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Abstract: We address the problem of accurately locating buried utility segments by fusing data
from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors
are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic
Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA).
As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed
for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for
initializing utilities based on hypothesized detections on the first scs and for associating predicted
utility tracks with hypothesized detections in the following scss are introduced. Algorithms are
proposed for generating virtual scan lines based on given hypothesized detections when different
sensors do not share common scan lines, or when only the coordinates of the hypothesized
detections are provided without any information of the actual survey scan lines. The performance of
the proposed system is evaluated with both synthetic data and real data. The experimental results in
this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments
simultaneously, including both straight and curved utilities, and can separate intersecting segments.
By using the probabilities of a hypothesized detection being a pipe or a cable together with its
3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other.
The MCS algorithm can be used for both post- and on-site processing. When it is used on site,
the detected tracks on the current scs can help to determine the location and direction of the next
scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried
utilities or the number of sensors, and the more sensor data used, the more buried utility segments
can be detected with more accurate location and orientation.
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1. Introduction

Most utility services, including electricity, water, gas and telecommunications, are distributed
using buried pipes or via directly buried cables, and the majority of these buried utility infrastructures
exist beneath roads. Millions of holes are dug every year in the whole world in highways and
footpaths in order to maintain, repair, extend or replace the existing utility services [1]. The inaccurate
location of buried pipes and cables results in far more excavations than necessary, thereby increasing
the direct costs of maintenance to the service providers and causing enormous traffic delays. There is
a strong need to accurately locate and identify the buried utilities in a local area before any excavation
begins. Historically, locations of buried utilities are provided by record information held by utility
companies. However, this information may be incomplete, inaccurate or not up-to-date, especially
with regard to the depth information. Different geophysical sensors/techniques have been designed
to locate buried utilities [2], such as pipe detection with vibro-acoustic methods [3–5], electrical cable
detection with passive magnetic fields [6], buried asset detection with low-frequency electromagnetic
sensors [7], buried target detection using Ground Penetrating Radar (GPR) [8,9] and water pipe
detection using small sensors incorporated into the pipe [10]. Different sensors/techniques have
their own advantages and limits for buried utility location in different environment conditions.
For example, the Vibro-Acoustics (VA) of ground excitation works better for detecting assets
under grass-covered areas than assets under tarmac, whereas on the other hand, GPR works
better on tarmac than on grass-covered areas as the ground could be wetter under grass and,
thus, have a higher conductivity, reducing the transmission of radar waves. Passive Magnetic
Fields (PMF) are used to detect buried cables with electric current passively, and Low Frequency
Electromagnetic Fields (LFEM) can be used to detect both pipes and cables [11]. If these multi-sensor
data could be integrated appropriately, a more complete and accurate buried utility network could
be reconstructed.

A key component of buried utility location is how to connect those individual hypothesized
detections from different sensors to generate utility segments in 3D [11]. In practice, locations with
high responses from a detecting sensor are marked on the ground surface with colour-coded paint,
then connected by hand by experts to estimate the buried utility lines. Some methods have been
proposed to automate this procedure [12–14]. In [12], the authors use a dynamic Bayesian network to
integrate VA data and GPR data to find the buried pipe location and depth. In [13], the authors
proposed to use GPS, GPR and GIS for mapping underground utilities. In [14], the individual
hypothesized detections from a group of parallel GPR scans are used to determine the approximate
location and direction of a buried pipe segment by assuming that there is only one utility in the
surveyed area and the utility is straight. However there might be multiple utilities; the utilities may
not be straight; they may be very close to each other or even intersect at some points. In addition,
if multiple groups of sensor data are captured in the same area with the scan lines of each group
going in different directions, how to make use of all of this information in a general framework to
find all potential buried utilities is an open question. When multiple sensors are used, one utility may
be detected by multiple sensors at the same point, and different sensors may detect different utility
segments; how can we use this repeated and complementary information to solve the “multi-target
multi-observation” problem? These open questions relating to multi-sensor data fusion for buried
utility location are tackled in this work.

In this paper, we propose a Marching-Cross-Sections (MCS) algorithm to automatically integrate
the individual hypothesized detections from multiple sensors to locate the 3D buried utility segments
in a surveyed area. The proposed “multi-utility multi-sensor” system has no limit to the number
of buried utilities or the number of sensors. By discretizing the 3D space under the surveyed area
with scan cross-sections (scss, the definitions of scan cross-section (scs) and scan line are given in
Section 2.2), the MCS algorithm goes forward from one scs to the next to locate utility segments
based on the given or extracted hypothesized detections (a detailed explanation of individual
hypothesized detection is given in Section 3.1). There are five main components of the MCS algorithm:
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utility track initialization, track marching, data association, track updating and track management.
Hypothesized detections from different sensors are grouped based on their Mahalanobis distances
and used to initialize utility tracks, including the utility locations, orientations and probabilities
to be a pipe or a cable on the first scs. After the utility tracks are initialized, they are predicted
forward to the next scs along the estimated longitudinal direction of the utilities. Rules are defined for
associating corresponding hypothesized detections to existing utility tracks. In the tracks updating
stage, all hypothesized detections associated with a certain utility track are used to update this
utility sequentially using a Kalman Filter (KF) [15–19]. Finally, several rules are defined to manage
utility tracks to keep all potentially correct ones and to reject invalid ones. This step includes utility
merging, utility splitting and utility pruning. If in a survey, different sensors share common scan
lines, then the scss are generated from the actual survey scan lines; otherwise, a group of virtual scan
lines are generated automatically based on the extracted hypothesized detections of utilities with
the algorithms proposed in this paper. Though the segment between two adjacent scss is assumed
to be locally linear, the proposed MCS algorithm can locate curved utilities accurately. Besides being
used for post-processing of data captured by multiple sensors, the proposed algorithm can also be
used for on-site application when a survey is on going. In this way, the detected tracks till the current
scs can help to determine the location and direction of the next survey scan line.

The rest of this paper is organised as follows: the sensors used in this work and the related
data acquisition and interpretation approaches are described in Section 2; then, the proposed MCS
algorithm using actual survey scan lines and using virtual scan lines is presented respectively in
Section 3 and Section 4; after that, experimental results on both synthetic and real data are shown and
analysed in Section 5; and finally, conclusions are drawn in Section 6.

2. Sensor Data Interpretation and Registration

In this section, we present the sensors used for buried utility location in this work and explain
how the sensor data are interpreted and spatially registered in subsurface surveys.

2.1. Sensors and Sensor Data Interpretation

In this work, five types of geophysical sensors comprising Ground Penetrating Radar (GPR),
Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low-Frequency Electromagnetic Fields
(LFEM) and Vibro Acoustics (VA) are used together to locate the buried utilities. Data captured
by different sensors are processed individually to extract the hypothesized detections of buried
utilities. Some examples of sensor data and their hypothesized detections are shown in Figure 1.
The techniques for sensor data interpretation are briefly introduced in this section, for more details,
please refer to [7,11,20–22].

