The

University

yo, Of
Sheffield.

This is a repository copy of Classical Yang-Mills Black hole hair in anti-de Sitter space.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10644/

Book Section:

Winstanley, E. (2009) Classical Yang-Mills Black hole hair in anti-de Sitter space. In:
Papantonopoulos, E., (ed.) Physics of Black Holes: A Guided Tour. Lecture Notes in
Physics (769). Springer , Berlin / Heidelberg , pp. 49-87. ISBN 978-3-540-88459-0

https://doi.org/10.1007/978-3-540-88460-6_2

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

arXiv:0801.0527v1 [gr-gc] 3 Jan 2008

Classical Yang-Mills Black Hole Hair in anti-de
Sitter Space

Elizabeth Winstanley

Abstract The properties of hairy black holes in Einstein-Yang-M(isy M) theory
are reviewed, focusing on spherically symmetric solutidngarticular, in asymp-
totically anti-de Sitter space (adS) stable black hole isdinown to exist forsu(2)
EYM. We review recent work in which it is shown that stablerrelso exists in
su(N) EYM for arbitraryN, so that there is no upper limit on how much stable hair
a black hole in adS can possess.

1 Introduction
We begin by very briefly reviewing the “no-hair” conjecturadamotivating the
study of hairy black holes.

1.1 The “no-hair” conjecture

The black hole “no-hair” conjecture [141] states that ($eeexample,[[51, 52, 77,
[78,[79[117] for detailed reviews and comprehensive listefafrences):

All stationary, asymptotically flat, four-dimensional blkahole equilibrium
solutions of the Einstein equations in vacuum or with antebesagnetic field
are characterized by their mass, angular momentum, anctrieler mag-
netic) charge.

Elizabeth Winstanley
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According to the no-hair conjecture, black holes are tteeeextraordinarily
simple objects, whose geometry (exterior to the event bajiis a member of the
Kerr-Newman family and completely determined by just thgemntities (mass,
angular momentum and charge). Furthermore, these qeanditeglobal charges
which can (at least in principle) be measured at infinity,ffam the black hole
event horizon. If a black hole is formed by the gravitatioz@lapse of a dying star,
the initial star will be a highly complex object describedrgny different param-
eters. The final, equilibrium, black hole is, by contrasthea simple and described
by a very small number of quantities. During the process@ftihmation of a black
hole, an enormous amount of (classical) information abweistar which collapsed
has therefore been lost. Similarly, if a complicated objst¢hrown down a black
hole event horizon, once the system settles down, the omlygds in the final state
will be changes in the total mass, total angular momentumtatad charge. Ad-
vances in astrometry [173] and future gravitational wavecters [5] may even be
able to probe the validity of the “no-hair” conjecture fotraphysical black holes
by verifying that the mass, angular momentum and quadrupol®entQ, of the
black hole satisfy the relatio@, = J?/M which holds for Kerr black holes.

The “no-hair” conjecture, stated above, has been proved ésns of much
complicated and beautiful mathematics (as reviewed ingkample, [[51, 52, 77,
[78,[79,117]), subject to the assumptions of stationaritypaptotic flatness, four-
dimensional space-time and the electrovac Einstein eapatit is perhaps unsur-
prising that if one or more of these assumptions is relaxesh the conjecture does
not necessarily hold. For example, if a negative cosmo&dgionstant is included,
so that the space-time is no longer asymptotically flat bstei@d approaches anti-
de Sitter (adS) space at infinity, then the event horizon eflitack hole is not
necessarily spherical, giving rise to “topological” blackles (see, for example,
[18,[64,97 102, 111, 164]). More recently, the discover$hddick ring” solutions
in five space-time dimension$([60], seel[61] for a receniergyand the even more
complicated “black Saturnl[59] solutions indicates thatdtein-Maxwell theory
has a rich space of black solutions in higher dimensionschvare not given in
terms of the Myers-Perry [120] metric (which is the genewtion of the Kerr-
Newman geometry to higher dimensions).

1.2 Hairy black holes

In this article we consider what happens when the other ¢iondn the “no-hair”
conjecture, namely that the Einstein equations involvetedgac matter only, is re-
laxed. The “generalized” version of the no-hair conjecfid8j states that all station-
ary black hole solutions of the Einstein equations with gipetof self-gravitating
matter field are determined uniquely by their mass, angutanentum and a set of
global charges. Even in asymptotically flat space, thisextoye does not hold, even
for the simplest type of self-gravitating matter, a scalkeldfi The first such counter-
example is the famous BBMB black hole 12, 13] 27] which hasshme metric
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as the extremal Reissner-Nordstrom black hole but possesgonformally cou-
pled scalar field. However, this solution is controversig tb the divergence of the
scalar field on the event horizan [157] and is also highly ainlst [48]. Therefore,
in some ways the first “hairy” black hole is considered to ke @ibbons solution
[71]], which describes a Reissner-Nordstrom black holdnwithon-trivial dilaton
field. While there are many results which rule out scalar fiedd in quite general
models, particularly in asymptotically flat space-timese(sfor example[[14] for a
review), in recent years many other examples of black hol#smwon-trivial scalar
field hair have been found. For example, minimally couplealascfield hair has
been found when the cosmological constant is positivel [b6@legative[[16/1] and
non-minimally coupled scalar field hair has also been canmsitl (see, for example,
[175,[176] and references therein).

In this short review, we will focus on another particular teatmodel, Einstein-
Yang-Mills theory (EYM), where the matter is described byam+Abelian (Yang-
Mills) gauge field. It is now well-known that this theory pesses “hairy” black
hole solutions, whose metric is not a member of the Kerr-Nawrfamily (see
[170] for a detailed review). Furthermore, unlike the KBiewman black holes,
the geometry exterior to the event horizon is not determimgiduely by global
charges measureable at infinity, although only a small nhurobparameters are
required in order to describe the metric and matter field ¢eetior 3 for further
details). All of the asymptotically flat black hole solut®f pure EYM theory
discovered to date are unstablel[47] (however, there ama@es of asymptotically
flat, stable hairy black holes in variants of the EYM actiarglsas Einstein-Skyrme
[22,/58[80[ 81], Einstein-non-Abelian-Protal[[73. 109,|18#,162] and Einstein-
Yang-Mills-Higgs [1] theories). This means that, while thetter” of the no-hair
theorem is violated in this case (as there exist solutionighware not described
by the Kerr-Newman metric), its “spirit” is intact, as statdquilibrium black holes
remain simple objects, described by a few parameters if xattly of the Kerr-
Newman form (se€ [21] for a related discussion along thess)i

The situation is radically different if one considers EYMwmns in asymptoti-
cally adS space, rather than asymptotically flat spacesif@) EYM, at least some
black hole solutions with hair are stable [25] 26, 1174]. Ehstable black holes
require one new parameter (see sedtion 4) to completelyidesbe geometry ex-
terior to their event horizons. Therefore, one might stigjuge that the true “spirit”
of the “no-hair” conjecture remains intact, that stableildgrium black holes are
comparatively simple objects, described by just a few patars.

One is therefore led to a natural question: are there haagkithole solutions in
adsS which require an infinite number of parameters to fullsctdibe the geometry
and matter exterior to the event horizon? In other wordshése a limit to how
much hair a black hole in adS can be given? This is the quesgonill be seeking
to address in this article.
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1.3 Scope of this article

The subject of hairy black holes in EYM theory and its varsastvery active, with
many new solutions appearing each year. The review [17@enrin 1998, is very
detailed and thorough, and contains a comprehensive ligtfefences to solutions
known at that time. We have therefore not sought to be comedur references
prior to that date, and have, instead, chosen to highlighwasblutions (the selection
being undoubtedly personal). Even considering just wotgrdf998, we have been
unable to do justice to the huge body of work in this area (kaneple, the seminal
paper[[7] has 172 arXiv citations between 1999 and the timeriting), and have
instead chosen some examples of solutions. As well ag [1@@gws of various
aspects of solitons and black holes in EYM can be found 68172151 152,
[165].

