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Abstract In this article, we evaluate the time-dependent wave properties and the damping
rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a
magnetised atmosphere is considered. By considering a cold plasma, initial investigations
into the evolution of MHD wave damping through this energy leakage will take place. The
time-dependent governing equations have been derived previously in Williamson and Erdé-
lyi (2014a, Solar Phys. 289, 899 – 909) and are now solved when the assumption of evanes-
cent wave propagation in the outside of the waveguide is relaxed. The dispersion relation
for leaky waves applicable to a straight magnetic field is determined in both an arbitrary
tube and a thin-tube approximation. By analytically solving the dispersion relation in the
thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic
frequency and wavenumber are determined. The damping rate is, then, obtained from the
dispersion relation and is shown to decrease as the density ratio increases. By comparing
the decrease in damping rate to the increase in damping for a stationary system, as shown,
we aim to point out that energy leakage may not be as efficient a damping mechanism as
previously thought.

Keywords Magnetohydrodynamics · Waves · Waves, modes

1. Introduction

The understanding of propagating magneto-hydrodynamic (MHD) waves, whilst just one
facet of the investigation into the nature of the multitude of observed activity within the
solar atmosphere, is an important tool for the description of energy transfer within solar
environments and other astrophysical plasmas. The study of MHD waves has, for the most
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part, been restricted to the study of trapped waves, where the wave propagation is con-
sidered to be confined to the interior of the magnetic structure under consideration; for a
full review of this theoretical work see e.g. Roberts (2000). Such an analysis is performed
in this manner for good reason, the magnetic structures found in the chromosphere or the
corona are unlikely to leak significant quantities of energy through the process as investi-
gated and presented in this article. The wave propagation within such non-leaky structures
is well described by the series of works by Roberts (1981) through to Edwin and Roberts
(1983). Many other studies have expanded upon this framework, and reviews of MHD wave
propagation in the context of solar magneto-seismology (SMS) are given by Ruderman and
Erdélyi (2009), Wang (2011) and Mathioudakis, Jess, and Erdélyi (2013) for transverse,
longitudinal, and Alfvén waves, respectively.

The introductory work, by e.g. Defouw (1976) or Roberts (1981), on MHD wave prop-
agation laid the foundations for the analysis of propagating waves and is widely used in
their current format. Most of these early works restricted themselves to models with purely
real wave frequency, ω, representing a conservation of energy within the magnetic structure.
Complex frequencies, to account for damping of these MHD waves, were considered by
Wilson (1979) for a magnetic field-free environment, whilst Spruit (1982) and Cally (1986)
made some of the first rigorous investigations into damping as a result of energy losses into
the surrounding magnetic atmosphere. Later works have expanded upon the results found
therein; perhaps the most relevant to this article were the efforts made of combining the
damping through energy leakage and resonant absorption as investigated by Goossens and
Hollweg (1993), Stenuit et al. (1999), and Goossens et al. (2009). For a review of the res-
onant absorption as discussed in these works, see e.g. Goossens, Erdélyi, and Ruderman
(2011).

Time-dependent background plasmas are a growing area of study within the solar physics
community. A number of recent studies (e.g., Morton and Erdélyi, 2009, 2010; Morton,
Hood, and Erdélyi, 2010; Erdélyi, Al-Ghafri and Morton, 2011) have made a series of inves-
tigations into dynamic plasmas and the standing wave modes found therein, whilst the first
two works in this series, Williamson and Erdélyi (2014a, 2014b; Paper I and Paper II here-
after, respectively) discussed time-dependent propagating waves in coronal environments,
showing that both the fast kink and the slow sausage wave modes are amplified exponen-
tially in time for a temporally decreasing background density. However, both works assumed
evanescent wave propagation. This assumption is now relaxed in the first part of this work,
allowing for energy leakage into the magnetised atmosphere and allowing for a more gener-
alised description of MHD wave propagation in astrophysical plasmas.