• GPR is one of the most used techniques to locate both metallic and non-metallic buried utilities.
It is an active instrument that transmits electromagnetic waves into the ground and collects
the reflected signals from subsurface structures. By pushing a GPR sensor along a scan line,
a GPR image is captured, as seen in Figure 1a. The vector of reflections measured at one certain
position for different answering times (travel time) is called an A-scan. A sequence of consecutive
A-scans composes a B-scan, which can be considered as a matrix of reflection intensities with
rows corresponding to the answering time and columns corresponding to horizontal positions
on the scan line. GPR data can be processed and interpreted manually by experts or using (semi-)
automatic algorithms to find buried utilities represented by hyperbolic signatures in the GPR
images [8,20,23,24]. In this paper, the hypothesized detections from GPR images are annotated
manually; an example is shown in Figure 1a.

• PMF utilizes the oscillating magnetic field created by the flow of current within a buried cable
to locate it [25]. As the current flow within a power cable can also induce currents within
neighbouring utility pipelines or ducts made from conducting materials, PMF is also capable of
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detecting the magnetic fields indirectly generated from the nearby metallic objects. However, as
a passive sensor, it can only detect the utilities with a flow of current; non-conductive materials,
such as plastic pipes, cannot be detected by this technique. The PMF sensor used in this work is
made of an array of 27 coils mounted on a frame to measure the magnetic field above buried
cables. The hypothesized locations of buried cables are estimated by minimizing the error
between the measured magnetic field values and those predicted by a simple numerical model
of one or more cables [21,25,26]. The results are presented as an error map (an example is shown
in Figure 1b); the lowest error is related to the most likely location for the cable.

(a) (b) (c)

(d)

Figure 1. Different sensor images with extracted hypothesized detections of utilities marked by
squares. (a) A Ground Penetrating Radar (GPR) image; (b) a Passive Magnetic Fields (PMF) image;
(c) a Magnetic Gradiometer (MG) image; (d) a Vibro-Acoustic (VA) image. In (a,b,d), columns
correspond to horizontal positions, and rows are related to depths. (c) is measured within a region on
the ground surface.

• The MG sensor used in this work is composed of four coils evenly spaced vertically on a plastic
pole. By analysing the changes of the signals produced by moving the coils, the position
of the buried cable can be estimated [27,28]. Concretely, the differences of the magnitude
values of the captured magnetic fields by different coils are calculated, and the local valleys
of the differences along the survey line are automatically selected, which are considered as
hypothesized detections from this technique. An example is shown in Figure 1c.

• LFEM is a method of measuring anomalies in the electrical resistivity of the ground using
non-contact methods. In this work, a sinusoidal alternating current is injected into the ground,
and the sensed voltage is measured on two capacitively coupled plates moved along the
surface. The ratio of voltage to current is proportional to the apparent resistivity of the ground.
Any materials that present a contrast in electrical properties to the soil have the potential to be
detected by this technique. The measurements are repeated on a regular grid, and the resulting
image can reveal the underground infrastructure [7].

• VA-based techniques mechanically excite one part of the buried utility (via a manhole or
valve) or the ground in a controlled way and measure the received response(s) at some remote
location(s) on the ground surface using an array of geophones. By analysing the nature of
the measured response(s) at the surface, the location of the buried pipe(s) can then be inferred [4].
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These techniques are capable of detecting different types of pipes, and they work well in both dry
and saturated areas, although it may not be suitable for detecting cables. In this work, the ground
surface is excited, and the subsequent reflections arriving at multiple geophones are analysed
to estimate the possible locations of buried pipes. The cross-correlation functions between
the measured ground velocities and a reference measurement adjacent to the excitation are used
to generate a cross-sectional image of the ground using a time domain stacking approach; then,
local maxima are extracted from this image and used as the hypothesized detections [4,5,22].
An example of a cross-sectional stacking image is given in Figure 1d, in which the dark red
region identifies the most possible locations of the pipe.

Based on the above description of the different sensors, it can be concluded that either
the sensors are complementary to each other in some way or they can be used to verify each other.
For example, GPR works better on tarmac than on grass-covered areas since electrically-conductive
ground conditions cause significant attenuation losses of electromagnetic signals, resulting in
shallow penetration depths for GPR. On the other hand, VA for ground excitation works better in
grass-covered areas than on tarmac because the geophones used as receivers for VA can be inserted
into the ground of the grass-covered area, and then, better signals can be captured. It may be difficult
for GPR to detect thin cables, but PMF is less sensitive to the size of the cables as long as there is
electrical current in the cable and the go and return cores in the cable have a reasonable distance from
each other. By combining the results from multiple sensors, a more accurate or more complete buried
utility network can be reconstructed.

2.2. Data Registration

In the subsurface survey, two GPRs, a PMF, a MG, a LFEM and a VA (ground excitation),
are used. All of the sensor data are recorded and tied-in using marked grids in order to put all
of the hypothesized detections of utilities in the same coordinate frame to facilitate data fusion.
The geo-measurement with respect to the spatial coordinate frame is done by a ‘total station
theodolite’. The line segment on a ground surface along which a sensor is applied is called a scan
line, as depicted in Figure 2. A scan line can be specified by its start point and end point or by its
start point, its direction and its length. A section below a scan line and perpendicular to the ground
surface, which is assumed to be flat in this work, to a certain depth (2 m for example) is called a scan
cross-section (scs). Examples can be seen in Figure 2 below the scan lines. Given the 3D coordinates of
the start point of a scan line and another point on the same scan line, the normal vector of the related
scs can be computed. The start point of a scan line and the normal vector of the related scs will be
used in the formulation of the MCS algorithm described in the following sections.

Figure 2. A schematic of the configuration of scan cross-sections. In this figure, (ak, bk, 0) is the normal
vector of the k-th scan cross-section; (xc

k, yc
k, zc

k) are the coordinates of the start point of the k-th scan
line; (xk, yk, zk) are the coordinates of a hypothesized detection on the k-th scan cross-section; and
(dxk, dyk, dzk) represents the longitudinal direction of the related utility at the hypothesized detection.
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3. Buried Utility Location with an MCS Algorithm

In this section, the MCS algorithm for locating buried utilities with data from multiple
sensors is presented. This algorithm includes five key components: utility track initialization, track
marching, data association, track updating and track management. Some assumptions for applying
the MCS algorithm and the five components of the algorithm are described one by one in the
following sections.

