one additional master algorithm proposed in [4].

There has been very practical work on new master algorithms, generation of
FMUs and simulations, and hybrid models [2, 22, 11, 9]. Tripakis [25] shows how
components with different underlying models (state machines, synchronous data
flow, and so on) can be encoded as FMUs. Savicks [24] presents a framework for
co-simulation of Event-B and continuous models based on FMI, using a fixed-
step master algorithm and a characterisation of simulation components as a class
specialised by Event-B models or FMUs. This work has no semantics for the FMI
API, but supplements reasoning in Event-B with simulation of FMUs.

Pre-dating FMI, the work in [15] presents models of co-simulations using
timed automata, with validation and verification carried out using UPPAAL,
and support for code generation. It concentrates on the combination of one con-
tinuous and one discrete component using a particular orchestration approach.
The work in [5] discusses the difficulties for treatment of hybrid models in FMI.

There are several ways in which our models can be enriched: definition of the
type system, consideration of asynchronous FMUs, sophisticated error handling
policies that allow resetting of the FMU states, and increased coverage of the
API. FMI includes capability flags that define the services supported by FMUs,
like asynchronous steps, and retrieval and update of state, for example. We need
a family of models to consider all combinations of values of the capability flags.
We have explained here how a typical combination can be modelled.

Our long-term goal is to use our semantics to reason about the overall system
composed of the various simulation models. In particular, we are interested in
hybrid models, involving FMUs defined by languages for discrete and for con-
tinuous modelling. To cater for models involving continuous FMUs, we plan to
use a Circus extension [13]. Using current support for Circus in Isabelle [14], we
may also be able to explore code generation from the models. We envisage fully
automated support for generation and verification of models and programs.

Acknowledgements The work is funded by the EU INTO-CPS project (Horizon
2020, 664047). Ana Cavalcanti and JimWoodcock are also funded by the EPSRC
grant EP/M025756/1. Anonymous referees have made insightful suggestions. No
new primary data were created during this study.

References

1. Abrial, J.R.: Modeling in Event-B—System and Software Engineering. Cambridge
University Press (2010)

2. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: Modelica Conference (2011)

3. Bradfield, J.C., Stirling, C.: Verifying temporal properties of processes. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR ’90, Theories of Concurrency: Unification and
Extension. LNCS, vol. 458, pp.115–125. Springer (1990)

4. Broman, D., et al.: Determinate composition of FMUs for co-simulation. In: ACM
SIGBED Intl Conf. on Embedded Software. IEEE (2013)

5. Broman, D., et al.: Requirements for Hybrid Cosimulation Standards. In: 18th Intl
Conf. on Hybrid Systems: Computation and Control. pp.179–188. ACM (2015)

6. Butterfield, A., Sherif, A., Woodcock, J.C.P.: Slotted Circus: A UTP-family of
reactive theories. In: Intl Conf. on Integrated Formal Methods. LNCS, vol. 4591,
pp.75–97. Springer-Verlag (2007)

7. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: From Control Law Diagrams to
Ada via Circus. Formal Aspects of Computing 23(4), 465–512 (2011)

8. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strategy
for Circus. Formal Aspects of Computing 15(2–3), 146–181 (2003)

9. Denil, J., et al.: Explicit semantic adaptation of hybrid formalisms for FMI co-
simulation. In: Spring Simulation Multi-Conference (2015)

10. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Procs of
IEEE 100(1) (2012)

11. Feldman, Y.A., Greenberg, L., Palachi, E.: Simulating Rhapsody SysML blocks in
hybrid models with FMI. In: Modelica Conference (2014)

12. FMI development group: Functional mock-up interface for model exchange and
co-simulation, 2.0. https://www.fmi-standard.org (2014)

13. Foster, S., et al.: Towards a UTP semantics for Modelica. In: Unifying Theories of
Programming. LNCS, Springer (2016)

14. Foster, S., Zeyda, F., Woodcock, J.C.P.: Isabelle/UTP: A Mechanised Theory En-
gineering Framework. In: Naumann, D. (ed.), Unifying Theories of Programming,
LNCS, vol. 8963, pp.21–41. Springer (2015)

15. Gheorghe, L., et al.: A Formalization of Global Simulation Models for Continu-
ous/Discrete Systems. In: Summer Computer Simulation Conf. pp.559–566. Soci-
ety for Computer Simulation International (2007)

16. Gibson-Robinson, T., et al.: FDR3—A Modern Refinement Checker for CSP. In:
Tools and Algorithms for the Construction and Analysis of Systems. pp. 187–201
(2014)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
18. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Mathematical and

Computer Modelling of Dynamical Systems 6(2), 93–113 (2000)
19. The MathWorks, Inc.: Simulink, www.mathworks.com/products/simulink
20. Oliveira, M.V.M., Cavalcanti, A.L.C.: From Circus to JCSP. In: 6th Intl Conf. on

Formal Engineering Methods. LNCS, vol. 3308, pp.320–340. Springer (2004)
21. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for

Circus. Formal Aspects of Computing 21(1-2), 3–32 (2009)
22. Pohlmann, U., et al.: Generating functional mockup units from software specifica-

tions. In: Modelica Conference (2012)
23. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,

Springer (2011)
24. Savicks, V., et al.: Co-simulating Event-B and Continuous Models via FMI. In:

Summer Simulation Multiconference. pp. 37:1–37:8. Society for Computer Simula-
tion International (2014)

25. Tripakis, S.: Bridging the semantic gap between heterogeneous modeling for-
malisms and FMI. In: Intl Conf. on Embedded Computer Systems: Architectures,
Modeling, and Simulation. pp. 60–69. IEEE (2015)

26. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall (1996)