The work performed earlier in this series was carried out under the assumption of a
coronal environment, i.e. the over-dense loop and the low plasma-beta assumptions (Papers I
and II, respectively). Whilst such work is useful in describing the plentiful wave propagation
in the solar atmosphere, it is less applicable in describing wave activity in the photosphere or
other regions with a density ratio close to, or greater than, one. We here aim to generalise the
study of MHD waves in time-dependent plasmas, allowing for the concept of energy leakage
to be taken into account. Energy leakage is of primary concern in under-dense structures,
such as coronal holes or sunspots, but will be present in most of the flux tubes found in solar
structures.

2. Governing Equations

Here, we constructed a magnetic flux tube in a magnetised atmosphere of constant density,
to which we, again, applied the zero plasma-β approximation. Therefore, we required that
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neither the interior nor the exterior region of the waveguide have a finite plasma pressure, i.e.
pi = pe ≈ 0. In both regions, the unperturbed magnetic field (B0z) is constant and vertical.
Neglecting the plasma pressure directly implies that the magnetic fields are identical inside
and outside the waveguide. In this work, however, we considered an exterior plasma density
that is greater than or equal in magnitude to the initial interior density, ρi0 allowing for the
propagation of leaky MHD waves. We considered such solutions as are appropriate in the
analysis of e.g. coronal holes and sunspots. The main emphasis of this analysis is on the
time-dependent background density, where the density is assumed to have the form

ρi0 exp[−At].
Here A is a small, positive constant. The temporal variation in density necessitates a bulk
flow with the form V0z = Az. All other background parameters are assumed to be constant.

Given these constraints, we now attempted to construct two governing equations under
the assumption of ideal, linearised MHD for the radial displacement (ξr ) and perturbed total
pressure (P ). In terms of methodology, this analysis closely follows that performed in Paper
I and, as such, we merely state the two governing equations after the application of the WKB
approximation to leading order. For further details on deriving the governing equations and
the WKB approximation used see Paper I. The application of the WKB approximation gives
an undetermined wave phase, θ , the derivatives of which are represented by �, K , and
� . The quantities are the dynamic frequency, wavenumber, and Doppler-shifted frequency,
respectively,

� = −∂θ

∂t
, K = ∂θ

∂z
, � = � − V0zK.

In what follows, VA is the Alfvén speed and �A is the Alfvén frequency. All these quantities
are defined in the same manner as in Papers I and II, that is,

V 2
A = B2

0

μ0ρ0
, � 2

A = V 2
AK2, � = � − V0zK.

The two governing equations are

ρ0

(
� 2 − � 2
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and

∂P
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A

)
ξr . (2)

We note here that with the exclusion of the temporal dependance, the two governing
equations reduce to their counterparts in previous studies (see e.g. Hain and Lüst, 1958). At
this point we can, once again, solve the two governing equations for the perturbed total pres-
sure and the radial displacement. The differential equation for the perturbed total pressure
can therefore be written as

∂2P

∂r2
+ 1

r

∂P

∂r
+

[
� 2

i,e − � 2
Ai,e

V 2
Ai,e

− m2

r2

]
P = 0, (3)

where subscripts i and e indicate background variables in either the interior or exterior re-
gions, respectively. The interior counterpart of Equation (3) can be solved in an analogous
fashion to that carried out previously in Paper I. However, given the relaxation of the evanes-
cent condition here, the exterior solution will now take a very different form.
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3. Dispersion Relation, Frequency, and Wavenumber

At this point, we no longer required that the exterior wave propagation be evanescent. In-
deed, in the current regime of an under-dense flux tube, it is far more likely that the wave
solution applicable to the exterior region will carry energy away from the flux tube and
into the surrounding magnetised atmosphere. Upon the relaxation of this assumption, we
find that the mathematical solution to Equation (3) now has more physical applications and,
therefore, the perturbed total pressure for body waves can now be written as