3.1. Assumptions

3.1.1. Representation of Hypothesized Detections

In this work, the buried utilities are divided into two general groups, i.e., pipes and cables.
At first, for a hypothesized detection from the data of a known sensor on a specific scs, based on
the geo-measurement of the scs in the global coordinate system and the intrinsic parameters of
the sensor, its 3D location can be computed. Besides the geo-measurement provided by the sensors,
as different sensors usually have different capabilities to detect pipes or cables, the sensors can also
provide the possible types of the located utilities based on their intrinsic characteristics; for example,
if a sensor is designed mainly for detecting pipes and then a hypothesized detection from its data is
believed to have a higher probability of being a response from a pipe than from a cable when nothing
about the configuration of the buried utilities is known and vice versa.

Based on the above discussion, a hypothesized detection from a known sensor can be
represented by: {x, y, z, pp, pc}, with x, y, z the 3D coordinates of the detection in the global frame and
pp and pc the probabilities of the detection being a response from a pipe or from a cable, respectively.
For example, a PMF sensor is designed to detect cables with electric current. Current may also be
induced in the neighbouring metal pipes by the cables, but as the current generated in the metal
pipe is usually weak, it is rarely detected. Therefore, for a PMF sensor, the value of pc is relatively
large compared with the value of pp. Usually pp + pc < 1; this is because, besides pipes and cables,
the hypothesized detections maybe from other objects.

3.1.2. The Uncertainty of Hypothesized Detection

As multiple hypothesized detections may be extracted on an scs from the data of a specific sensor,
let {Vi,1

k , · · · , Vi,m
k · · · , Vi,Ni

k } be the set of Ni hypothesized detections by the i-th sensor on the k-th
scan cross-section scsk, with corresponding uncertainties {Ri,1

k , · · · , Ri,m
k , · · · , Ri,Ni

k }, m ∈ [1, Ni], and i
satisfies i ∈ [1, S] with S the number of sensors.

The uncertainty of a hypothesized detection is related to several factors, such as the system noise
of the sensor, the depth of the related hypothesized detection and the accuracy of the geo-positioning
of the scan lines. In Figure 3, it can be seen that a given scan line is parallel to the x′-axis, and in
three-dimensional space, the related scs is parallel to the x′-o-z′ plane. If a hypothesized detection is
extracted on this scs, its (x′, y′) coordinates are independent to each other since its y′ coordinate is
only decided by the y′ coordinate of the start point, and its x′ coordinate is decided by both the x′

coordinate of the start point of the scan line and the horizontal distance of the hypothesized detection
along the scan line. Based on the understanding of the sensors involved in this work, as the signal
strength attenuates gradually with the depth increasing, the uncertainty of an extracted hypothesized
detection will also increase. Therefore, for a hypothesized detection (x′, y′, z′, pp, pc) on a scan line
parallel to the x′-axis, the uncertainty matrix of the measurement noise can be given as follows:

R′ =


ω2

x′ 0 0 c 0
0 ω2

y′ 0 0 0
0 0 (ωz′ ∗ z′)2 0 0
0 0 0 ω2

pp ωpp ∗ωpc

0 0 0 ωpp ∗ωpc ω2
pc

 (1)
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Figure 3. A local coordinate frame x′-o-y′ with respect to a scan cross-section and a global coordinate
frame x-o-y.

In the above expression, the uncertainty along the scan line is coded by ωx′ , and the uncertainty
along y′-axis is coded by ωy′ . We expect that the geo-measurement of the start point of the scan lines
is more accurate than that of the horizontal distance of the hypothesized detection, so the value of ωy′

should be much smaller than that of ωx′ . The uncertainty of depth is related to the depth itself with
a ratio ωz′ . In our experiments, the values of theses parameters are set according to the understanding
of the related sensors, for example for a GPR hypothesized detection, ωx′ = 0.2, ωy′ = 0.05, ωz′ = 0.1.

With respect to the x-o-y coordinate system, when the scan line is not parallel to the x-axis,
the x and y coordinates of a hypothesized detection on the scan cross-section are not independent of
each other in the 3D frame. Suppose the angle between the scan line and the x-axis is θ, θ ∈ (0, π)

(Figure 3); if the coordinate system is rotated around the z-axis for an angle of θ anticlockwise
to the x′-axis, then the x-axis is parallel to the scan line. The relationship of the coordinates of
the hypothesized detection in the 3D global frame (x, y, z) and in the rotated coordinate frame
(x′, y′, z′) is written as follows: x

y
z

 =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


x′

y′

z′

 (2)

In this situation, the covariance matrix R of the measurement noise in the global coordinate
frame is R = AR′AT, where R′ is given by Equation (1) and A is given as follows:

A =


cosθ −sinθ 0 0 0
sinθ cosθ 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (3)

In this work, scan lines in the same survey group do not intersect in the surveyed area and can
be thought as parallel to each other approximately. Scan lines in different groups can go in different
directions and can intersect each other. A sensor can do multiple surveys along different groups of
scan lines, and different sensors may not share the same scan lines.

For the description of the MCS algorithm in the following sections (Section 3.2 to Section 3.6),
we assume that all of the sensor data share the same group of scan lines. As for the situations where
sensors use different groups of scan lines or no scan line information is provided for some sensors,
a variant of the MCS algorithm is described in Section 4.
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3.2. Initialization of Utility Tracks

Let sl1, sl2, · · · , slN denote a group of parallel scan lines as shown in Figure 2; as the proposed
MCS algorithm needs to be applied sequentially to a group of scan lines, it can be applied from sl1
to slN or from slN to sl1, which determines the direction in which the algorithm proceeds (called
the marching direction in this work). To obtain a more complete or more accurate location of utility
segments, the MCS algorithm is applied in both marching directions, and then, the results are merged
into the final result as described in Section 3.6.

For a selected marching direction, the locations and orientations of the potential utilities are
initialized with the extracted hypothesized detections on the first scs where some hypothesized
detections are found. To initialize a utility track, if the utility is detected by multiple sensors, it should
be initialized by fusing all of the corresponding hypothesized detections related to it. From the nature
of the sensors, we have the prior information that two hypothesized detections from the same sensor
on an scs are believed to be the responses from two different objects. Therefore, only hypothesized
detections from different sensors should be used to initialise a utility track.