The outline of this article is as follows. In sectioh 2 we valitlinesu(N) EYM
theory, including our ansatz for the gauge field and the forthe field equations.
We will then, in sectiof 13, briefly review some of the propestof the well-known
asymptotically flat solutions of this theory. Our main foaughis article are asymp-
totically adS black holes, and we begin our discussion ofetie sectionl4 by re-
viewing the key features of the:(2) EYM black holes in adS, before moving on to
describe very recent work amu(N), asymptotically adS, EYM black holes in sec-
tion[3. Our conclusions are presented in sedfion 6. Throuighés article the metric
has signaturé—,+,+,+) and we use units in whichrds = c = 1.

2 su(N) Einstein-Yang-Mills theory

In this section we gather together all the formalism and fefidations we shall
require for our later study of black hole solutions.

2.1 Ansatz, field equations and boundary conditions

In this article we shall be interested in four-dimensiongN) EYM theory with a
cosmological constant, described by the following act@iven in suitable units:

1
St = /d“x\/—_g [R—2A — TrR, FHY] | 1)

whereRis the Ricci scalar of the geometry aindthe cosmological constant. Here

we have chosen the simplest type of EYM-like theory, manyavess have been

studied in the literature (see, for example, [170] for act@e of examples).
Varying the action[{l1) gives the field equations
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1
Tuy = Ryy — ERguv +Aduv;

where the YM stress-energy tensor is
1
T = TrE R — ZguVTrFMFAU. (3)

In this article we consider only static, spherically symriedtlack hole geometries,
with metric given, in standard Schwarzschild-like co-oates, as

ds? = —uSdt? + putdr> +r2d6? + r?sin’ 0 dg?, (4)

where the metric functiong andS depend on the radial co-ordinat®nly. In the
presence of a negative cosmological constart 0, we write the metric functiop

as 5 () /\2
m(r r
M =1-=22 - ©)

The most general, spherically symmetric, ansatz fostt{dl) gauge potential is
[©8]:
A= ,sdeH—%err:—ZL (C—CH) de — lz [(C+CH) sin6 +Dcosf] dp, (6)

where.7, %, C andD are all(N x N) matrices ancC" is the Hermitian conjugate

of C. The matricess” and % are purely imaginary, diagonal, traceless and depend
only on the radial co-ordinate The matrixC is upper-triangular, with non-zero
entries only immediately above the diagonal:

Cij1= (e, 7)
for j=1,...,N—1. In addition,D is a constant matrix:
D=Diag(N-1,N—-3,...,—N+3,—N+1). (8)

Here we are primarily interested only in purely magneticsohs, so we set/ = 0.

We may also take” = 0 by a choice of gaugé& [98]. From now on we will assume
that all thew;(r) are non-zero (see, for example.[[69, (94,95, 96] for the pdiiss

in asymptotically flat space if this assumption does not haidthis case one of the
Yang-Mills equations becomes [98]

yi=0 vVi=1,...,N—1 9)
Our ansatz for the Yang-Mills potential therefore reduces t

A:%(C—CH) 40 -  [(C+C")sing + Dcosd] dop, (10)
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where the only non-zero entries of the mattiare
Cjjr1=awj(r). (11)

The gauge field is therefore described by Me 1 functionswj(r). We comment
that our ansatZ(10) is by no means the only possible choise(M) EYM. Tech-
niques for findingall spherically symmetrisu(N) gauge potentials can be found in
[6], where all irreducible models are explicitly listed fdr< 6.

With the ansatz[(10), there al¢— 1 non-trivial Yang-Mills equations for the
N — 1 functionscw:

2 /! 3 2/\[’3 /
regoy + ( 2m—2r pg—T wj +Wjwj =0 (12)

for j=1,...,N—1, where a primédenotes ddr,

_ 13 (6~ - N-112))°] (13)
Po = ar4 le i i—1 J )
1
VVJ = 1—0)12+§ ((A)j271+ (A)j2+1), (14)

andwy = wy = 0. The Einstein equations take the form

M = uG+r2py, o = 2C (15)
S r
where
N-1
G=73 wp. (16)

Altogether, then, we havl 4 1 ordinary differential equations for tHé + 1 un-
known functionsm(r), S(r) and wj(r). The field equationd_(J2.115) are invariant
under the transformation

wj(r) — —wj(r) an

for eachj independently, and also under the substitution:
j—N-—]j. (18)

We are interested in black hole solutions of the field equat{dZ15). We as-
sume there is a regular, non-extremal, black hole everzbiogatr = ry,, whereu(r)
has a single zero. This fixes the valuentfy,) to be:
Ard
2m(ry) = rp — Th (19)
However, the field equations{J[2]15) are singular at thekblente event horizon
r =rp and at infinityr — c. We therefore need to impose boundary conditions
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on the field variables(r), S(r) andwj(r) at these singular points. When the cos-
mological constant\ is zero, local existence of solutions of the field equations i
neighbourhoods of these singular points has been rigorpusVed [99[124]. This
proof can be extended to the case when the cosmologicakrtrishegative [8, 11].

We assume that the field variableg(r), m(r) andS(r) have regular Taylor series
expansions about= ry:

m(r) = m(rn) +m(rp) (r = rp) +O(r —rp)%;
w; (r) = @) (rn) + @ (rn) (r = 1p) +O(r —rp)%;
S(r) = S(rh) +S(rn) (r —rn) +O(r —rp). (20)

Settingu(ry) = 0 in the Yang-Mills equation§{12) fixes the derivatives & auge
field functions at the horizon:

W (rh) @ (rh)

wi(rp) = — :
2m(ry) — 2r3pe(rn) — ZATrﬁ

J

(21)

Therefore the expansiorls {20) are determined byNhel quantitiesw;(rn), rn,
S(ry,) for fixed cosmological constarit. For the event horizon to be non-extremal,
it must be the case that

2ml (ry) = 2r2pe(rp) < 1— ArZ, (22)

which weakly constrains the possible values of the gauge figictionsw; (r) at
the event horizon. Since the field equatidnd[(12,15) areimvaunder the transfor-
mation [1T), we may consides;(rn) > 0 without loss of generality.

At infinity, we require that the field variables;(r), m(r) andS(r) converge to
constant values as— «, and have regular Taylor series expansions ih near
infinity:

mrr)=M+0(r1); Sr)=1+0(r%); wj(r) = wj»+0(r ). (23)

If the space-time is asymptotically flat, with = 0, then the values od; ., are

constrained to be
Wjw==2j(N—]). (24)

This condition means that the asymptotically flat black bdi@ave no magnetic
charge at infinity, or, in other words, these solutions havglobal magnetic charge.
Therefore, at infinity, they are indistinguishable from ®ehzschild black holes.
However, if the cosmological constant is non-zero, so thageometry approaches
(a)ds at infinity, then there are rapriori constraints on the values ofj . In
general, therefore, the (a)dS black holes will be magnigticharged. It should be
noted that the boundary conditions in the case when the doginal constani\

is positive are more complex, as there is a cosmologicarbonretween the event
horizon and infinity.
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2.2 Some “trivial” solutions

Although the field equation§ (IL2]15) are highly non-lined aather complicated,
they do have some trivial solutions which can easily be amitiown:

Schwarzschild(-(a)dS) Setting
wi(r) = +/jIN=]) (25)
for all j gives the Schwarzschild(-(a)dS) black hole with
m(r) = M = constant (26)
We note that, by settinyl = 0, pure Minkowski /A = 0) or (a)dS {\ £ 0) space
is also a solution.
Reissner-Nordstim(-(a)dS) Setting
wj(r)=0 27)

for all j gives the Reissner-Nordstrom(-(a)dS) black hole withrirmétinction

L .2M Q@ Ar?
H(r)—l—T 723 (28)
where the magnetic charggis fixed by
QZ::—LN(N—i—l)(N—l). (29)

6

Embeddedu(2) solutions For our later numerical and analytic work, an addi-
tional special class of solutions turns out to be extremslful. We begin by

setting
wj(r)==xvJj(N=j)w(r) Vi=1,...,N—1, (30)
then follow [99] and define

1
AN:\/BN(N—l)(N—FlL (31)
and then rescale the field variables as follows:

R=Ay  A=2A3A; @R = A Im(r);
SR =S @R = w(r). (32)

Note that we rescale the cosmological constarithis is not necessary ifn [09]
as there\ = 0). The field equations satisfied byR), S(R) andé(R) are then
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dm ~ .
@=quRzpe,
1d5_ %G
SdR R’
d2® 5 . 2AR¥ d® P
O—RZ[JW—F{Zm—ZRgpe—T ﬁJr[l—w]w, (33)
where we now have 2
2n A
H= TR T3 (34)
and 5
X d&) ~ 1 ~ 2\ 2

The equationd(33) are precisely the2) EYM field equations. Furthermore,
the boundary conditions (20]23) also reduce to those fosutt@) case.

