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Abstract 

Interleukin-36 cytokines are predominantly expressed by epithelial cells. Significant 

upregulation of epidermal IL-36 is now a recognised characteristic of psoriatic skin 

inflammation.  IL-36 is known to induce inflammatory responses in dendritic cells, 

fibroblasts and epithelial cells. Although vascular alterations are a hallmark of psoriatic 

lesions and dermal endothelial cells are well known to play a critical role in skin 

inflammation, the effects of IL-36 on endothelial cells are unexplored. 

We here show that endothelial cells including dermal microvascular cells express a 

functionally active IL-36 receptor. Adhesion molecules VCAM-1 and ICAM-1 are 

upregulated by IL-36γ stimulation and this is reversed by the presence of the endogenous IL-

36 receptor antagonist. IL-36γ stimulated endothelial cells secrete the proinflammatory 

chemokines IL-8, CCL2 and CCL20.  Chemotaxis assays showed increased migration of T 

cells following IL-36γ stimulation of endothelial cells.  These results suggest a role for IL-

36γ in the dermal vascular compartment and it is likely to enhance psoriatic skin 

inflammation by activating endothelial cells and promoting leukocyte recruitment. 

 

Introduction 

Interleukin-36 (IL-36) cytokines are part of the wider IL-1 family and include IL-36α, IL-

36β, IL-36γ and their inhibitor, the IL-36 receptor antagonist (IL-36Ra)(1).  IL-36 binds to 

the IL-36 receptor (IL-36R) and this is followed by recruitment of an accessory protein (IL-

RAcP), which is shared by other IL-1 members(2). Downstream intracellular signalling 

results in NF-κB and AP-1 activation and the expression of proinflammatory mediators in 

susceptible cells.  Whilst the receptor antagonist is able to bind to the receptor, it does not 

recruit the AcP receptor, so signaling does not occur and thus the Ra exerts antagonist 

effects(3, 4).  IL-36γ is thought to be mainly produced by keratinocytes and other epithelial 

cells in response to stimuli such as fungi, inflammatory mediators such as TNF-α and IL-1, 

bacteria, rhinovirus infection and smoke(5-9). IL-36 has stimulatory effects on a range of cell 

types including epithelial cells, fibroblasts and immune cells(6, 10-12).  IL-36 expressed by 

epithelial cells has been documented in several tissues including the lung; however, the 

majority of research has focused on the skin and specifically psoriasis(6). 
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Psoriasis is an immune mediated inflammatory disease affecting 2% of the world 

population(13).  Psoriasis pathology is associated with hyperkeratotic plaques and epidermal 

inflammatory cell infiltrates. This leads to visible raised erythematous scaly lesions. T cells 

and the adaptive immune system are key players in psoriasis. However, innate inflammatory 

mediators such as IL-1 family members, IL-23, IL-10 family members, CCL20, IL-8, TNF-α 

and antimicrobial peptides are now well recognised for their role in both the initiation and 

maintenance of psoriatic inflammation(14, 15). 

IL-36γ is highly up-regulated in psoriasis lesions on both the mRNA and protein level(16).  

Expression levels of IL-36γ also correlate with levels of other cytokines such as IL-17, IL-23 

and TNFα in psoriasis lesions(5). Transgenic mice in which keratinocytes overexpress IL-36α 

are susceptible to a psoriasis like inflammation following 12-O-Tetradecanoylphorbol-13-

acetate treatment(17). Using the same model, mice which were deficient in the IL-36Ra 

showed chronic skin abnormalities and enhanced plaque development. Mice deficient in the 

IL-36R were protected from plaque development(18). Also of note, generalized pustular 

psoriasis (GPP), a severe form of psoriasis, has been linked to loss-of-function mutations in 

the IL-36Ra  These mutations result in a less stable protein with resultant reduced control 

over IL-36 mediated responses(19). 

The pathophysiologic contribution of endothelial cells (ECs) in psoriatic inflammation is well 

recognised.  Psoriasis lesions show a developed vascular network, most notably in the 

papillary dermis.  Studies have confirmed these capillaries are wide, dilated, tortuous and 

leaky(20-22).  The combination of endothelial activation followed by angiogenesis leads to 

enhanced and sustained leukocyte recruitment/migration to the lesion and thus tissue 

inflammation(23, 24). Upregulation of adhesion molecules such as VCAM-1 (Vascular Cell 

Adhesion Molecule 1) and ICAM-1 (Intercellular Adhesion Molecule 1) has been detected, 

which increases adhesion of leukocytes and leads to extravasation(25). 