On a certain scs, a combination of hypothesized detections containing one hypothesized
detection from each sensor, which has hypothesized detections on this scs, is called a maximum
combination. For example, {V1,1

1 , V2,1
1 , · · · , VS,1

1 } represents a maximum combination from S different
sensors on the first cross-section, with corresponding covariances{R1,1

1 , R2,1
1 , · · · , RS,1

1 } as defined in
Section 3.1. The initialization procedure with respect to maximum combinations is given as follows:

1. Within each maximum combination, in order to take the uncertainties of hypothesized detection
into account, the Mahalanobis distances mdij (i ∈ [1, S], j ∈ [1, S] and i 6= j) between each
pair of hypothesized detections in this combination are computed with the prior uncertainties
of hypothesized detections defined in Equation (1) to Equation (3). Then,

• if none of the Mahalanobis distances are less than a predefined threshold, this means no pair
of the hypothesized detections is believed to come from the same utility. If so, no fusion will
be done in this maximum combination;

• if there are some Mahalanobis distances less than the threshold, the agglomerative
clustering method [29] is employed to merge associated hypothesized detections using
the Mahalanobis distance metric. The pair of hypothesized detections (Vi,1

1 , V j,1
1 ) with

the minimum Mahalanobis distance value are merged using a maximum likelihood
formulation. The merged hypothesized detection V(i,1;j,1)

1 and its uncertainty R(i,1;j,1)
1 are

calculated as follows:
R(i,1;j,1)

1 = ((Ri,1
1 )−1 + (Rj,1

1 )−1)−1 (4)

V(i,1;j,1)
1 = Ri,1;j,1

1 ((Ri,1
1 )−1Vi,1

1 + (Rj,1
1 )−1V j,1

1 )) (5)

• The merged hypothesized detection and the rest of the hypothesized detections in
the original combination form a new combination {V(i,1;j,1)

1 , · · · , VS,1
1 }. The Mahalanobis

distances with respect to this new combination are computed and compared to the threshold.
If the minimum Mahalanobis distance is less than the threshold, a further fusion will be
done on the related pair and a new combination generated. This procedure continues until
no Mahalanobis distance is less than the threshold. At this stage, the fusion results and
the hypothesized detection used to do the fusions are recorded.

2. After going through all of the maximum combinations with the above procedure, two types of
merged results will be specially treated:

• some fusions can be repeated multiple times. For example, if a fusion with two hypothesized
detections V1,1

1 and V2,1
1 is recorded with respect to a maximum combination, it may be met
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again in a later maximum combination. Therefore, once a fusion is recorded, the repeated ones
will not be recorded any more.

• Some fusions may be expanded from a recorded fusion. For example, a fusion is based on
hypothesized detections {V1,1

1 , V2,1
1 , V3,1

1 } and is recorded in the list, and later, a fusion based
on {V1,1

1 , V2,1
1 , V3,1

1 , V4,1
1 } is found. In this situation, the latter one is regarded as an expansion

from the previous one, and the one with fewer hypothesized detections is removed.

3. Finally, each recorded result of fusion is regarded as a utility and used to initialize a utility track.
If a hypothesized detection is never used to initialize any utility track with others, it will initialize
a track by itself.

There are several ways to initialize the utility orientations. For example, the initial orientation
of a utility can be estimated from a manhole inspection if a survey is started close to a manhole or
estimated based on statutory records if related statutory records are available. In this work, without
any information of the manholes and the statutory records, the utility orientation is initialized in
the direction perpendicular to the related scs. Then the initialized utility can be represented as:
{x, y, z, pp, pc, dx, dy, dz}, called the state vector of the utility at location (x, y, z), with {dx, dy, dz}
the estimated longitudinal direction of the utility at this location.

3.3. Marching of Utility Tracks

For a buried utility, if two adjacent scss are close enough (0.5 m for example), the utility segment
between these two scss can be approximated with a linear segment. Suppose a utility is tracked to
the (k−1)-th scan cross-section scsk−1, as depicted in Figure 2, and the state vector of this utility on
scsk−1 is represented as Xk−1 = (xk−1, yk−1, zk−1, ppk−1, pck−1, dxk−1, dyk−1, dzk−1)

T . With the local
linear assumption, the state vector of this utility on the k-th scan cross-section scsk can be predicted
as follows: 

xk|k−1 = xk−1 + lk ∗ dxk−1,
yk|k−1 = yk−1 + lk ∗ dyk−1,
zk|k−1 = zk−1 + lk ∗ dzk−1,
ppk|k−1 = ppk−1,
pck|k−1 = pck−1,
dxk|k−1 = dxk−1,
dyk|k−1 = dyk−1,
dzk|k−1 = dzk−1

(6)

where:

lk =
ak · (xs

k − xk−1) + bk · (ys
k − yk−1)

ak · dxk−1 + bk · dyk−1
(7)

and (xs
k, ys

k, zs
k) denotes the start point of the k-th scan line and (ak, bk, 0) represents the normal vector

of scsk. The derivation of Equation (7) is given in Appendix A.
With the above procedure, a tracked utility can march from the current scs to the next one.

Usually, it is assumed that the above process is subject to noise, and in this work, it is assumed as
Gaussian. Therefore, the above procedure can be represented with a more compact form:

Xk|k−1 = FkXk−1 + qk (8)

where Xk|k−1 = (xk|k−1, yk|k−1, zk|k−1, ppk|k−1, pck|k−1, dxk|k−1, dyk|k−1, dzk|k−1)
T is the predicted state

of a utility track on scsk and qk v N(0, Qk) is the Gaussian process noise.
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The state transition function Fk can be defined as follows:

Fk =



1 0 0 0 0 lk 0 0
0 1 0 0 0 0 lk 0
0 0 1 0 0 0 0 lk
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(9)

where lk is defined in Equation (7).
The covariance of the predicted state vector Pk|k−1 on scsk is calculated with the Jacobian matrix

Jk(X) of Fk as follows:

Pk|k−1 = Jk(X)Pk−1Jk(X)
T + Qk (10)

where Pk−1 is the covariance of the utility on scsk−1; the Jacobian matrix Jk(X) of Fk on scsk is:

Jk(X) =



ux −vx 0 0 0 ux · lk −vx · lk 0
−uy vy 0 0 0 −uy · lk vy · lk 0
−uz −vz 1 0 0 −uz · lk −vz · lk lk

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(11)

where ux =
bk ·dyk−1

deno , uy =
ak ·dyk−1

deno , uz =
ak ·dzk−1

deno , vx =
bk ·dxk−1

deno , vy =
ak ·dxk−1

deno , vz =
bk ·dzk−1

deno and
deno = ak · dxk−1 + bk · dyk−1.

3.4. Data Association

The utility states predicted from scsk−1 to scsk are denoted as Xt
k|k−1, with t ∈ [1, Nu] and

Nu the total number of predicted tracks as explained in Section 3.3. The Nu predicted states are
considered as hypothesized detections from a virtual sensor and are associated with the extracted
hypothesized detections from real sensors on scsk. With the new group of sensors (real sensors and
the virtual one), the maximum combinations of hypothesized detections are generated the same way
as in the initialization step. In each maximum combination, there is one and only one predicted
state, and a predicted state can appear in different maximum combinations. For each combination,
the Mahalanobis distances between the predicted state and any other hypothesized detections are
computed, and the hypothesized detections with their Mahalanobis distances less than a threshold
are used to update the corresponding predicted state as presented in the next section (Section 3.5).
The hypothesized detections, which are not associated with any predicted state, are used to initialize
new tracks in the same way as described in the initialization step. If no hypothesized detection is
associated with the predicted state of a specific track, this track will be predicted to the next scs or
stop at this scs based on its historical record, which will be detailed in Section 3.6.