2.3 Dyonic field equations

As will be discussed in sectidn 4.8.1, if eithidr> 2 or we have a negative cos-
mological constant\, then we do not need to restrict ourselves to considering onl
purely magnetic equilibrium gauge potentials. If the elegbart of the gauge po-
tential [8),<7, is non-zero, there is still sufficient gauge freedom toZ&et 0 in (8)
[98]. Then, provided none of the; vanish identically, one of the Yang-Mills equa-
tions again tells us that all thg are identically zero. Following [98] it is convenient
to define new real variablesi(r) by

) 1 -1 N-1 k
o =1 —Nkzlkak-l- kz <1_N) ayx (36)
= =]
so that the matrix is automatically purely imaginary, diagonal and traceléss

this case the Yang-Mills equatiois{12) now take the farnj [98

2 // 3 2Ar3 / H 2
rPHop + | 2m—2rpe — —— | W+ Wjwj + 5 ajw; =0, (37)

and there are additional Yang-Mills equations for thenamely [98]
!
[r’s *(uSaj)'| =200} — o107 1 — Qj 10,5 (38)

The Einstein equations retain the forim](15) but the quastjgp (I3) andG (18)
now read([93]
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N ) N r2 , 2
= Z (6 - - N-1420) (g (s )

wJ +a? wj (39)

HM\Z 'b

2.4 Perturbation equations

We are also interested in the stability of the static, efuiilim solutions. For sim-
plicity, we consider only linear, spherically symmetricfpebations of the purely
magnetic solutions. We return to the general gauge potesftile form [8), and
the metric[(4), where now all functions depend on tinzes well ag'. There is still
sufficient gauge freedom to enable us to.sét= 0. This choice of gauge is partic-
ularly useful as then we shall shortly see that the pertiohatquations decouple
into two sectors, the “gravitational” and “sphaleronictt®s [101]. We consider
perturbations about the equilibrium solutions of the form

wj(tvr):wj(r)'i_a@(tvr)v (40)

wherewj(r) are the equilibrium functions anky (t,r) are the linear perturbations.
There are similar perturbations for the other equilibriumautitiesm andS, and in
addition we have the perturbatiods; (t,r) andd §j(t,r), the latter being the entries
along the diagonal of the matri% (6):

% =Diag(i0f1,...,i0 ). (41)
Note that thed §; are not independent because the matiis traceless, so
OBi+...+0/ =0, (42)

but it simplifies the derivation of the perturbation equasi¢o retain all thed ; for
the moment. We ignore all terms involving squares or higlusvers of the pertur-
bations. The full derivation of the perturbation equatiaisighly involved and the
details will be presented elsewhere][11]. Instead here warsarize the key features
of the perturbation equations. As usual, we will employ tt@tbise” co-ordinate

r., defined by:
dr. 1

whereu andSare the equilibrium metric functions.
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2.4.1 Sphaleronic sector

The sphaleronic sector consists of tHé 21 perturbation®f;, j = 1,...,N and
oy, j=1,...,N—1. We define new variables®; by

6¢>j:wj6yJ. (44)

The perturbation equations for the sphaleronic sectoe augely from the Yang-
Mills equations, and comprise:

oBj = = [wj-16, (8Pj_1) — w;or, (5Py)]

s
+75 (0. @) 8 — (9. ) 1) 5Py ]

52
+Ilr_2 [sz (0Bj+1—0B;) — wjzfl (0B —dBj-1)]; (45)
N 1
56— 0% (50) ~ o (¢F 1) 50+ usendr. (58, 36,1

+[H(0r,S) wj + (0, ) Swj +2uS(0r, )] (3B — 6B 1) (46)
together with th&Gauss constraint

.\ [2uS 4.S]., S .. .
0=d, (5[5,-)%%— ré]aﬁj+r—2[w,-5a>,-+wj15cpjl}, (47)

where a dot denote®/dt. It is important to note that the cosmological constant
only appears in these equations through the metric fungti), and therefore the
perturbation equationk (#5]46) and the Gauss constiafhh@ve exactly the same
form as derived in[47] for arbitrary gauge groups in asyrtipédly flat space.

2.4.2 Gravitational sector

The gravitational sector consists of the perturbationkeftetric function® 4 and
oS as well as the perturbations of the remaining gauge fieldtiomgd ;. Both
the Einstein equations and the remaining Yang-Mills equiatiare involved in this
sector. For an arbitrary gauge group and asymptoticallysflate, the perturbation
equations in this sector have been considered ih [47]. Impsytically adS, we
also find that the metric perturbations can be eliminatedwte g set of equations
governing the perturbatiorsw;, which can be written in matrix form

56 =07 (8w) + Medw, (48)

wheredw= (5ay,...,dan_1)" and the(N — 1) x (N — 1) matrix.#g has entries
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2

us
Mo = Wi —20f] +

4 8S.
]+ —<Y(d, w)* + Wi (0. wj);

uSr
us 4
MG 1 = 7 W1t u—SrY(ar*wj) (0, wj11)
8S

+I’_3 [V\/J wj ((?r* wj+1) +V\/j+1wj+1 (Or, wj)] ;

4 8S

ik = 15 (9. 0) (6. ) + 3 W& (9. @) + Wi (9. )] (49)
wherek # j, j 4+ 1, andY'is given in terms of the equilibrium metric functiopsand
Sas follows: s
U

1 1
Y= Har*“ +50. S+ (50)

3 Asymptotically flat/de Sitter solutions for su(N) EYM

We now turn to black hole solutions of the EYM field equatidyegginning by briefly
reviewing some of the key features of solutions in asymeadiij flat or asymptoti-
cally de Sitter space.

3.1 Asymptotically flat, spherically symmetriai(2) solutions

Apart from the trivial solutions given above (5]27), thstfinlack hole solutions of
the EYM field equations were found by Yasskin [181], and cspond to embed-
ding the Reissner-Nordstrom electromagnetic gauge fietda higher-dimensional
gauge group. The metric of these solutions is still Reisdiwdstrom. Yasskin con-
jectured that his solutions were the only ones possibles Thhjecture was only
shown to be false twenty-five years later|[19, 1100,/ 167] 1684t the discovery of
hairy black holes iBu(2) EYM took so long may be attributed to the conjecture that
there were no soliton solutions in this model. This conjexis based on the fact
that there are no solitons in pure gravity (see, for exanfip8[103]); no solitons in
Einstein-Maxwell theory([77], no pure YM solitons in flat sgatime [53[56] and
no EYM solitons in three space-time dimensians [57]. Howgewace Bartnik and
McKinnon [7] had discovered non-trivial EYM solitons in fedimensional space-
time, Yasskin’s no-hair conjecture for EYM theory was quyckhown to be false
[19].

For su(2) EYM, it has been showr [28, 62, 167] that non-trivial solusd(ne.
solutions in which the gauge field is not essentially Abgliaust have a purely
magnetic gauge potential, which is described by a singlggdéield functioncw(r)
(@0). Note that the ansatz (10) feu(2) is not the same as the Witten ansafz [178]
which was used in the original papers([7] 19], but it givesiemjant field equations.
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In this case theu(2) EYM equations have the form

dm 2m\ /dw\? 1 5\ 2.
(T (&) e’

1dS_ 2 (dw)*.
Sdr  r\dr/’

2 1— w?)?

O_r2<1—2Tm)dw+[2m—¥ d—w+[1—w2]w. (51)

ar2 dr

It is the highly non-linear nature of these equations whibbwes for non-trivial
soliton and hairy black hole solutions, which may be thougfhbeuristically as
arising from a balancing of the gravitational and gauge fietdractions (seé [82]
for arecentdiscussion). The non-linear nature of the égpumblso means, however,
that (apart from the solutions for the Yang-Mills field on aefixSchwarzschild
metric [28/34]) solutions can only be found numerically.