Several currently used medications for psoriasis may also work by affecting ECs along with 

immune cells. Methotrexate is thought to inhibit adhesion molecule expression(26). 

Moreover, Efalizumab, which was efficient for psoriasis treatment when available, works by 

blocking LFA-1(Lymphocyte function-associated antigen 1) on leukocytes so they are unable 

to bind to the adhesion molecule ICAM-1 on ECs(27). A number of proinflammatory 

cytokines upregulated in psoriatic lesions including TNF-α and IL-17 are capable of 

activating ECs (23, 28). 
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The purpose of this study was to determine the effect of IL-36γ on ECs.  

 

Methods 

Generation of IL-36 proteins 

As IL-36 and IL-36Ra both require N-terminal processing to become fully active(3), 

recombinant active forms of IL-36γ (IL-36γS18) and IL-36Ra (IL-36 RaV2) were used 

throughout. Constructs of IL-36γ S18 and IL-36 RaV2 containing N-terminal His-SUMO 

fusion partners were generated and expressed in BL21 (DE3) Codon + E. coli as described 

before(29).  Proteins were subsequently purified using Ni
2+

 -affinity and size exclusion 

chromatography. Once purified, the SUMO tag was removed using the Ulp1 protease, and the 

final active recombinant cytokines were purified by Ni
2+

 -affinity, ion exchange and size 

exclusion chromatography. 

 

Cell culture and stimulations 

Umbilical cords were supplied by Bradford Royal Infirmary under the approval and 

processing of Ethical Tissue Bradford.  HUVEC (Human Umbilical Vein Endothelial Cells) 

from 5 donors were isolated from umbilical cords in a previously described method(30). 

HDLEC (Human Dermal Lymphatic Endothelial Cells) from pooled donors were supplied 

from PromoCell (Heidelberg, Germany). Cells were incubated in an atmosphere of 95% 

humidity and 5% CO2 at 37°C.  All experiments were performed between the passages of 2-5 

for both cell types.  Endothelial cell media (PromoCell) was used containing 

penicillin/streptomycin (100U/100mg/ml) and fungizone (2.5 µg/ml) (both Life 

Technologies, Carlsbad, USA).  Cells were plated out on 6 well plates (Greiner Bio-One, 

Stonehouse, UK) pre coated with 10% v/v gelatine solution overnight.   Relevant cells were 

incubated with NF-κB inhibitor (IMD-0354) (Merck Millipore, Billerica,USA) 1µM for 1 

hour prior to stimulation.  The specificity of IMD-0354 at the doses used as previously been 

documented (31).  
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IL-36 Receptor confirmation by quantitative PCR (qPCR) 

Cells were washed with PBS and RNA was isolated using Quick-RNA MiniPrep (Zymo 

Research, Irvine, USA) according to the manufacturer's instructions. RNA was converted to 

cDNA using RevertAid first strand cDNA synthesis kit  (Thermo Scientific, Waltham, USA), 

according to the manufacturer's instructions. cDNA from previously isolated and cultured 

primary human primary keratinocytes and fibroblasts were used as positive controls(32). 

Quantitative PCR (q-PCR) was conducted using the CFX Connect™ Real-Time PCR 

Detection System. Reaction was performed using the QuantiFast SYBR Green PCR Kit 

(Qiagen). Primers for the IL-36R (IL1RL2) were purchased from Qiagen. Data was analysed 

using BIO-RAD CFX manager software version 3.0.  Results were normalised against the 

housekeeping gene U6snRNA.  The ratio between Ct value for the target gene and the Ct 

value for the housekeeping gene was then calculated. The average values for the different cell 

types were then expressed as a ratio of the keratinocyte value (1.00).  

 

IL-36 Receptor confirmation by Immunocytochemistry 

HUVEC and HDLEC were seeded onto gelatin coated coverslips overnight.  Cells were 

washed in TBS and fixed in 4% formaldehyde for 20 mins. Cells were then blocked for 1 

hour in 5% BSA in TBS.   Cells were incubated overnight with mouse anti-human CD31 

(1:1000) (Dako, Glostrup, Denmark) and rabbit anti-human IL-36R (1:500) (Novus 

Biologicals, Littleton, USA) or Rabbit IgG isotype control (1:500, Abcam, Cambridge, UK). 