3.5. Updating of Utility Tracks

After finishing the data association procedure described in Section 3.4, the EKF algorithm
is employed to update the predicted tracks with their associated sensor hypothesized detections.
As the data are captured by multiple sensors independently, when multiple hypothesized detections
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are associated with a specific track, this track can be updated by the hypothesized detections
sequentially in any order. For a predicted track Xk|k−1 and an associated hypothesized detection

Vi,m
k , the updating procedure is done in the standard way:

• measurement residual: di,m
k = Vi,m

k − HiXk|k−1

• residual covariance: Si,m
k = HiPk|k−1(Hi)T + Ri,m

k

• Kalman gain: Gi,m
k = Pk|k−1(Hi)T(Si,m

k )−1

• updated utility state: Xk|k = Xk|k−1 + Gi,m
k di,m

k

• update utility uncertainty: Pk|k = (I − Gi,m
k Hi)Pk|k−1

where Hi is the observation model of sensor i and Ri,m
k defines its Gaussian observation noise as

ri,m
k v N(0, Ri,m

k ). The observation model function Hi for sensor i used in this work is defined as:

Hi =
[
I5,5 05,3

]
, where I5,5 is a 5× 5 identity matrix and 05,3 is a 5× 3 zero matrix. For a sensor

measurement only with 2D locations of the target, their observation model is a 4 × 8 matrix by
deleting the third row of Hi.

3.6. Management of the Utility Tracks

In the course of utility tracks marching forward across a group of scss, an existing utility
track with current state Xt

k is predicted for the next scs and can be updated with associated sensor
hypothesized detections. An updated utility track may be split into multiple tracks, and some
tracks may be merged into a single track. Simultaneously, at an scs, some non-updated tracks
may be pruned, and some new utility tracks may be initialized with new hypothesized detections.
The different situations are described in the following bullets:

• split: if a predicted utility track can be associated with different groups of hypothesized
detections, it is split into multiple tracks and updated with the corresponding hypothesized
detection combinations, respectively;

• merge: if two utility tracks are updated with exactly the same hypothesized detections in M
consecutive scss, they are merged as a single track. We tried a range of values of M from one to
five in this work; the best result was obtained when M was set to three.

• prune: if a buried utility is detected on a scs and it extends forward to the following scss,
the probability of this utility not being detected on several consecutive scss should be very
low. Therefore, a variable dt

no is defined to record the accumulated non-updated utility distance
among consecutive scss for a certain track. If the predicted state Xt

k|k−1 of the track on the k-th
scan cross-section is not updated by any sensor hypothesized detection, the distance between
the predicted location Xt

k|k−1 and the previous location Xt
k−1 is added onto dt

no. When this
accumulated distance exceeds a certain threshold (e.g., two metres), this utility track will be
stopped. If any sensor hypothesized detection is associated with the track before dt

no reaching
the threshold, dt

no will be reset to zero.
• new utility initialization: the hypothesized detections on scsk not associated with any predicted

track are used to initialize new tracks in the same way as described in the initialization step
(Section 3.2).

This procedure continues to the last scs to obtain all of the utility state estimates. For a certain
track, its state estimates on all of the associated scan cross-sections are recorded. Among the state
estimates, some of them are the results updated by hypothesized detections (called updated states),
and others are just the predictions from the previous state (called prediction states). If the ratio of
the number of updated states to the total number of state estimates is up to a threshold, this track
is accepted as a utility segment; otherwise, it is believed to be a noise. The value of the threshold
depends on the resolution of the scan lines and the quality of the sensor data. After this clean
procedure, the accepted utilities are smoothed with a Rauch-Tung-Striebel (RTS) smoother [30–32].



Sensors 2016, 16, 1827 12 of 24

Merging Utility Tracks Detected in Both Marching Directions

As explained above, once the proposed algorithm is applied in one order of the scan lines,
say sl1 to slN , the MCS algorithm is applied again from slN to sl1. By applying the algorithm twice,
some segments misdetected in one direction might be detected in the other direction. By merging
the results obtained in both directions, a more complete and more accurate final result can be
achieved. An example is shown in Figure 4; it can be seen that one part of a segment, which is not
detected when applying the MCS algorithm in one direction (black line), is detected when applying
the algorithm in the other direction (red line). Meanwhile, after merging the results in two directions
together, the uncertainties of the states of a detected utility are reduced (blue line). More examples
are given in Section 5.

Figure 4. The utility segment after merging the corresponding utility segments from two directions.
Uncertainties of utility states are shown by ellipse with 95% confidence level.

The following procedure is used for merging tracks detected by applying the MCS algorithm
in both marching directions: (1) To determine if two tracks are from the same utility: for two tracks
from different marching directions, the Mahalanobis distances of their states on the same scs are
computed and compared. Let Npairs denote the number of utility state pairs with Mahalanobis
distances less than a threshold and Ntotal denote the total number of state pairs (states on the same scs)
of two tracks. If the ratio Npairs/Ntotal is larger than a certain value, the two tracks are considered to
be from the same utility. (2) to merge two tracks from the same utility: the states of the two tracks
on the same scs are merged with Equations (4) and (5). If on a certain scs, only one track is detected
there, the related state is used as the state of the final track.

The pseudo-code of the proposed MCS algorithm is given in Appendix B.

4. MCS Algorithm with Virtual Scan Lines

In some surveys, different sensors may not share common scan lines or only the coordinates
of the hypothesized detections may be provided without any information of the scan lines. In this
situation, to apply the previously-described algorithm, a group of virtual scan lines, which are
parallel to each other, are automatically generated based on the provided hypothesized detections.
Those hypothesized detections that are not on the generated scs in 3D space are projected onto their
nearest virtual scss along a certain direction as described below. What is the orientation of the virtual
scan lines, and what is the distance between two adjacent ones? These two questions are answered in
the following sections.

4.1. Orientation of the Virtual Scan Lines

To decide the orientation of the virtual scan lines, the given hypothesized detections are
projected onto the ground surface, and then, a PCA (Principal Component Analysis) [33] is
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applied to the projections of the hypothesized detections to find the first principal component
direction, called the main direction. First, the direction perpendicular to the main direction is used
as the direction of the virtual scan lines. An example is shown in Figure 5. To avoid missing
the utilities with its longitudinal direction perpendicular or nearly perpendicular to the main
direction, the proposed algorithm is repeated with the virtual scan lines parallel to the main direction,
and then, the results from both directions are merged as described below in detail.

Figure 5. Virtual scan lines generated based on hypothesized detections from data of different
surveys using five types of sensors. The main direction computed from the hypothesized detections
is displayed as red bold arrow, and the virtual scan lines are shown as blue lines.