The numerical work in[i7, 19, 100, 167, 168] found discretuaifees of solutions
[155], indexed by the event horizon radiys(with r, = 0 for solitons) and, the
number of zeros of the single gauge field functiopeach pair(r,, n) identifying a
solution of the field equations. A key feature of the solusigsmthatn > 0, so that
the gauge field function must have at least one zero (or “rjotlater analytic work
[29,[148[ 149 150] rigorously proved these numerical fiestuThe black holes are
“hairy” in the sense that they have no magnetic charge [2% R and are therefore
indistinguishable at infinity from a standard Schwarzsthiack hole. However, the
“hair”, that is, the non-trivial structure in the matter tis| extends some way out
from the event horizon, leading to the “no-short-hair” artjire [1211].

Although initially controversial[20, 24, 151, 1I72], rapidt was accepted that
both the soliton[153] and black hole solutiohs [154] aretabke. This instability is
not unexpected if we consider the solutions as arising framalancing of the gauge
field and gravitational interactions. Studies of the naredir stability of the solutions
[182,[183] reveal that the gauge field “hair” either radiaesy to infinity or falls
down the black hole event horizon, leaving, as the end-paibald Schwarzschild
black hole. Due to this instability, the black holes, whhey violate the “letter” of
the no-hair conjecture, may be thought of as not contradjdts “spirit”, and one
might be led to conjecture that alfableblack holes are fixed by their mass, angular
momentum, and conserved charges.

Originally these hairy black holes were shown to be unstablaeg numerical
techniques[[154] but the instability can also be shown ditaly [68, [169]. In
the su(2) case, the perturbation equationsl(4%.46,48) simplify iciemably. The
sphaleronic sector reduces to a single equation (see s&Efobelow for further
details)

— e 2
¢ Fé+ r dr,

2 2
B )+ (d—‘”) ] Z, (52)



14 Elizabeth Winstanley

while, on eliminating the metric perturbations, the gratidnal sector also has just
one equation:

— 60 = —0? (dw) (53)
2 1— 2\ 2
L P o Gl +§ww(w2—1) dw.
r2 r r3 r

The instability has been compared to that of the flat-spacey¥dills sphaleron
[169], which has a single unstable mode. The situationgh#if more complicated
here, due to the two sectors of perturbations. The sphatesentor certainly, as its
name suggests, mimics the perturbations of the flat-sp&edespn. It can be shown
[166] that the number of instabilities in the sphaleronictseequals, the number
of zeros of the gauge field functian. The same is true in the gravitational sector,
as conjectured in [101] and can be shown using catastrogioeythoy considering
the more general EYM-Higgs solutionis[114]. The above camenly spherically
symmetric perturbations. It is known that the flat-spaceafgron has instabilities
only in the spherically symmetric sector [4]. Extendingstto thesu(2) EYM black
holes requires complicated analysis [142], using a cureabased formalism de-
veloped in[[43[ 143, 144].

Using the isolated horizons formalism, these “hairy” bldmkes can be inter-
preted as bound states of ordinary black holes with the BaMiacKinnon solitons
[3/[54,[55]. In particular, the soliton masses are given imgeof the masses of the
corresponding black holgs [55], and the instability of thlvared black holes arises
naturally from the instability of the corresponding safisg3,[54].

Since these initial discoveries a plethora of new, asynyaiby flat, hairy black
hole solutions have been found in Einstein-Yang-Mills tiyeand its variants (see
[170] for a review of those solutions discovered prior to 9pMost of these are,
indeed, unstable. However, there are notable exceptiodsiding: (a) the Skyrme
black hole [22]58/ 80, 81] where the existence of an integéred topological
winding number renders the solutions stable, (b) Einstaing-Mills-Higgs black
holes in the limit of infinitely strong coupling of the Higg=Hki [1] and (c) a par-
ticular branch of Einstein-non-Abelian-Proca black hdl&3; 109/ 158, 159, 162].
We will not consider additional matter fields further in thigicle.

3.2 Non-spherically symmetric, asymptotically flat(2) solutions

One of the surprising aspects of the failure of black holeggueness in EYM is
that almost every step in the uniqueness theorem in EirBaixwell theory has
a counter-example in EYM (se& [79] for detailed discussionghis topic, and
[45,[127[ 152/ 155, 156] for examples of some results fronstein-Maxwell the-
ory which do generalize). An important example of this is&dis theoren [86, 8§7],
which states that the geometry outside the event horizorst#ter black hole must
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be spherically symmetric. This is not true in EYM: there atiais black hole so-
lutions which are not spherically symmetric but only axisgetric [90] (in more
general matter models, static black holes do not necegpaissess any symmetries
at all [137,/138]). These solutions are found numericallywsiting the metric in
isotropic co-ordinates:

m(r,6)dr2+ m(r, 6)r2d62+ L(r, (f??rrzes)inzedqoz’ (54)

ds? = —f(r,0)dt? + f(r.0) f(r.0)

and using the following ansatz for the(2) gauge field[[136]:

A=t {22 [H(r,8)dr + (1~ Ho(r,6))rdl6]

2r
—p[tPH3(r,0) + 1§ (L—Ha(r,0))] rsin6de} (55)
where
TP = 1.(sin6 cospy, sinf sinpy, cosh) ,
rg = 1.(cos6 cospg, cosO sinpp, —sinb),
Ty = I.(—Sinpg,cospy,0). (56)
with
1= (T Ty, T2), (57)

wherety, Ty, T; are the usual generatorsaif(2). Here,p is a winding number, with

p = 1 corresponding to spherically symmetric solutions (with gauge potential
written in a different form to that we have used[in](10)). Sitb8ng the ansatz into

the field equations gives a complicated set of partial déffidéal equations, solutions
of which are exhibited if[90]. Static, axisymmetric sofitsolutions also exist [65,
85,191].

It is less surprising that rotating black holes also existhis model [92/°93],
generalizing the Kerr-Newman metric (as predicted_in [)155hese solutions are
indexed by the winding number(58) and a node numbarThey carry no magnetic
charge, but all have non-zero electric charge [155] 156§ dihestion of whether
there are rotating solitons in puse(2) EYM has yet to be conclusively settled,
however. Rotating soliton solutions have been found in EMIdgs theory[[125],
but not in pure EYM theory. Although rotating solitons aredgicted perturbatively
[44], the consensus in the literature is now that it seemikedglthat rotating soliton
solutions do exis{[17].

3.3 Asymptotically flasu(N) solutions

We shall next consider generalizations of #n€2) YM gauge group. The simplest
such generalization is to considar(N) EYM. The results of[[62, 67] do not ex-
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tend to this larger gauge group, and it is possible to havatisols with electric
chargel[68], which correspond to a superposition of eleallsi charged Reissner-
Nordstrom and theu(2) EYM black holes. Numerical solutions of the field equa-
tions have been found in the following papefs:|[69,[94]9%, A6 N increases, the
possible structures of the gauge field potenkil (6) becoreemore complicated.
A method for computing all spherically symmettic(N) gauge field potentials is
given in [6], where all the irreducible possibilities areuemerated folN < 6. As

in thesu(2) case, black hole solutions are found at discrete pointsamp#rameter
space{wj(rn),j =1...N—1}.

There is comparatively little analytic work for more ger@rauge groups. Local
existence of solutions of the field equationsl(I2,15) neabthck hole event hori-
zon and at infinity has been proven for gauge grew@) [99], and subsequently
extended to arbitrary compact gauge grdup [123] 124]. Theence of non-trivial
black hole solutions to the field equations has been proggrausly only in the
su(3) case[[139,140], although there are arguments that haick hlale solutions
exist for allN [115]. In thesu(3) case, Ruar [139, 140] has proved that there are
infinitely many hairy black hole solutions, indexed by thenhers of zerogn;, n,)
respectively of the two gauge field functiofw,, ). Furthermore, provided that
the radius of the event horizon is sufficiently large, thera iblack hole solution
for any combination ofny, ny). The global properties of the solutions for arbitrary
compact gauge group are studied[in [125]. However, it wilheoas no surprise
to learn that all these solutions, in asymptotically flatcgpaand for any compact
gauge group, are unstable [46] 47]. To show instabilitystifficient to find a single
unstable mode, and therefore the work[inl[48, 47] studiesitgler, sphaleronic
sector of perturbations (see secfion 4.4.1).