Cells were washed with TBST and secondary donkey anti-rabbit Alexa 594 conjugated, and 

donkey anti-mouse Alexa 488 conjugated were added (both 1:1000, both Invitrogen, 

Carlsbad, USA). 

 

NF-κB and c-JUN analysis by Western Blot 

Cells were stimulated as before, for 1 hour. Cells were lysed with CelLytic M lysis buffer 

(Sigma-Aldrich), containing protease inhibitor cocktail (Roche Applied Bioscience, 

Rotkreuz, Switzerland) and phosphatase inhibitor (Thermo Scientific, Loughborough, UK).  

Protein concentration was determined by Bradford Assay and 20ug of total protein was 

separated on any kDa mini protean gel (Bio-Rad, Hemel Hempstead, UK).  Proteins were 
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blotted onto 0.2 μm PVDF trans-blot pack (Bio-Rad).  Membranes were probed with either 

rabbit anti-human phospho-NF-κB (1:1000),rabbit anti-human Phospho-c-Jun (both Cell 

signalling Technology, Leiden, Netherlands),or mouse anti-human GAPDH (Santa Cruz 

Biotechnology, Dallas, USA), in Tris-buffered saline 0.1% Tween-20 (TBST) containing 5% 

BSA overnight at 4 °C.  Mouse anti-rabbit or Donkey anti mouse, HRP-conjugated secondary 

antibodies were used at 1:5000 for 1 hour at room temperature.  

 

NF-κB and c-JUN activity by Immunocytochemistry 

Gelatin coated coverslips were placed into 6 well plates, and HUVEC cultured and stimulated 

as before.  Following 1 hour of treatment, cells were washed in TBS and fixed in 4% 

formaldehyde for 20 mins.  Cells were then blocked for 1 hour in 5% BSA in TBS.  Cells 

were then incubated overnight at 4 °C with either rabbit anti-human phospho-NF-κB(1:1000) 

or rabbit anti-human phospho-c-JUN (1:1000) (both Cell signalling Technology, Leiden, 

Netherlands). Cells were washed with TBST and a secondary donkey anti-rabbit Alexa 594 

(1:1000) conjugated antibody was added.  Sheep anti-human Von Willebrand factor (FITC 

conjugated) (Abcam, Cambridge, UK) was used as a background stain.  

 

Chemokine analysis by ELISA 

Following stimulation, CCL2 and IL-8 concentrations were measured using ELISA kits from 

eBioscience (San Diego, USA). CCL20 was measured using R&D systems kit (Minneapolis, 

USA).  ELISAs were carried out according to the manufacturer’s protocols. Reproducibility 

of supernatants were confirmed by triplicate testing, with <10% error.  

 

Endothelial Cell adhesion molecule analysis by flow cytometry 

Following stimulation, cells were scraped in PBS. 1 x 10
5 

cells per treatment were analysed. 

Cell surface Fc receptor block was performed with 5% BSA in PBS for 30 minutes, cells 

were then centrifuged and the supernatant discarded and the pellet resuspended in PBS. The 

following antibodies and relevant isotype controls (BioLegend, San Diego, USA) were then 

added, all at a 1 in 300 dilution: Alexa Fluor 488 anti-human CD54 (ICAM-1) and PE anti-
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human CD106 (VCAM-1).  After 1 hr incubation, cells were centrifuged, and pellets 

resuspended in PBS. Cells were then analysed by the Beckman Coulter CyAn™ ADP 

Analyser, using the Summit software version 4.1. 

 

Chemotaxis assay 

Chemotaxis plates (101-216, 8µm pore size) were purchased from Neuro Probe, USA.  30µl 

of supernatant was placed in the bottom chamber.  The porous insert was then placed on top.  