QPi = AiJm(Mir), QPe = AeH
(1)
m (Mer), (4)

where Jm and H(1)
m are the Bessel and Hankel functions of the first kind of order m. The

quantities Mi and Me are the radial wavenumber in the interior and exterior regions, respec-
tively, and are given by

Mi = � 2 − � 2
A

V 2
A

, Me = (�2 − V 2
AeK

2)

V 2
Ae

. (5)

We note that the Jm function may be replaced by the modified Bessel function of the first
kind, Im. The modified Bessel function solution represents the surface wave mode and is not
the focus of this work. We discarded the Hankel function of the second kind because this
represents an incoming fast MHD wave, and this scenario would be beyond the scope of
this work. Using Equations (2) and (4), we can therefore write the expression for the radial
displacement as

ξri = Ai

ρi(� 2 − � 2
A)

∂Jm(Mir)

∂r
, ξre = Ae

ρe(�2 − � 2
Ae)

∂H (1)
m (Mer)

∂r
. (6)

By applying continuity in both the perturbed quantities, i.e. the radial displacement and
the total pressure perturbation, across the discontinuity in the magnetic field, we can now
express the dispersion relation for leaky waves in a steady temporally evolving, time-
dependent flux tube as

ρi

(
� 2 − � 2

A

)
Jm(MiR)H(1)′

m (MeR)Me

= ρe

(
�2 − � 2

Ae

)
J ′

m(MiR)H(1)
m (MeR)Mi. (7)

It is worth reiterating at this point that Equation (7) is a partial differential equation for
the wave-phase, θ , with respect to time and height. The complicated nature of this equa-
tion necessitates a further approximation to progress analytically with this problem. The
approximation chosen is the thin-tube (TT) approximation, as this represents the easiest to
way to approach the problem without sacrificing physical application. For the purposes of
this work, the thin-tube approximation was taken to be the limit where MeR,MiR → 0 as
kR → 0. The imaginary component of the Hankel function now represents the damping of
the propagating fast wave. Equation (7) can be reduced to

ρi
(
� 2 − � 2

A

) + ρe
(
�2 − � 2

A

) = i
π

2
(MeR)2ρi

(
� 2 − � 2

A

)
. (8)

Whilst at this point other works have performed further analytical simplification to under-
stand this result, we instead determined the explicit forms of the real parts of the frequency
and the wavenumber to explore the evolution of the damping in time. The coronal approxi-
mation made in Papers I and II is now no longer applicable because the density ratio is unity
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or greater, therefore, a new method of approximation must be used. By making assuming
moderate activity (i.e. V0z � VA), we can reduce the real part of the dispersion relation from

� = V0zK
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K
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Equation (9) can be solved using the method of characteristics to give an expression for the
wave phase, θ , in terms of an arbitrary function, F . Then θ can be written as
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for a density ratio, χ = ρe/ρi and an initial density ratio, χ0 = ρe/ρi0. This expression
is unwieldy and without further approximation difficult to apply boundary conditions to.
A Taylor-series expansion of the arctanh function is ruled out by physical constraints and,
hence, this approach is of little practical use. To make analytical progress, we therefore re-
turned to Equation (9) and approximated the characteristic lines. We now required that the
density ratio, χ , must fulfil the condition χ > 1. We can, then, approximate the characteristic
lines, using the binomial expansion, as

C = V0z(1 + χ)
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The general solution to Equation (9) can then be shown to be given by the arbitrary function

θ = F(g) = F

[
V0z(1 + χ)

A
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. (11)

After applying the constant-driver condition, i.e. θ(0, t) = −ωt , Equation (8) becomes

θ = ω

A
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where W is the Lambert function defined as

W(x) exp
[
W(x)

] = x.