3.4 Asymptotically de Sittesu(2) EYM solutions

Another natural generalization of asymptotically #af2) EYM is the inclusion of

a non-zero cosmological constafit When the cosmological constant is positive,
soliton [171] and black holé [163}u(2) EYM solutions have been found (other
numerical solutions are presented(inl[41,]118]). Thesetisolsi possess a cosmo-
logical horizon and approach de Sitter space at infinitygfoomplete classification
of the possible space-time structures, 5eé [30]). The @pase of solutions is again
discrete, and the single gauge field functiormust have at least one zero. Unsur-
prisingly, these solutions again turn out to be unstablé [B82[163]. Given this
instability, the asymptotically de Sitter solutions haeeeived rather less attention
in the literature, but some analytic work can be foundin [1116,106].



Classical Yang-Mills Black Hole Hair in anti-de Sitter Spac 17

4 Asymptotically anti-de Sitter solutions for su(2) EYM

We now turn to the main focus of this article: asymptoticalhyi-de Sitter solutions.
We begin by reviewing some of the properties of black holesi{2) EYM.

4.1 Spherically symmetric, asymptotically ads,(2) EYM

solutions

Black hole solutions ofu(2) EYM with a negative cosmological constant were first
studied in[[174], and subsequentlyin [25] 26]. The field ¢ipua now take the form

dm 2m  Ar2\ (dw\® 1 n2.
a—(l‘T‘T) (E) oz (L= @)

1ds 2 (dw)z_

Sdr— r\dr
2m  Ar?\ d’w 2413 (1-0?)?] dw
_2(q_cMm_Art\ dw _ _ dw
O—r(l r 3)dr2+2m 3 r dr
+[1-o?] w. (58)

The inclusion of a negative cosmological constant meartsitandary conditions
at infinity (23) are considerably less stringent than in thynaptotically flat case; it
is therefore unsurprising that it is easier to find solutimnasymptotically adS.

The space of solutions in adS is very different to that in gstically flat space.
Instead of finding solutions at discrete valuesugfy,), instead solutions exist in
continuous, open intervals. Furthermore, for sufficietghge|A|, we now find so-
lutions in which the single gauge field functios(r) has no zeros. A typical exam-
ple of such a solution is shown in figurk 1, further examplestmafound in[[174].
These properties of the space of solutions of the equafli)safe proved in [174].

We now examine the structure of the space of solutions, metalg of which
can be found in[€,19, 174]. There are three parameters térsgithe solutionssy,

A andw(ry). In order to plot two-dimensional figures, we fix eithgror A and
vary the other two quantities. Fen(2) black holes, the constraiff{22) on the value
of the gauge field function at the event horizon reads

(w(rh)z—l)2 <rg(1-Ard). (59)

Whether we are varying, or A, we perform a scan over all values @f, which
satisfy [59). Firstly, we show in figuié 2 the space of blacletswmlutions for fixed
A = —0.01 and varying event horizon radiug The outermost curves in figuiré 2
are where the inequaliti (59) is saturated. Inmediateliglinthese curves we have
a shaded region, which represents valuegrgfw(ry,)) for which the constraint
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Fig. 1 An example of amu(2) EYM black hole in adS in which the gauge field functiarr) has
no zeros. Here)l = —1,rp =1 andw(ry) = 0.7.

o o(r,) N

no solution

Fig. 2 The space ofu(2) black hole solutions whefi = —0.01, for varyingry. The shaded region
indicates values of the gauge field functi@fry,) at the event horizon for which the constralnl(59)
is satisfied, but for which we find no well-behaved black hakigon. The number of zeras of
the gauge field functiom are indicated in those regions of the phase space where wbléokl
hole solutions. Elsewhere on the diagram, the constfaBjtiénot satisfied. Between the region
wheren = 2 and the shaded region we find black hole solutions with 3, 4 and 5, but these
regions are too small to indicate on the graph. Taken ffdm [9]
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(B9) is satisfied, but for which we are unable to find black hem&utions which
remain regular all the way out to infinity. Where we do find $iolos, we indicate in
figurel2 the number of zeros of the gauge field functign). The solution for which
w(rn) = 1 is simply the Schwarzschild-adS black hole, while thatdgry,) = 0 is
the magnetically charged Reissner-Nordstrom-adS blatk (see section 2.2). As
rn, — 0, the constrain{{39) implies thai(r,) — 1, as can be seen in figurk 2. The
black hole solutions become solitons in this limit. HoweVer this value ofA,
there are different soliton solutions, with having different numbers of zerds [31],
a feature which is not readily apparent from figlire 2. We fimdiilsir behaviour on
varyingry, for different values of\.

If we now fix the event horizon radius to bsg = 1 and varyA, the solution
space is shown in figufd 3, with a close-up for smaller valdeig\pin figure[4.

— 3B

=
[y

~—
3

3.0 1
2.5 4

2.0 )
no solution

151 /1N

/ \ n=0

1.0

0.5 1
n=2

00 h
n=

N oo

-2 -1 0 1 2
n=4 3 log,,(-A)

Fig. 3 Phase space @fi(2) black holes withr, = 1 and varying/A. The shaded region indicates
values of the gauge field functian(r,) at the event horizon for which the constraintl(59) is sat-
isfied, but for which we find no well-behaved black hole santiThe number of zeras of the
gauge field functiorw are indicated in those regions of the phase space where whléickl hole
solutions. Elsewhere on the diagram, the constraint (58ptssatisfied. As well as the regions
wheren=0,...,4 as marked on the diagram, we find a small region in the botéfinoi the plot
wheren = 5. This region is too small to indicate on the current figure,dan be seen in figufé 4.
Taken from[[9].

Again, in figures B anfll4 we have shaded those regions whemotisraint [(5D)

is satisfied, but no regular black hole solutions could benébowWhere we do find
solutions, the number of zeros of the gauge field functign) is indicated in the
figures. AsA — 0, the phase space breaks up into discrete points, whicespnd

to the asymptotically flat ‘colorediu(2) black holes described in sectibn13.11[19].
For sufficiently largeA |, we find solutions in which the gauge field function has no
zeros.
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,_3:1.4
k<] 192 |
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0g | no solution
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0.2 ) n=3
= o n=4
0.0 Ix—
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n=6 n=5 log,(-A)

Fig. 4 Close-up of the phase spacesaf2) black holes withr, = 1 and smaller values af. In
the bottom left of the plot there is a small region of solusidor whichn = 7, but the region is too
small to be visible. Taken from [9].

The spectrum of black hole solutions (that is, the relatigmbetween the mass
M and magnetic charg® of the black holes) was first studied n_[26]. We plot in
figure[8 the black hole mass versus magnetic charge for blalels vithr,, = 1 and
varying values ofA (cf. figure 8 in [26]). For large values df\|, there are only

Fig. 5 Black hole masd and magnetic charg® for su(2) EYM black holes withr, = 1 and
varyingA (cf. figure 8 in [26]).
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nodeless solutions and the spectrum is simple, with thekilates being uniquely
specified byA, r, andQu. As |A| decreases, the spectrum becomes more compli-
cated. For example, looking at tHe= —0.1 curve in figuréb we see that a branch
structure emerges. The lowst curve forA = —0.1 consists ofh = 0 (nodeless)
solutions, and extends from negat@aip toQ = 1. WhenQ =1, a branchoh =1
solutions appears, which have larger massQAtecreases along this branch of solu-
tions, the masMl increases, until a bifurcation point is reached and a seboarttch

of n = 1 solutions appears, with even larger mass, and with theyehiacreasing
asM increases. For smaller values|df|, we find ever more complicated spectra,
which appear to become “fractal” 44| — 0 [26,[113]. In view of the catastro-
phe theory analysis of other hairy black hole solutions [B,[162], one might
anticipate that the stability of the solutions changes atgbints in the spectrum
where two branches of solutions meet, but this has yet to bheifivestigated in
the literature (seé€[31] for an in-depth stability analysighe soliton solutions). We
therefore next consider the stability of these black holes.