Blood was obtained from 7 healthy volunteers.  Mononuclear cells were isolated from blood 

by Lymphoprep density gradient centrifugation and resuspended in in RPMI containing 10% 

FCS. The suspension was then purified using a MACS magnetic separation column (Miltenyi 

Biotec) using microbeads for CD14 negative selection followed by CD4 positive selection.  T 

cell purity (<90%) was confirmed by FACS CD4/CD3 selection. Isolated T cells were 

resuspended in RPMI and 5 x 10
4
  cells in 20 µl were added to the top chamber. Cells were 

incubated in an atmosphere of 95 % humidity and 5% CO2 at 37°C for 2 hours.  Following 

incubation, the suspension in the bottom chamber containing migrated cells was removed and 

placed in counting slides (BIO RAD, USA, 1450011).  The cell count was performed using 

the BIO RAD TC20 automated cell counter. The percentage of cells that had migrated was 

calculated for each treatment.  The percentage of cells that migrated for media only was set to 

0 and other treatment values were expressed as a migration index.  

 

Statistical analysis 

Statistical significance was calculated using a one-way ANOVA with a Bonferroni's multiple 

comparisons test, unless stated.  Analysis was performed using GraphPad Prism software 

(GraphPad Software Inc, La Jolla, CA, USA).  Error bars represent the standard error of the 

mean (SEM). *: p<0.05 from indicated controls.  
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Results 

The IL-36R is present on endothelial cells 

Whilst no stimulatory effects of IL-36 on ECs have previously been documented, expression 

of the IL-36 receptor (IL-36R) first needed to be confirmed.  For analysis of receptor 

expression, two different EC types were used, HUVEC (Human Umbilical Vein Endothelial 

Cells) and HDLEC (Human Dermal Lymphatic Endothelial Cells).  A range of cell types are 

known to express the IL-36R including fibroblasts and keratinocytes.  Keratinocytes are 

known to highly express the receptor when compared to other cell types and human T cells 

show no expression(10).  qPCR analysis confirmed expression of the IL-36R by both 

HUVEC and HDLEC (Figure 1A).   ICC expression confirmed the expression at protein level 

on both HUVEC and HDLEC (Figure 1B). 

 

IL-36 γ activates NF-κB and c-JUN 

IL-36γ stimulation resulted in increased NF-κB and c-JUN activation (Figure 2).  

Concentrations of 10 and 50ng/ml of IL-36γ resulted in increased detection of the 

phosphorylated active versions of NF-κB and c-JUN (AP-1) in the nucleus of HUVEC and 

also in whole protein lysate.  The activation of both NF-κB and c-JUN was reduced by the 

addition of the RA.  NF-κB inhibitor only partially inhibited IL-8 secretion suggesting AP-1 

may also play a role (Figure 4A).  

 

Adhesion molecules ICAM-1 and VCAM-1 are upregulated following IL-36γ 

stimulation 

Proinflammatory cytokines are known to upregulate adhesion molecules on ECs thereby 

facilitating leukocyte recruitment.  With regard to IL-36γ FACS analysis confirmed both 

ICAM-1 and VCAM-1 were upregulated after stimulating ECs with IL-36γ for 48 hr (Figure 

3).  HUVEC and HDLEC both showed adhesion molecule upregulation in a dose dependent 

manner.   Stimulation with 10 ng/ml showed minimal upregulation but 50 ng/ml of IL-36γ 

resulted in a significant upregulation of surface expression of both ICAM-1 and VCAM-1. 

Median fluorescence intensity (MFI) of independent experiments was determined. Statistical 
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analysis performed showed the MFI for untreated controls was statistically significant when 

compared to IL-36 50 ng/ml MFI, for both cell types and adhesion molecules.  

 

Endothelial cells secrete chemokines following IL-36 stimulation 

To assess the functional significance of IL-36R receptor expression on ECs, chemokines 

known to be secreted by ECs that are of relevance for psoriatic inflammation were measured.  

Following 48 hr IL-36γ stimulation, ECs supernatants were analysed for chemokines by 

ELISA. ECs secreted IL-8, CCL2 (MCP-1) and CCL20 in a dose dependent manner (Figure 4 

A-C).    ECs are known to react very sensitively to endotoxin contamination and for this 

reason the IL-36 preparation was boiled prior to stimulation to confirm no contamination was 

present.  Boiled controls subsequently produced similar secretion levels to untreated cells 

thus excluding endotoxin contamination in the recombinant protein.  Both 10 and 50 ng/ml of 

IL-36γ resulted in significant chemokine production when compared to untreated control.   In 

the presence of the IL-36Ra secretion levels were reduced in a dose dependent manner and  

concentrations of 10, 50 and 100 ng/ml of the Ra all lowered secretions in comparison to IL-

36γ stimulation alone. The effect of IL-36Ra also confirms the presence of the IL-36R on 

both EC types. 