4.2. Adaptive Selection of Distance between Virtual Scan Lines

The distance between two adjacent scan lines can vary with respect to the local density of
the hypothesized detections along the marching direction. In order to adaptively calculate the interval
between virtual scan lines, the maximum distance between the projections of the hypothesized
detections along the marching direction is first computed. Then, a group of grid lines with constant
interval distance (e.g., 0.5 m) is generated along the marching direction. All the hypothesized
detections are associated with their closest virtual scss, and an average number Ah of hypothesized
detections associated with an scs is computed based on this grid. If the number of hypothesized
detections associated with a certain scs is greater than 2Ah, then two new scss are added before and
after this scs with a distance of a quarter of the original intervals they lie in to replace the original one.
The number of hypothesized detections associated with these two new scss are computed. If any of
them has hypothesized detections more than 2Ah, then further dividing will be continued.

Since the scss are generated virtually, some hypothesized detections are not on the scs with which
they are associated. In this situation the hypothesized detections are projected onto the virtual scss
along a certain direction:

(a) if no utility track has been initialized prior to this scs, the associated hypothesized detections
are projected onto the scs along the direction perpendicular to the scs. Then, the same
initialization procedure is performed as described in Section 3.2;

(b) if some tracks have been initialized and predicted onto the current scs, the directions of
the predicted tracks are used to project the hypothesized detections related to this scs: for
each track, these hypothesized detections are projected along the predicted direction of
the track, then the data association algorithm presented in Section 3.4 is applied to find
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the corresponding projected hypothesized detections of this utility track. This procedure is
repeated for all of the predicted tracks;

(c) the hypothesized detections, which are not used to update any existing track, are projected
along the direction perpendicular to the scs onto the related virtual scs and used to initialize
new tracks.

Once the virtual scss are generated and with the proposed rule, the hypothesized detections are
projected onto the current scs; the procedure is the same as that on a certain scs with actual scan lines.

When using virtual scss, if a utility is parallel or nearly parallel to the virtual scss, it may not be
located by the above procedure. To avoid this, the above procedure is repeated twice with the virtual
scan lines perpendicular and parallel to the main direction, respectively. In this way, the same utility
segment might be detected in both directions. To merge the results obtained in both directions,
the following rule is applied: if the angle β between a segment and the marching direction satisfies
β ≤ 45◦, this segment will be kept; otherwise, it will be rejected. The above rule is designed based
on the fact that if a utility segment has a smaller angle with respect to one marching direction, it has
a higher probability of being detected along this direction and in most cases with higher accuracy.

5. Experimental Results

In this section, the proposed MCS algorithm is tested on both synthetic and real data,
and the experimental results are presented and analysed.

5.1. Synthetic Data

A simulator is designed to generate synthetic hypothesized detections of different sensors based
on the location of buried utilities and the detection rates (the detection rate of a sensor with respect
to a certain utility at certain depth in a specific medium is the probability of the utility being detected
by the sensor when it is passing through the scan cross-section at that depth in the specified medium)
of different sensors in different mediums (sensor data are not actually simulated). A synthetic
environment including three curved pipes, five straight pipes, one curved cable and one straight
cable is generated, as shown in Figure 6a. The pipes are assumed to be metal pipes, and the cables are
assumed to be electrical cables. They are simulated at the depth of 1 m, 1.5 m and 2 m, respectively.
Some of them are very close to each other, such as a curved pipe and a curved cable at the depth of
1 m and one straight cable and another straight pipe at the depth of 1.5 m. Seven groups of scan lines
are simulated on a tarmac area and a grass area, with the black and green grids representing the scan
lines on tarmac and on grass, respectively.

For a utility and a scan cross-section in the simulated environment, if the utility passes through
the scan cross-section, the intersection point of them is computed by the simulator. Different levels
of noise are added to the coordinates of the intersection point with respect to different sensors,
different depths and different mediums. In addition, since different sensors have different detection
rates in different mediums, there is a random process according to the related detection rate to decide
if an intersection point with added noise is recorded as a hypothesized detection or not. For example,
as pointed out in the previous sections that GPR works better on tarmac, this is because GPR is more
accurate and has a higher detection rate on tarmac, say 0.8 at a depth of 1 m. If an intersection point
is computed with respect to a survey with GPR on tarmac at a depth of 1 m, then this intersection
point has a 0.8 probability to be recorded as a hypothesized detection. On the other hand, GPR
works worse in grass areas, and given that the detection rate of GPR in wet grass area is 0.3 at
a depth of 1 m, then a related intersection point at a depth of 1 m in the grass area has only
a 0.3 probability to be recorded as a hypothesized detection. In our experiments, the detection rates
are set inversely proportional to the depth: the constants of proportionality for different sensors in
tarmac and grass-covered areas are respectively set as GPR, 0.8/0.3, PMF, 0.7/0.7, LFEM, 0.7/0.7, VA,
0.2/0.85. The simulated hypothesized detections from four sensors, GPR, PMF, LFEM and VA, are
shown in Figure 6b.
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(a) (b)

Figure 6. (a) A synthetic environment with several groups of scan lines on the ground surface
and some utilities below the surface (three curved pipes, five straight pipes, one curved cable
and one straight cable). The surveyed regions with green and black grids represent the grass
covered-area and the tarmac area, respectively. A utility represented by a blue line is a pipe and
otherwise a cable; (b) A group of synthetic hypothesized detections generated with the simulator with
respect to the aforementioned synthetic environment for four sensors: GPR, PMF, Low Frequency
Electromagnetic Fields (LFEM) and VA (best viewed in colour).

(a) (b)

Figure 7. The results of the Marching-Cross-Section (MCS) algorithm by merging the corresponding
results along two different marching directions. (a) 3D view of detected utility segments along
two different marching directions; (b) 2D view of detected utility segments along two different
marching directions and the final result after merging them together. After merging the results from
two directions, the percentage of correctly detected utility segments increased from 84% and 87% to
95%. The missed 5% is due to no hypothesized detections generated in the corresponding area by
any sensor.

The proposed MCS algorithm was applied to the seven groups of scan lines separately.
As explained in Section 3.2, for each group of scan lines, the MCS algorithm is applied in two different
directions. As seen in Figure 7a, four curved utility segments are detected respectively in each
direction. By merging the corresponding tracks detected in both marching directions, the percentage
of correctly-detected utility segments increases from 84% and 87% to 95%. The final utility segments
are more accurate and more complete than using a single direction, as shown in Figure 7b.
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Figure 8. A top view of the straight and curved utilities located based on the simulated
hypothesized detections. Located pipes and cables from the synthetic data are shown by blue lines
and red lines, respectively.