4.2 Stability of the spherically symmetric solutions

As discussed in sectidn 3.1, for the asymptotically §la2) EYM black holes, it
has been shown that the number of instabilities is twice thaber of zeros of
the gauge field functiomo(r). Therefore, one might anticipate that at least some
solutions whenw(r) has no zeros could be stable. For th€2) EYM case, the
perturbation equationE (#5JA6]48) simplify consideralsiythe sphaleronic sector,
there is a singl® @ (@4) and two further perturbatiodg3;, d 3, although these are
not independent(42), so we may consider jdist= 63 — d 3. The sphaleronic
sector perturbations equatiohsl(4%,46) then reduce to

2
50 = Z(wa, (50) — (0.0) 6] - B w5v; (60)
5% =092 (50) - (% (07 w) 6@~ uswa, (3v)
+[1(0r,9) 0+ (9. 1) Sw— 2pS(dr, w)] & V; (61)
and the Gauss constraihf{47) is now
0=4, (3V)+ [2%8 — a,ﬂ SV + r§2w5q’>. (62)

By introducing a new variablé by (note our notation above is different from that

used in[[174])
2

7= %5\/, (63)

the sphaleronic sector then reduces to a single equatid [17
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i+ “r_§2(1+w2)+§(j—fj>2] Z, (64)

while the gravitational sectdr (#8) also has just one equati
— 60 = —0? (dw) (65)
+“r—§2 3w’ —1—4rw'? (% —Ar — —(11;‘)2)2> + ?w“” (- 1)] ow.

The sphaleronic sector equatiénl(64) is exactly the sant@aitthe asymptotically
flat su(2) EYM case [(5R), but the gravitational sector equation (53uuprisingly

is modified by the presence of non-zeko Both equationd(64) anfl (65) have the
standard Schrodinger form

~Y=-02W+uWY, (66)

with potential% . For the sphaleronic sector, when the gauge field funaion
has no zeros, it is immediately clear that the poteritak positive, so there are no
instabilities in this sector (this result does not hold ie #symptotically flat case
because the zeros @f(r) in that case mean tha¥ is not regular). The gravita-
tional sector potential is more complex to analyze, butstdficiently largg/A | and
w(ry) > 1/+/3, it can be shown that the potential is positive and theramariesta-
bilities in this sector either. Therefore there are at Ilsaste hairy black holes which
are stable under linear, spherically symmetric, pertimbat It can further be proved
that at least some of these solutions remain stable whersploerically symmetric
perturbations are consideréd [145, 177] but the analydiggisly involved and so
we do not attempt to summarize it here.

It should be remarked that it is unlikely thalt nodeless black hole solutions are
stable, although this has not been investigated in theatitee. An in-depth study
of the corresponding solitonic solutioris [31] has revedlad some soliton solu-
tions for whichw(r) has no zeros, although they do not have any instabilitiesan t
sphaleronic sector, do possess unstable modes in theaji@wiél sector. A scaling
behaviour analysis of the solitonic solutions][83] has shdiat the stable soli-
ton solutions can be approximated well by the stable sditwhich exist on pure
adS space. On the other hand, the unstable solitons arprigted as the unstable
Bartnik-MacKinnon solitons [7] dressed with solitons orre@adS.

4.3 Other asymptotically anti-de Sittei(2) EYM solutions

4.3.1 Dyonic solutions

In asymptotically adS, it is no longer the case that the oelyuinely non-Abelian
solutions must have vanishing electric part in the gaugergil [8), so the results
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of [62,[67] do not extend to non-asymptotically flat solusoAs well as the mag-
netically charged solutions described above, dyonic blastks were discussed in
[25,[26], which we shall not consider further here. The ditglnf the dyonic solu-
tions remains an open question as the perturbation eqsalimmot decouple into
two sectors in this case, making analysis difficult.

4.3.2 Topological black holes

As in Einstein-Maxwell theory, topological black hole stdns exist forsu(2)
EYM in adS [16]. The metric in this case reads

ds? = —uSdt? 4+ u~tdr2+r2de? +r?2(0)d¢?, (67)
where
sin@ fork=1,
f(B)=< 6 fork=0, (68)
sinh@ fork= —1,
and . )
2m(r) Ar
U=k— — 3 (69)
The ansatz for the purely magnetic gauge field potentialis [i6]]
dinf
A=r1(r)do+ Tyw(r)‘i‘rzw f(0)de. (70)

WhenA = 0, only spherically symmetric solutions wikh= 1 are possible, but for
A < 0, solutions with bothk = 0 andk = —1 have been found[16]. All the solutions
are nodeless, which can be easily proved from the field empsfil6]. It is found in
[1€] that all thek = 0 solutions are stable under spherically symmetric peatiohs
in both the sphaleronic and gravitational sectors. The dartree for thek = —1
solutions for whichw > 1 asr — oo [16].

4.3.3 Non-spherically symmetric solutions

As in the asymptotically flat case, there are both solitor8]Ehd black hole[135]
solutions which are static but not spherically symmetiodhat the metric and gauge
potential take the forni_ (84.b5). Rotating black holes hdse been found[112], and
there are also rotating dyonic soliton solutions [130].
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5 Asymptotically anti-de Sitter solutions for su(N) EYM

In the previous section we found that stable hairy black fiebast insu(2) EYM
with a sufficiently large and negative cosmological constAmatural question is
therefore whether there are stable hairy black hole solatisu(N) EYM in adS,
and we examine this question in this section.

5.1 Spherically symmetric numerical solutions

For any fixedN, the field equation§{12) and {15) can be solved numericaityqu
standard techniques. We will outline briefly some of the kegtdires of the black
hole solutions forsu(3) EYM. Details of the corresponding soliton solutions and
the solution space faiu(4) EYM can be found in[]9].

Forsu(3) EYM, there are two gauge field functiong(r) andwy(r), and there-
fore four parameters describing black hole solutiopsA, (i) andawy(ry). Us-
ing the symmetry of the field equatiois{17), we®etrn), wy(rn) > 0 without loss
of generality. The constraint (22) on the values of the gdieje functions at the
horizon becomes, in this case:

[y (rn)? — 2]2+ (o1 (1n)? — oo (rn)?] g [2— a)z(rh)z]2 <2 (1-Ard). (71)

Two typical black hole solutions are shown in figurés 6[@nd e metric functions

2.0
o, e T T T T T T T
15 | et
=" m(r) - m(r,)
1.0\
AN
0.5 1
S o0
0.0+
™ log S(r)
-0.5 T . .
100 101 102 10° r1o4

Fig. 6 Typicalsu(3) black hole solution, with, = 1, A = —1, wy (ry) = 1.2 andwp(rp) = 1.3. In
this example, both gauge field functions have no zeros. Takem[9].

behave in a very similar way to ths@(2) solutions, smoothly interpolating between
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Fig. 7 Example of arsu(3) black hole solution, with, = 1, A = —0.0001, e (r,) = 1.184 and
wy(rp) = 1.216. In this case, both gauge field functions have three z&at®n from[[9].

their values at the horizon and at infinity. We note t8@t) in particular converges
very rapidly to 1 as — . In figure[®, we show an example of a black hole solution
in which both gauge field functions have no zeros. We notelib#t gauge field
functions are monotonic, however, one is monotonicallyeasing and the other
monotonically decreasing. In our second example (fiflireo®) bauge field func-
tions have three zeros. Although, in both our examples thegluge field functions
have the same number of zeros, we also find solutions whersvthgauge field
functions have different numbers of zeros (see figures and 9

We now examine the space of black hole solutions. Since we foar parame-
ters, in order to produce two-dimensional figures, we nedu twwo parameters in
each case. We find that varying the event horizon radius exisimilar behaviour
to thesu(2) case, so for the remainder of this section werfix- 1 and consider the
phase space for different, fixed values/ofscanning all values ad (rp), wy(rp)
such that the constraidi([71) is satisfied. From the disondsi sectiod R, we have
embeddedu(2) black hole solutions when, from (80):

wi(r) = V20(r) = w(r) (72)

which occurs whemoy (ry) = wp(rn).