 

Supernatant from IL-36γ stimulated ECs is a chemoattractant for T cells 

Having observed chemokine secretion by ECs following IL-36γ stimulation, the chemotactic 

potency of the endothelial cell conditioned media was assessed.  CCL20, which we found to 

be secreted by ECs following IL-36γ stimulation is known to be a chemoattractant for 

lymphocytes and has a documented role in psoriasis(33).  Untreated cell supernatant, media 

alone and IL-36γ + media were used as negative controls and rhCCL20 as a positive control.  

Supernatant from IL-36γ stimulated ECs proved to be a chemoattractant for T cells when 

compared to negative controls (Figure 4D). A dose dependency for the IL-36γ effect on 

endothelial cells’ capacity to increase T cell migration was seen.    Chemotaxis assays could 

confirm that IL-36Ra at 100 ng/ml was sufficient to inhibit the stimulatory effects of IL-36γ 

10 ng/ml. When stimulating with the Ra at 100 ng/ml, the migration of T cells was reduced 

and comparable to untreated supernatant.  This suggests IL-36γ induced chemokine secretion 

was indeed responsible for T cell migration.  
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Discussion 

Psoriasis is a common chronic inflammatory skin disorder affecting around 2% of the 

population.  The IL-1 family member, IL-36 has been linked to psoriasis pathogenesis and 

disease severity. In psoriasis and other inflammatory diseases, ECs are activated by 

proinflammatory cytokines, resulting in enhanced leukocyte recruitment.  However, so far the 

effect of IL-36 on ECs has been unexplored.  

Here, we describe that the IL-36 receptor is expressed by both HUVEC and HDLEC.  We 

assessed the functional activity of the receptor by assessing the biologic response of ECs to 

IL-36γ stimulation, including adhesion molecule upregulation and chemokine production.  

Both adhesion molecules ICAM-1 and VCAM-1 were upregulated following IL-36γ 

stimulation.  Adhesion molecules are involved in leukocyte extravasation, which allows the 

movement of leukocytes to the site of inflammatory responses. Selectins are responsible for 

the rolling and capture of leukocytes whereas ICAM-1 and VCAM-1 are involved in the 

adhesion and transmigration.  The integrins expressed on leukocytes, LFA-1 and VLA-4 

(Very Late Antigen-4) bind to ICAM-1 and VCAM-1 respectively(34). In the context of 

psoriasis pathogenesis, both these adhesion molecules are required for T cell adhesion and 

migration into the skin(17, 35). 

IL-36 stimulation and subsequent chemokine secretion has been shown to be dependent on 

the  activation of transcription factors AP-1 and NF-κB (36). We report activation of both 

these transcription factors in ECs (Figure 2). ECs responded with chemokine production to 

IL-36γ stimulation.  CCL2 (MCP-1) has a documented importance in psoriasis and other 

inflammatory diseases by recruiting monocytes(37).  IL-8, which promotes neutrophil 

recruitment, EC survival and angiogenesis, was also secreted following IL-36γ 

stimulation(38).  The importance of angiogenesis in psoriasis is well recognised(39), and 

local EC secretion of IL-8 induced by IL-36γ could be a contributing factor. CCL20 was 

secreted, which binds to CCR6, which is highly expressed on IL-17 and IL-22 producing 

lymphocytes and the majority of T cells that infiltrate the skin in psoriasis are CCR6 

positive(33).  Chemotaxis assays confirmed increased T cell migration following IL-36γ EC 

stimulation, which could be due to CCL20 secretion. Although keratinocytes are a main 

source of CCL20 (33, 40), our findings indicate that ECs can contribute to the cutaneous 

CCL20 as well as CCL2 production.  For all chemokines analysed, the IL-36Ra was able to 

dampen the effect in a dose dependent manner.  This finding was also mirrored in the 
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chemotaxis assay where T cell migration was reduced when cells had been co-stimulated 

with the Ra.   

It is hypothesized environmental triggers can cause keratinocytes to secrete IL-36γ 

independently of proinflammatory cytokines such as TNFα(17, 35).  It is thus possible that 

IL-36γ could be important in the initiation of EC activation. 