Table 1. Comparison of the utility location results using different sensor combinations. Both the
results of MCS with actual survey scan lines (sls) and virtual scan lines are presented. RCD is
the rate of correctly detected utility length compared with the total utility length in the ground truth,
RCD ∈ [0, 1]; E (m) is the average distance error of the detected utilities. In this table, S1, S2, S3 and
S4 represent GPR, PMF, LFEM and VA, respectively.

Sensors
MCS (Actual sls) MCS (Virtual sls)

Tarmac Area Grass Area Whole Area
RCD E RCD E RCD E

S1 0.57 0.12 0.84 0.06 0.58 0.08
S2 0.38 0.05 0.27 0.03 0.27 0.04
S3 0.66 0.07 0.60 0.07 0.40 0.07
S4 0.53 0.05 0.53 0.07 0.51 0.08

S1-2 0.81 0.06 0.89 0.05 0.74 0.07
S1-3 0.81 0.05 0.82 0.04 0.85 0.07
S1-4 0.54 0.05 0.88 0.04 0.69 0.07
S2-3 0.65 0.04 0.61 0.05 0.50 0.06
S2-4 0.91 0.05 0.81 0.05 0.78 0.07
S3-4 0.91 0.05 0.89 0.04 0.85 0.07

S1-2-3 0.84 0.05 0.89 0.04 0.98 0.07
S1-2-4 0.92 0.05 0.93 0.04 0.90 0.07
S1-3-4 0.93 0.05 0.93 0.03 0.89 0.06
S2-3-4 0.93 0.05 0.89 0.04 0.90 0.07

S1-2-3-4 0.94 0.04 0.93 0.03 0.93 0.04

For the whole seven groups of survey data, a top view of the located straight and curved utilities
obtained with the proposed method is displayed in Figure 8. A utility segment detected between
two scss is considered as a true positive detection if the distances from its two end points to a utility
line given in the ground truth are both less than 10 cm. The accumulated length of correctly-detected
utility segments and their average error of distance to the corresponding lines in the ground truth
by using different groups of sensor data are shown in Table 1. It can be seen that the percentage
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of correctly located utility segments increases gradually by integrating the data from more and
more sensors.

The detection rates pp and pc are important features of the MCS algorithm. They can help to
estimate the possible type of a located utility and can help to separate a pipe from a cable when they
are close to each other. An example is given in Figure 9a,b. It can be seen in Figure 9a that without
using the information of pp and pc of the hypothesized detections, MCS merges the hypothesized
detections from a cable and its neighbouring pipe into one utility, but by considering the pp and
pc components, they can be separated successfully as two different utilities, as shown in Figure 9b.
In addition, pp and pc can help to indicate the possible type of a located utility. If the value of pp
of a located utility is higher than its pc, the located utility is considered to be a pipe and shown by
a blue line; otherwise, it is believed to be a cable and shown by a red line. As seen in Figure 9b,
both the location and the type of the utilities match correctly with the ground truth. The values of pp
and pc for different sensors used in this work are given in Table 2, which are assigned according to
their operational capabilities summarized in [34].

(a) (b)

Figure 9. (a) Enlarged window of located utilities in the cyan window in Figure 8 when not using pp
and pc; the types of located utilities cannot be estimated, and the cable segment and pipe segment that
are close to each other cannot be separated. (b) The located utilities after using pp and pc, the cable
and pipe, which are close to each other, can be separated successfully.

Table 2. The probability of an extracted hypothesized detection being from a pipe or a cable for
different sensors: pp, the probability of a hypothesized detection to be a pipe; pc, the probability of
a hypothesized detection to be a cable; po, the probability of a hypothesized detection to be other
types of objects.

Sensor pp: Pipes pc: Cables po: Others

GPR 0.5 0.35 0.15
PMF 0.05 0.9 0.05
MG 0.05 0.9 0.05

LFEM 0.45 0.45 0.1
VA 0.85 0.1 0.05

In order to test the algorithm presented in Section 4, we assume that the information of the seven
groups of scan lines is not provided, then a group of virtual scan lines is automatically generated
based on all of the hypothesized detections using the algorithm presented in Section 4. With this
group of virtual scan lines, all of the hypothesized detections from different surveys are processed in
the same framework. As can be seen in Table 1, the utility location results are very close to the results
of using actual scan lines. The MCS algorithm with virtual scan lines is especially useful when a large
quantity of utility hypothesized detections from different surveyed data sources are provided.
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5.2. Real Data

5.2.1. Survey Site

The Mapping the Underworld (MTU, http://www.mappingtheunderworld.ac.uk/) project
surveyed the Glen Eyre halls of residence at Southampton University, UK, to test the efficiency of
the proposed algorithm for integrating different subsurface utility locating techniques. The survey
was carried out in a car park, approximately 30 m by 20 m. The site is mainly tarmac with a small
grass-covered area. Three control points were set up to generate a coordinate system with a Leica
total station and all of the sensor data were calibrated to this coordinate system. Two GPR sensors,
a PMF sensor, a MG sensor, a LFEM sensor and a VA sensor for ground excitation were applied to
capture data on-site in 2015.

Figure 10. Test site with pictures of dug pits and the ground truth of buried utilities including cables
(red lines) and main pipes (blue lines) provided by excavations after all sensor acquisitions.

The GPR data were captured in almost the whole area along several groups of scan lines
in different directions. For each group of scan lines, the scan lines are parallel to each other
approximately, and the distance between adjacent scan lines is about 0.5 m. The PMF sensor was
performed in an area of about 8 m × 5 m with the length of a scan line about 5 m and the distance
between two adjacent scan lines about 1 m. The survey of MG covered a region of about 10 m × 20 m
on tarmac with some overlap with the region surveyed by PMF and LFEM. The LFEM survey covered
a large portion of the tarmac area, and GPS, a laser scanner and Odometry were used to provide
the positional information for the LFEM hypothesized detections. The survey of the VA of ground
excitation covered a portion of the grass area. Seven geophones were deployed along the scan lines
with the distance between two adjacent geophones about 1 m.

http://www.mappingtheunderworld.ac.uk/
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5.2.2. Ground Truth

In March 2016, 12 of 14 picked trial pits were successfully excavated by a professional excavating
company to a depth of around 1 m to obtain ground truth of buried utilities in the test site
(thus, deep utilities may not have been discovered). Multiple cables and pipes were found in different
pits as can be seen in Figure 10. If similar utilities with similar orientations and depths are found in
neighbouring pits, they are assumed to be from the same utility and connected linearly as the ground
truth. The same as with the synthetic data, for a detected utility segment between two adjacent scan
cross-sections, if the distances of its two ends to any utility in the ground truth are both less than
0.3 m, it is recorded as being located correctly.

