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Abstract—For long-wavelength space-based radars, such as the
P-band radar on the recently selected European Space Agency
BIOMASS mission, system distortions (crosstalk and channel im-
balance), Faraday rotation, and system noise all combine to de-
grade the measurements. A first-order analysis of these effects on
the measurements of the polarimetric scattering matrix is used to
derive differentiable expressions for the errors in the polarimetric
backscattering coefficients in the presence of Faraday rotation.
Both the amplitudes and phases of the distortion terms are shown
to be important in determining the errors and their maximum
values. Exact simulations confirm the accuracy and predictions
of the first-order analysis. Under an assumed power-law relation
between σhv and the biomass, the system distortions and noise are
converted into biomass estimation errors, and it is shown that the
magnitude of the deviation of the channel imbalance from unity
must be 4–5 dB less than the crosstalk, or it will dominate the
error in the biomass. For uncalibrated data and midrange values
of biomass, the crosstalk must be less than −24 dB if the maximum
possible error in the biomass is to be within 20% of its true value.
A less stringent condition applies if the amplitudes and phases
of the distortion terms are considered random since errors near
the maximum possible are very unlikely. For lower values of the
biomass, the noise becomes increasingly important because the
σhv signal-to-noise ratio is smaller.

Index Terms—Biomass, calibration, Faraday rotation, long-
wavelength radar, polarimetric measurements, system distortion.

I. INTRODUCTION

S EVERAL studies have addressed the interaction between
system effects and Faraday rotation in the estimates of

geophysical parameters, particularly biomass [1]–[6], but none
of them can be considered comprehensive, and a fundamen-
tal understanding of these connections is still lacking. How-
ever, the selection of the BIOMASS P-band radar mission
in May 2013 to be the European Space Agency’s Seventh
Earth Explorer [7], [8] makes it urgent to gain such insight.
This paper aims to achieve this by providing analytic expres-
sions describing how system distortions and noise affect the
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estimates of the scattering matrix and the covariance matrix
of a distributed target in the presence of Faraday rotation.
(A companion paper [9] applies a similar approach to quantify
the errors in the estimates of the Faraday rotation in the pres-
ence of system distortions and noise.) Errors in the covariance
matrix are linked to errors in the biomass estimation using a
simple biomass inversion scheme.

The basic problem is set out in [1], where it is shown
how the measured polarimetric scattering matrix is modi-
fied by system distortions, Faraday rotation, and noise when
the operating wavelength of the radar becomes sufficiently
long. Faraday rotation effects become noticeable at L-band
(wavelength ∼24 cm) but are an order of magnitude larger at
P-band (wavelength ∼70 cm) [6]. The calibration of polarimet-
ric measurements when the Faraday rotation can be ignored is
well developed [10], [11], as are methods to correct the Faraday
rotation when system distortions can be neglected [1], [5], [12],
[13]. However, when both are present, correction becomes more
difficult since the two effects are coupled in the system of
equations connecting the polarimetric measurements to the true
scattering matrix.

In Section II, we revisit the calibration problem using the
system model in [1], and in Section III, we derive the associated
maximum likelihood estimate of the scattering matrix given
noisy polarimetric measurements that are affected by Faraday
rotation. This provides the starting point for the first-order
analysis in Section IV, in which we either assume that the
distortion characteristics of the radar (crosstalk and channel
imbalance) are imperfectly known in the calibration step or that
the system is considered so well engineered that calibration is
not performed. From this, we derive differentiable expressions
for the errors in the polarimetric backscattering coefficients (see
Section V) and conditions under which these are maximized
(see Section VI).

In order to test how well the first-order analysis captures
the behavior of the system, an exact simulation scheme is
also developed, as described in Section VII. This confirms the
predictions of the analysis and provides a means to estimate
the statistical properties of the estimation errors as the sys-
tem distortions and noise vary, as illustrated in Section VIII.
This fuller depiction of the properties of the measurements is
extended to the estimates of the biomass under an idealized
power-law relation between the HV backscattering coefficient
and the biomass, allowing us to derive conditions on the system
distortions and noise in order to keep the relative error in the
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biomass below a given threshold. Here, the simulations are
only applied to uncalibrated data; the effectiveness of calibra-
tion procedures in reducing the errors in the estimates of the
backscatter, the Faraday rotation, and the biomass will form the
subject of a separate paper. Conclusions are given in Section IX.

II. SYSTEM MODEL

The measured scattering matrix, i.e., M, with Faraday rota-
tion and system errors (channel imbalance, crosstalk, and noise)
is given in [1] as

M =

[
Mhh Mvh

Mhv Mvv

]

=A(r, θ)ejϕ
[
1 δ2
δ1 f1

][
cosΩ sinΩ
− sinΩ cosΩ

][
Shh Svh

Shv Svv

]

×
[

cosΩ sinΩ
− sinΩ cosΩ

] [
1 δ3
δ4 f2

]
+

[
Nhh Nvh

Nhv Nvv

]
(1)

where Spq, with p and q being either of h or v, are the
components of the true scattering matrix, Npq are the additive
noise terms, Ω is the Faraday rotation angle, f1 and f2 are the
channel imbalance terms, and δi, i = 1− 4, are the crosstalk
terms. Note that notations Spq and Mpq indicate the scattering
into channel q from a received signal in channel p, whereas
several studies use the opposite (e.g., see [14]). Note also that,
for natural targets, we expect that Shv = Svh, and we assume
this to hold throughout the analysis.