For further details on the Lambert function see e.g. Corless et al. (1996).
From Equation (12) we can now find the explicit forms of the dynamic frequency and

wavenumber. The dynamic frequency, �, is given by

� = ω

2
√

2χ0VA0

V0z exp[−At] + 2
√

2VA0(1 + (2χ)−1)

(1 + W)
, (13)
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Figure 1 Dynamic frequency of
propagating leaky waves plotted
for characteristic change periods
(t/τρ ) against characteristic flow
speeds (V0z/VA0).

Figure 2 Dynamic wavenumber
of propagating leaky waves
plotted for characteristic change
periods (t/τρ ) against
characteristic flow speeds
(V0z/VA0).

and the dynamic wavenumber is given by

K = ω

2
√

2χ0VA0

1 + χ

(1 + W)
exp[−At]. (14)

� evolves in the manner shown in Figure 1 when plotted for the characteristic density change
(t/τρ ) and characteristic flow (V0z/VA0). The dynamic frequency can be shown to be de-
creasing in a manner analogous to that found in the first two papers in this series. The point
at which the frequency becomes approximately constant, i.e. past the point of rapid decrease,
can be compared to the point at which the interior of the flux tube is largely evacuated of
density and, hence, the change in frequency past that point is negligible. A similar property
can be derived for the dynamic wavenumber in that there is the initial rapid decrease, before
tending to a settled limit after the point where the tube has been effectively evacuated of
plasma, see Figure 2.

Now that the dispersion relation has been solved for the real values of the dynamic fre-
quency and wavenumber, the various wave modes can be explored. For MHD wave propaga-
tion inside the flux tube we return to Equation (5). Using the explicit forms of � and K , we
plot the amplitude of the radial perturbation for the m ≥ 1 wave modes. Results for m =1,
also known as the kink wave mode, are shown in Figure 3. The plot has a similar initial
amplification to that found in the over-dense loop approximation in Paper I. In this model,
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Figure 3 Relative amplitude of
the propagating m =1 body
wave.

Figure 4 Relative amplitude of
the propagating m =2 body
wave.

however, there exists no such restriction upon the time for which the wave can propagate
and, hence, the wave can be amplified in this manner until the density within the flux tube is
approximately zero and the governing equations are no longer applicable. The higher-order
(i.e. flute) wave modes, m ≥2, have the same manner of evolution as their counterparts in the
over-dense loop and, hence, we can conclude that all the wave modes, m ≥ 3 will be damped
without the need for the energy losses into the magnetic atmosphere. The amplitude of the
m =2 wave mode is plotted in Figure 4 for comparison with the m =1 mode.

4. Damping Coefficient

To determine the damping rate and the evolution of the damping rate, we chose to follow
one of two methods. In both cases, we assumed that the damping can be written as � =
�r + iγ , where �r is the real part of the frequency as obtained in the previous section.
We also assumed that �r � γ i.e. that the damping rate is low. An algebraic approach
would see us solve Equation (8) for the damping coefficient γ , ignoring terms of order γ 2.
However, for this work we used the following differential approach, as detailed in e.g. Krall
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Figure 5 Damping coefficient
due to energy leakage, plotted for
characteristic change periods
(t/τρ ) against characteristic flow
speeds (V0z/VA0).

and Trivelpiece (1973). In what follows, only the m = 1 wave mode is considered; this is a
result of the increasingly insignificant levels of damping known to exist in the higher-order
wave modes, i.e. the damping is of the order of (MeR)m. The quantity γ can be written as

γ = − Di

∂Dr/∂�

∣∣
∣∣
�=�r=�k

= −π

4
(MeR)2ρi

� 2 − � 2
A
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∣∣
∣∣
�=�k

. (15)

With the explicit forms of the frequency and wavenumber determined, we now make
analytical progress with determining the evolution of the damping coefficient, γ . Substitut-
ing explicit forms of the dynamic frequency and wavenumber into Equation (15) gives an
expression from which it is difficult to clearly see the temporal changes as a result of the
decreasing density in time. Hence, we plot the evolution of the damping coefficient with
respect to time and height above the driving point.