5.2.3. Experiment I: MCS Algorithm Applied on Three Groups of GPR Data Sharing Common
Scan Lines

Three groups of GPR data, which share common scan lines, were used to test the MCS algorithm
presented in Section 3. As shown in Figure 11, five utility tracks were retained. The detected utility
segments are compared with the ground truth, and the correctly detected utility segments are marked
by green dotted lines. By using the three subsets of GPR data, 60.7% of the utilities in the surveyed
area were detected.

Figure 11. Experimental results of the MCS algorithm with three groups of GPR data sharing common
scan lines in the Glen Eyre test site. The ground truth in the surveyed area is shown by blue and red
solid lines; correctly located utility segments (TP: true positive) are marked by green dotted lines with
the red circles on the ground truth lines the corresponding closest points of the ground truth; and false
positive/unknown utility segments are marked by cyan dotted lines (best viewed in colour).

The number of utility tracks at different scss is displayed in Figure 12; the MCS algorithm
can track multiple utilities and the number of utility tracks varies from step to step because of
different numbers and/or different distributions of hypothesized detections extracted on different
scss. There are two main peaks in Figure 12: the first one is because of the intersection of
two long utilities, and then, the number of tracks drops drastically in the following steps thanks to
the tracks merging strategy; the second peak is because more hypothesized detections were extracted
on the corresponding scan cross-section.
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Figure 12. Number of utility tracks on different scan cross-sections (scss).

5.2.4. Experiment 2: MCS Algorithm with Virtual Scan Lines for Multiple Groups of Sensor Data

For all of the data captured from the five types of sensors in the test site, since only a small
number of groups among them share common scan lines and some of them only provide the locations
of hypothesized detections, in order to use all of these data in a common framework, the algorithm
described in Section 4 is applied to generate a group of virtual scan lines. To evaluate the contribution
of using multiple sensors, MCS is applied on different combinations of sensors. Since GPR data cover
a larger proportion of the surveyed area than other sensors, MCS is applied on the GPR data at first to
generate a baseline. Then, MCS is applied by gradually adding other sensor data into the experiments
to evaluate the contribution of different sensors.

The experimental results with respect to different combinations of sensors are shown in Table 3,
and the location results with respect to certain combinations of data groups from the MCS algorithm
are displayed in Figure 13.

Table 3. Experimental results of MCS with virtual scan lines on the data of the Glen Eyre site survey:
RCD is the rate of correctly located utility length compared with the ground truth, RCD ∈ [0, 1]; E (m)
is the average distance error of the located utility segments.

Sensors/Results MCS Algorithm
RCD E(m)

GPR 0.64 0.25
GPR + PMF 0.68 0.23

GPR + PMF + MG 0.71 0.23
GPR + PMF + MG + LFEM 0.85 0.20

GPR + PMF + MG + LFEM + VA 0.92 0.20

Since in the surveys, different sensors covered different portions of the whole surveyed area
and with some overlaps of the areas they covered, a correctly located segment may be based on
the data from multiple sensors, and different sensors may detect different parts of the same utility or
different utilities, resulting in a more complete utility location result. As seen in Table 3 and Figure 13,
with more sensor data fed into the MCS algorithm, the length of correctly located utilities is longer
and the location result is more accurate. By integrating all sensor data together, 92% of the utilities
are located correctly. For the remaining 8% of the utilities, the related areas are not covered by any
sensor, as pointed out in the two green rectangle areas in Figure 13e.



Sensors 2016, 16, 1827 21 of 24

(a) (b) (c)

(d) (e)

Figure 13. Experimental results of the MCS algorithm with virtual scan lines on real data captured
in the Glen Eyre survey. (a) GPR; (b) GPR + PMF; (c) GPR + PMF + MG; (d) GPR + PMF + MG
+ LFEM; (e) GPR + PMF + MG + LFEM + VA. Hypothesized detections from different sensors are
marked by different symbols, as shown in the legend; projections of the hypothesized detections on
the corresponding virtual scan lines are marked by cyan dots; the predicted utility states at different
locations are marked by red line arrows; and the located buried utilities are marked by bold blue lines.

6. Conclusions

In this paper, a novel algorithm MCS for automatically locating buried utility segments by fusing
data from multiple sensors is introduced. By discretizing the 3D space with scan cross-sections based
on actual survey scan lines or automatically generated virtual scan lines, the MCS algorithm marches
from a scan cross-section to the next one by predicting the states of detected utilities on the next
cross-section. The predicted states of utilities can be integrated with hypothesized detections from
multiple sensors to obtain better estimations. The proposed marching algorithm can detect multiple
straight or curved buried utility segments simultaneously. The novel idea of formulating pp and pc
into the algorithm can help to separate pipe and cable close to each other. Based on the analysis of
the experimental results on both synthetic data and real data, the novel formulation proposed for
the EKF and the rules proposed for associating predicted utilities with the hypothesized detections
from multiple sensors on a scan cross-section in the MCS algorithm are shown to work well for buried
utility location. Given hypothesized detections from multiple sensors in a surveyed area, the utilities
under the surveyed area can be correctly located with high recall and precision by the proposed MCS
algorithm in a fully automatic manner. The proposed method is a greedy method and, thus, might not
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find the global optimum, though this is mitigated by combining the two marching directions.
Future work might address the development of an algorithm, which searches for a global optimum,
though we note good results are already obtained with the present algorithm.
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Appendix A. Derivation of Equation (7)

With respect to a utility with state vector as Xk−1 = (xk−1, yk−1, zk−1, ppk−1, pck−1, dxk−1, dyk−1, dzk−1)
T

on scan cross-section scsk−1 in Figure 2, to compute the prediction of this utility on scsk, the length
of the utility segment lk between scsk−1 and scsk needs to be computed. Let l be a real number,
then the equation of the line containing the utility segment can be represented as:

x− xk−1 = l · dxk−1,
y− yk−1 = l · dyk−1,
z− zk−1 = l · zxk−1,

(A1)

Since the start point of the k-th scan line is (xs
k, ys

k, zs
k) and the normal vector of sck is (ak, bk, 0),

the equation of the plane containing sck is:

ak(x− xs
k) + bk(y− ys

k) = 0 (A2)

Plug Equation (A1) into Equation (A2), we obtain:

l =
ak · (xs

k − xk−1) + bk · (ys
k − yk−1)

ak · dxk−1 + bk · dyk−1
(A3)

In this situation, the meaning of l is exactly the same as lk; this proves Equation (7).

Appendix B.

Algorithm B1: Pseudo-Code of the Proposed MCS Algorithm

for each marching direction do
i: = 1;
while there is no hypothesized detection on the ith scs do

i = i + 1;
end
initialize utility tracks on the ith scs;
for j← (i + 1)th scs to the last scs do

predict the existing tracks onto jth scs;
update the predicted tracks with the hypothesized detections on the jth scs;
manage the tracks based on their history recorded including split, merge, and prune;
initialize new tracks when necessary;

end
end
Merge the utility tracks detected from different directions
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