In figure 81D we plot the phase space of solutions for fixedgvorizon radius
rn = 1 and varying cosmological constafit= —0.1, —1 and—5 respectively. In
each of figureg]8-10 we plot the dashed lmgry) = wy(rh), along which lie the
embeddediu(2) black holes. It is seen in all these figures that the solutpate
is symmetric about this line, as would be expected from tmensgtry [18) of the
field equations. The solution space is found to be symmetoatthe linew; (ry) =
wy(rp) notonly in terms of where we find solutions, but also in teriithie numbers
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Fig. 8 Solution space fosu(3) black holes withr, = 1 andA = —0.1. The numbers of zeros of
the gauge field functions for the various regions of the smhuspace are shown. For other values
of wy(rn), wy(rn) we find no solutions. There is a very small region containisigt®ons in which
both gauge field functions have no zeros, in the top-rigiidh@orner of the plot. Taken frorn|[9].

Fig. 9 Solution space fosu(3) black holes withrp = 1 andA = —1. The shaded region indicates
where the constrainf(71) is satisfied but we do not find blaalk Bolutions. Outside the shaded
region the constrainf{T1) does not hold. Where there argisnk, we have indicated the numbers
of zeros of the gauge field functions within the differentioeg. For this value of\ there is a large
region in which both gauge field functions have no zeros. fdi@n [9].
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Fig. 10 Solution space fosu(3) black holes withr, = 1 andA = —5. It can be seen that for
the vast majority of the phase space for which the const(@itis satisfied, we have black hole
solutions in which both gauge field functions have no zerakeif from[9].

of zeros of the gauge field functions. To state this precisippose that at the
point w (ry) = a1, wy(ry) = ap we find a black hole solution in whictv (r) has

n; zeros andwy(r) hasn, zeros. Then, at the poinby(r) = ap, wp(r) = a1, we
find a black hole solution in whicl(r) hasn, zeros andw (r) hasn; zeros.
This is clearly seen in figurés 8 apH 9, and follows from the myatny [I8) of the
field equations. As we increasd|, we find (see figureglB-10) that the solution
space expands as a proportion of the space of valueg(of), w,(rp) satisfying the
constraint[(7l). It can also be seen from figurks B-10 thantlmber of nodes of
the gauge field functions decreases/asincreases, and that the space of solutions
becomes simpler. Fok = —0.1, there is a very small region of the solution space
where both gauge field functions have no zeros. This regipards as we increase
|A], until for A = —5, both gauge field functions have no zeros for all the sahstio
we find.

The solution space becomes progressively more complieatddncreases, due
to the increased number of parameters required to destwéb@otutions. However,
the key feature described above is found; namely that fdicgeritly large|A|, all
the solutions we find are such that all the gauge field funstionhave no zeros.
These solutions are of particular interest since one migpefhat at least some of
them might be stable.

As with thesu(2) black holes we may consider the spectra of black hole solu-
tions by plotting the relationship between the miés&and magnetic charg® of
the solutions (see figufé 5 for the(2) case). As may be expected, for higher
the spectra are even more complicated thansfdR). In figure[11 we plot some
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of the possible values dfl andQ for su(3) EYM black holes withA = —0.1 and
r, = 1. In figure[I1 we have colour-coded the various possible mumbf zeros

2.2

==

19

[Seg Sy

1.8 r

533333333335

RS

1'6 I I I I I I

Fig. 11 Black hole mas$/ versus magnetic charggfor su(3) EYM black holes withr, = 1 and

A = —0.1. There are many different combinations of numbers of zeftise gauge field functions
(see figurdB), which are indicated by different colours.eHee have performed a scan over a
grid of possible values of the gauge field functions at theekerizon,cw (ry,), w(ry), leading to
discrete points in the spectrum. This is to enable the caagd structure of the spectrum to be
seen.

of the gauge field functions (cf. figufé 8). We have used a éiscgrid of initial
values of the gauge field functions at the event hori@on(rn), w»(ri)) and plot-
ted discrete points so that at least some of the structurdea®en. In this case,
because we have a four-paramet@rry, wi(rh), a2 (rn)) space of solutions of the
field equations, even whefi andry, are fixed, we obtain two-dimensional regions
in the (M, Q) plane, rather than curves as in the2) case. It can be seen from
figure[11 that the spectrum is very complicated, with theargicorresponding to
different numbers of zeros of the gauge field functions @gging. It is certainly
the case that the black holes cannot be uniquely charaetidrizthe four parameters

(/\7rh7M7Q)'

5.2 Analytic work

For any fixed value oN, it is possible to examine the space of solutions numeri-
cally. However, we would like to know whether there are ok forall N, and, in
particular, whether for alN there are some solutions for which all the gauge field
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functions have no zeros, which we expect to be the case féicisutly large|A|.
Answering this question for genefdlrequires analytic rather than numerical work.

In [174], the existence of black hole solutions for which gaeige functioro(r)
had no zeros was proven analytically in t€2) case. Sinceu(2) solutions can be
embedded asu(N) solutions vial(3D), we have automatically an analytic prafof
the existence of nodeless(N) EYM black holes in adS. However, these embedded
solutions are “trivial” in the sense that they are describggust three parameters:
rn, /A and w(ry). The question is therefore whether the existence of “niviatt
(thatis, genuinelyu(N)) solutions in which all the gauge field functioas(r) have
no zeros can be proven analytically. The answer to this gurest affirmative, and
involves a generalization tau(N) of the continuity-type argument used [n[174].
The details are lengthy and will be presented elsewhete Hel we simply outline
the key steps in the proof.

The main idea of the proof is sketched in figliré 12. We wish td filack hole

Black hole solution is
regular everywhere if.....

Regular ....regular
here.... lhere

...regular
throughout here.....

r=rp =00

Fig. 12 Sketch of the main steps in the proof of the existence of neiat su(N) EYM black
holes in adS for which all the gauge field functions have nezewe wish to find black hole
solutions which are regular on the event horizon, regularnvhere outside the event horizon,
and regular at infinity. We thank J. E. Baxter for providingstsketch.

solutions which are regular on the event horizon, regularyavhere outside the
event horizon, and regular at infinity. The proof proceedsthé following steps:

1. We firstly prove (generalizing the analysis bf][99] to imb¢A) that the field
equations[(1P.15) and initial conditions at the event lwri20) possess, locally
in a neighborhood of the horizon, solutions which are amaiptr, ry, A and
the parametera; (rp). As might be expected, the analysis [0f][99] requires only
minor modifications to include a negative cosmological ¢ants

2. This enables us to prove that, in a sufficiently small neigghood of any em-
beddedsu(2) solution in whichcw(r) has no nodes, there exists (at least in a
neighborhood of the event horizon) an(N) solution in which all thew;(r)
have no nodes.
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3. Using the analyticity properties of the solutions of thediequations, we then
show that theseu(N) solutions can be extended out to large> ry, provided
the initial parametera; (r) are sufficiently close to those of an embedse®)
solution in whichw(r) has no zeros. Furthermore, by analyticity, none of the
wj (r) will have any zeros between the event horizgandr,.

4. The key part of the proof lies in then showing that thesgN) solutions can
be further extended out to— co and that they satisfy the boundary conditions
(23) at infinity. This part of the analysis uses the propsrtiethe Yang-Mills
field equationd(22) in the asymptotically adS regime. Afiesti(2) casel[174],
these have very different properties from the asymptdyididt case, and this
makes it much easier to prove the existence of solutionsh&umore, it can be
shown that the gauge field functioag(r) will have no zeros for > ry.

In summary, this process gives genuingly(N) black hole solutions in which all
the gauge field functions have no zeros, and which are cleaizad by theN + 1
parametersy, A andwj(rp).