Our here presented findings could also have implications for other diseases.  Lung bronchial 

epithelial cells secrete IL-36γ in response to cytokines such as TNFα(6). Cigarette smoke, the 

causative agent of Chronic Obstructive Pulmonary Disease (COPD) is also known to cause 

IL-36γ secretion in bronchial epithelial cells(7). However, the exact role of IL-36 in 

respiratory disease is still unknown.  IL-36α has been shown to be expressed in the synovium 

of both psoriatic and rheumatoid arthritis patients (41), while both α and y have been 

implicated in Crohn's disease in mouse models (42).  In COPD, Crohn’s disease and 

rheumatoid arthritis, like many chronic inflammatory diseases, angiogenesis and EC 

activation occurs(43-45). Therefore IL-36 may also have a role in EC activation and 

leukocyte recruitment in these diseases.  Murine models of liver damage/liver inflammation 

have also identified enhanced expression of IL-36γ, and elevated CCL20 levels(46). EC 

induced secretion of CCL20 by IL-36γ could be one of the potential sources of this.  

IL-36γ serum levels are enhanced in psoriasis patients(16). In recent years psoriasis has been 

suggested as an independent risk factor for atherosclerosis(47, 48).  In atherosclerosis, 

endothelium activation and initial inflammatory signalling represent an important stage of 

disease development(49). Increased serum levels of IL-36γ and therefore possible increased 

endothelium activation of the arteries could accelerate atherosclerosis disease progression.  

Of note, generalised pustular psoriasis (GPP) can be associated with loss of function 

mutations in IL-36Ra  and results in reduced control over IL-36.  However the risk factor of 

GGP on cardiovascular disease is largely unexplored.   

In summary, our results suggest that IL-36γ has a role in activating the endothelium further 

enhancing lymphocyte recruitment and thus enhancing psoriatic inflammation.  These 

findings add to the growing importance of IL-36γ in both psoriasis initiation and 

maintenance.  Further studies will help decipher the significance of IL-36γ and its 

interactions with other EC stimulating mediators such as TNF-α and IL-17 in human psoriatic 

tissue. 
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Figure 1. Expression of the IL36R on human endothelial cells. A)qPCR was performed 

and relative mRNA expression determined.  Keratinocyte expression was set to 1.00 and 

HUVEC, HDLEC and fibroblast expression of the receptor was quantified relative to 

keratinocyte expression. Samples: HUVEC n = 5, HDLEC n=3 (pooled donors) 3 biological 

replicates,  keratinocytes, fibroblasts n=2.  Standard error of mean depicted on graph.  B) ICC 

confirmation of receptor on HUVEC and HDLEC. Magnification x 40. 

 

Figure 2. IL-36γ induces NF-κB and c-JUN in HUVEC.  Western blot (A) and ICC 

analysis (B) of  pNF-κB-p65 and pc-JUN. Phosphospecific antibodies detect active form or 

NF-κB or c-JUN in the nucleus of HUVEC. Increased detection of active form of both 

detected in whole cell lysate via western blot.  Magnification x 40. 

Figure 3. Endothelial cell adhesion molecule upregulation following IL-36γ stimulation. 

Following 48 hr stimulation with IL-36γ, ECs (HUVEC and HDLEC) were stained with 

labelled antibodies specific for ICAM-1 or VCAM-1 and analysed by flow cytometry for 

surface expression.  Relevant isotype controls were used as negative control. Fluorescence 

beyond the “isotype” line in the depicted histograms thus represents specific binding of 

antibody demonstrating detectable expression. A representative experiment is shown (sample 

sizes: HUVEC n=3, HDLEC n=3).    

Figure 4. ECs secrete chemokines which are a chemoattractant for T cells. Following 

48hr stimulation, the cell supernatant was tested for CCL20, CCL2 and IL-8 by ELISA (A-

C). Sample sizes: HUVEC n=5, HDLEC n=3 (3 biological replicates of pooled donors). The 

supernatant from treated and untreated ECs was removed and tested for its chemoattractant 

ability using a chemotaxis assay. The supernatant was placed in the bottom chamber and T 
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cells above. The number of migrated cells in the bottom chamber was then measured. Sample 

size: n=7. Standard error of mean depicted.   ANOVA *: p<0.05 from relevant controls.  
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