Figure 5 shows that the level of damping decreases approximately exponentially in time
to a negligible level. Given the amplification of the m = 1 kink mode, this result would
appear to defy the current theory of wave damping through leaky waves. Whilst the dynamic
result does seem to contradict the results derived for static and stationary systems, the energy
flux, as a result of the damping, is yet to be investigated and may allow for a full unification
of these not completely inconsistent ideas.

As a result of the moderate-activity approximation, the analysis with regard to the height
above the driving point is potentially inaccurate, therefore, different ratios of the initial
Alfvén speed and the background flow can change the initial evolution of the quantities
discussed above. However, all the cases tend to the same limit and, therefore, we can con-
sider them to be consistent.

Now, it is convenient to compare the damping within this dynamic system to the damping
found in stationary systems. The damping coefficient in stationary systems has previously
been found to be

γ = −π

8

(ρi − ρe)
2

(ρi + ρe)2
(kzR)2ωk. (16)

For details see e.g. Equation (66) in Goossens et al. (2009). By rewriting Equation (16) in
terms of the density ratio, χ , it is possible to write

γ = −π

8

(χ − 1)2

(χ + 1)2

√
2B2

0χ

ρeμ0(1 + χ)
(kzR)2. (17)
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Figure 6 Damping coefficient
due to leaky waves in a stationary
atmosphere.

Under the assumption of a constant exterior density, plotting γ in terms of the density ratio
gives Figure 6. The plot clearly indicates an increase to a saturation point in the damping
as a result of energy leakage; this directly contradicts the results found in the dynamic case.
However, it must be noted that Figure 6 was made for a fixed wavenumber. The vertical
dependency in the dynamic model ensures that the wavenumber varies significantly in time
and is directly related to the change in interior density. A comparable change in the sta-
tionary wavenumber would lead to widely varying phase speeds between the two fast MHD
waves.

5. Conclusions

We here relaxed the assumption of evanescent wave propagation in the magnetised atmo-
sphere for temporally evolving MHD waveguides. The algebraic form of both the interior
and the exterior wave propagation, as well as the damping coefficient were determined and
their evolution in time and height explored. The moderate-activity approximation was ap-
plied to find the real part of the frequency and the wavenumber. Using the expressions for
the dynamic frequency and wavenumber, the full evolution of the propagating wave modes
can be simply shown. The various wave modes all follow the same manner of propagation
as found in Paper I for the over-dense loop approximation. The m =1 kink wave is amplified
in an approximately exponential manner. This amplification continues without any limiting
factor, as was suggested in the case of the over-dense loop, beyond the possibility of wave
propagation in an empty flux tube. The m = 2 flute wave mode is amplified to a constant
level after a few characteristic density change periods. The higher order, ≥ 3, wave modes
are damped after small number of characteristic time periods of density change, with the
damping rate increased for higher values of the azimuthal wavenumber, m.

The main focus of this work was on the damping coefficient γ and its evolution in time
for time-dependant waveguides. The damping coefficient γ was shown to decrease exponen-
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tially in time as the flux tube evacuates. The damping as a result of leaky waves can therefore
be considered to be negligible after a small number of characteristic density change periods.
By varying several characteristic parameters, it was possible to obtain results that matched
the stationary case in their evolution, including an initial increase in the damping rate before
the exponential decrease. Analytical attempts to further determine a critical value for this
turning point have yet to yield results and as such require further investigation.

Comparison of these results to those found in a stationary system showed a distinct dif-
ference between the damping in the case of a stationary plasma and a dynamic plasma. This
difference can be mainly attributed to the constant vertical wavenumber in the stationary
model, whereas in this dynamic model the temporal evolution of the wavenumber results in
a decrease of the damping coefficient.

Further investigations to expand these findings are required, e.g., inclusion of a finite
plasma pressure and relaxing of the thin tube approximation, in order to make this an even
more useful tool for investigating the magneto-seismology of photospheric structures.
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