5.3 Stability analysis of the spherically symmetric solutis

The remaining outstanding question is whether these nesk lilales, with poten-
tially unbounded amounts of gauge field hair, are stable. dvsider linear, spher-
ically symmetric perturbations only for simplicity. The alysis of [145177] in

the su(2) case revealed that, for sufficiently large|, stability under spherically
symmetric perturbations continued to hold also for nonesiglally symmetric per-
turbations, and one might hope that a similar result willdhiol the more complex
su(N) case. However, we leave this for future work. Even for sptadlsi symmetric

perturbations, the analysis is highly involved in thg€N) case and the details will
be presented elsewhefée [8] 11]. Here we briefly outline justkey features. The
perturbation equations themselves can be found in sdcibn 2

5.3.1 Sphaleronic sector

The sphaleronic sector consists of the perturbation espsfd.46) together with
the Gauss constraiii (47). The analysis of this sector @agifollows that of [47]
in the asymptotically flat case. We begin by defining yet maw mariablespe;j,
forj=1,...,Nby

og =r\/UdB;, (73)

then, after much algebra, the sphaleronic sector pertforbatjuations can be cast
in the form )

where the2N — 1)-dimensional vecto® is defined by
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W= (de,....000P,.... 0B\ 1). (75)

and.Zs is a self-adjoint, second order, differential operatovd@iming derivatives

with respect ta' but nott), depending on the equilibrium functions(r), m(r) and

S(r). The operator#s can be written as the sum of three parts. The first is of the
form xTx for a particular first order differential operatgr (whose precise form
can be found in[[8,11]) and is therefore manifestly positwel is regular if the
gauge field functionsy; have no zeros. The second part vanishes when applied to a
physical perturbation due to the Gauss constrhift (47) thine part is a matrix/’
which does not contain any differential operators. It carsbewn that the matrix

¥ is regular and positive definite provided the unperturbashgefunctionsw;(r)

have no zeros and satisfy tNe— 1 inequalities

1
wf > 1+ 5 (wfi1+ @) (76)
forall j=1,...N—1, and allr > ry. The inequalitied(46) define a non-empty sub-
set of the parameter space. For example, we show in figlire &Bavtie inequalities
(Z8) are satisfied for the gauge field functions at the eventtio, for the particular
case ofA = —10 andry, = 1. From figurd_IB we can see that there are some node-

[mﬁ(rh)f‘: 1+ 172 [o,(r, )]

25 _
= . 8
o no solution / N
g 7 =
20 | v . 22
y o 1
y /// ==
/ = |+
1.5 1 nodeless solutions L =
- N
/”/ // _?
ke =
I/ l_'w

' d

0.5 1 ]

i

wﬁ(rh) = wz(rh) {
0.0 : ! ; :
0.0 0.5 1.0 15 2.0 25
oy(ry)

Fig. 13 Phase space of black hole solutionsi§3) EYM with A = —10 andry = 1. The shaded
region shows where solutions exist which satisfy the inéties (78) at the event horizon. Taken

from [10].

less solutions which satisfy the inequalitiEs](76) at theng\orizon. For ani, it
can also be proved analytically that, for sufficiently latde, there are non-trivial
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su(N) solutions, in a neighbourhood of some embedsig@) solutions, such that
the inequalitied(46) are satisfied at the event horizon.

However, the requirements ¢f (76) are considerably stmmagethe inequalities
have to be satisfied fall r > r,,. Our analytic work shows that, in fact, for ahy
and sufficiently larg¢A |, there do exist solutions to the field equations for which the
inequalities[(7B) are indeed satisfied forralThis involves proving that for at least
some solutions for which the gauge field function values atevent horizon lie
within the region where the inequaliti€s{76) are satisfied,gauge field functions
remain within this open region. In figu€l14 we show an exarptich a solution
for su(3) EYM.

o 12 =
=, w,(r)’ against o, (r)° .
g 10 1 for the black hole solution /,/
ra
81 //// 2 _ 2
@q(r)z =1+1/2 @2(r)2 /,/ o, (r)" = mz(r?,_'
6 - -
4 4
s
L oot = 1+ 112 0,(1)°
0"
1 2 3 4 5 6 27
o,(r)

Fig. 14 An example of amu(3) solution for which the inequalitieE{V'6) are satisfied forrak ry,.
In this exampleA = —10,r, = 1 and the values of the gauge field functions at the eventdmoriz
arewy (ry) = 2, wp(rp) = 1.95. Taken from[[1D].

5.3.2 Gravitational sector

As might be expected, the gravitational sector perturbaiquationg(48) are more
difficult to analyze than the sphaleronic sector pertudmgquations. For stable
solutions, we require the matrix/s (49) to be negative definite. For sufficiently
large|A|, it can be shown tha#/; is indeed negative definite for embedded2)
solutions, provided thaw?(r) > 1 for all r > ry, (the existence of sucku(2) so-
lutions is proved, for sufficiently larg\|, in [174]). As described in sectidn 5.2
above, our analytic work ensures the existence of genuinglM) solutions in a
sufficiently small neighborhood of these embedde(®) solutions. Theseu(N)
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solutions are such that the inequalities| (76) are satisfiedlfr > ry, (and therefore
the solutions are stable under sphaleronic perturbatidhs) negativity of #Zg can
then be extended to these genuinelyN) solutions using an analyticity argument,
based on the nodal theorem|of [2] (see dlso [177] for a siraiigmment for the non-
spherically symmetric perturbations of tke(2) EYM black holes). The technical
details of this argument will be presented elsewhere [11].

The conclusion of the work in this section is that there ateadt some genuinely
su(N) EYM black holes in adS, for sufficiently largd |, for which all the gauge
field functionsw; have no zeros, and which are stable under spherically syritmet
perturbations in both the sphaleronic and gravitationeticss.

6 Summary and outlook

In this review we have studied classical, hairy black holettans ofsu(N) EYM
theory, particularly spherically symmetric space-timed alack holes in adS. We
very briefly discussed some of the key aspects of the sokitioasymptotically flat
space, which have been extensively reviewed in][170]. Halagk hole solutions
exist for allN, with N — 1 gauge field degrees of freeddm [115], however, all these
solutions are unstable [47]. Therefore, while these hdaglholes violate the “let-
ter” of the no-hair conjecture (that is, their geometry is nompletely fixed by
global charges measurable at infinity), its “spirit” is nmained. In particular, stable
equilibrium black holes are comparatively simple objedescribed completely by
just a few parameters.

The main conclusion of this article is that this is not trueds. The existence
of stable hairy black holes in:(2) EYM [L174] did not really contradict the “spirit”
of the no-hair conjecture, as only a single additional patemwas required to fix
the geometry outside the event horizon. However, the regerk [10] which shows
that there are stable hairy black holessi(N) EYM in adS for arbitrarily large
N changes the picture completely. For sufficiently lafdé an infinite number of
parameters are required in order to describe stable bldek.hd/e might flippantly
describe these as “furry” black holes, since they possqsses amounts of hair.

What are the consequences for black hole physics in adS &4 ttierry” black
holes? These need to be explored. Given the huge amounéoéénin the adS/CFT
correspondence in string theory [110, 1179,]180], a natwastion is how black hole
hair in the bulk asymptotically adS space-time relatesédadiiial CFT. In particular,
it has been suggested [76] that there should be observabike dual (deformed)
CFT which are sensitive to the presence of black hole haiotiher example of this
approach can be found in_[70], where an adS/CFT interpogtasi given of some
stable seven-dimensional black holes wiili5) gauge fields. We would expect that,
in analogy with thesu(2) case[[49, 50, 74, 84, 112, 129, 131], there are solutions in
some super-gravity theories with a gauge group contaimingtéN) factor, which
will need to be studied in the context of adS/CFT. There idence[[116] that there
are non-trivial black hole solutions @fi(0) EYM in adS, giving black holes not
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just with unbounded amounts of hair, but infinite amounts a&if hat least in the
limit |[A| — 0. It remains to be seen whether exact solutions ofstingo) field
equations can be found for finite < 0, and whether any of these black holes are
stable. If so, then their role in adS/CFT would be puzzlirdgied.

Due to space restrictions, there are many aspects of bldek lroEYM which
we have not been able to discuss. In particular, we have natiomed the vast
number of solutions which involve modifications of the EYMian (1), including
higher curvature terms (see, for example] [88, 89]) or tickusion of dilaton (see,
for example,[[133]), Higgs (see, for example,|[15,1107, J08other modifications
of the EYM action (see, for examplé, [119, 146, 147]). Here vage also only
studied four-dimensional space-times, while recent wak tonsidered EYM in
higher-dimensional space-times (see, for example,[[3235336, 37 38, 39, 40,
[75,[122[ 132, 134] and [165] for a review).

The black hole solutions of EYM and its variants certainlpiéi an abundantly
rich structure, and no doubt will have more surprises inesfor us in the future.
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