Equation (1) can be written in the following form:

M = A(r, θ) ejθ GFS+N (2)

where

G =

⎡
⎢⎢⎣

1 δ2 δ4 δ2δ4
δ1 f1 δ1δ4 f1δ4
δ3 δ2δ3 f2 f2δ2
δ1δ3 f1δ3 f2δ1 f1f2

⎤
⎥⎥⎦ (3a)

F =

⎡
⎢⎢⎣

c2 cs −cs −s2

−cs c2 s2 −cs
cs s2 c2 cs
−s2 cs −cs c2

⎤
⎥⎥⎦ . (3b)

Here, the measured and true scattering vectors are M =
[Mhh,Mhv,Mvh,Mvv]

T and S = [Shh, Shv, Svh, Svv]
T , re-

spectively, N = [Nhh, Nhv, Nvh, Nvv]
T is an additive noise

vector, c = cosΩ, and s = sinΩ. Since this paper focuses on
recovering the polarimetric information, i.e., S, rather than
absolute calibration, the scalar term, i.e., A(r, θ)ejφ, is omitted
in the following.

If matrix G is known, the system distortion can be re-
moved by multiplying (2) by G−1 (which will exist, e.g., see
Section IV) to give

G−1M = FS+G−1N. (4)

This system of equations can be used to estimate Ω from the
corrected data, i.e., G−1M [1], [5], [12]–[14].

III. MAXIMUM LIKELIHOOD ESTIMATE

OF SCATTERING MATRIX

Since Shv = Svh, (4) can be written as

M ′
i = aiShh + biShv + ciSvv +N ′

i, i = 1− 4 (5)

where

M′ = (M ′
1, M

′
2, M

′
3, M

′
4)

T
= (M ′

hh,M
′
hv,M

′
vh,M

′
vv)

T

and N′ = (N ′
1, N

′
2, N

′
3, N

′
4)

T are vectors corresponding to
the left-hand side (LHS) and the noise term on the right-hand
side (RHS) of (4), respectively. The 4 × 1 coefficient vectors,
i.e., a, b, and c, in (5) are given by the elements in the F matrix,
which is calculated using the estimated value of the Faraday
rotation, i.e. Ω̂. Thus, from (3b), they take the following form:

a =(ĉ2, −ĉŝ, ĉŝ, −ŝ2)T

b =(0, 1, 1, 0)T

c =(−ŝ2, −ĉŝ, ĉŝ, ĉ2)T

where ĉ = cos Ω̂, and ŝ = sin Ω̂. Hence, (a, a) = (c, c) = 1,
(b, b) = 2, and (b, c) = (c, a) = (a, b) = 0, where we have
used the notation (x, y) =

∑4
i=1 xiy

∗
i . Using these relations,

the overdetermined system (5) has a maximum likelihood solu-
tion for S given by (see Appendix 1)

Ŝhh = ĉ2M ′
hh + ĉŝ (M ′

vh −M ′
hv)− ŝ2M ′

vv (6a)

Ŝhv =
M ′

hv +M ′
vh

2
(6b)

Ŝvv = −ŝ2M ′
hh + ĉŝ (M ′

vh −M ′
hv) + ĉ2M ′

vv. (6c)

Hence, the estimates of Shh and Svv depend on the estimated
Faraday rotation angle, but the estimate of Shv does not.

Note that the maximum likelihood solution assumes that
the noise terms in (5) are independent zero-mean Gaussian
variables all with the same power. If this is true in the original
data, it is still very close to being true after correction for system
errors, although there is now a weak correlation between some
of the noise channels (see Appendix 2).

For biomass recovery, what matters is the effect of errors
in the estimate of G on the covariance matrices of distributed
targets [15]–[22], and this forms the focus of the rest of this
paper. A companion paper [9] deals with how the errors in the
estimate of G affect the estimates of the Faraday rotation.

IV. FIRST-ORDER ANALYSIS OF SYSTEM DISTORTION AND

NOISE EFFECTS ON BACKSCATTER MEASUREMENTS

Equation (4) assumes an exact inverse for G, but in practice,
this is unavailable; thus, two approaches are possible.

1) Engineer the radar well enough that the correction for
system distortions is unnecessary.

2) Estimate G to give matrix Ĝ, and multiply (2) by Ĝ−1.

G can be estimated using instrumented calibration sites.
This generally requires the effects of Faraday rotation on the
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estimate to be accounted for [2]–[4], [23]–[26], but for positions
close enough to the magnetic equator, Faraday rotation can
be neglected, and methods based on instrumented sites or
distributed targets can be used [10], [11], [27].

Whichever approach is taken, (4) will then assume the more
realistic form as follows:

M̂ = Ĝ−1M = Ĝ−1GFS+ Ĝ−1N (7)

where Ĝ is either an estimate of G or, if no correction is
applied, is the identity matrix.

Ignoring second-order terms, G can be written as

G =

⎡
⎢⎢⎣
1 δ2 δ4 0
δ1 1 + ε1 0 δ4
δ3 0 1 + ε2 δ2
0 δ3 δ1 1 + ε1 + ε2

⎤
⎥⎥⎦ (8)

where εi = fi − 1. Note that this assumes that the channel
imbalance has been corrected for any significant nonzero mean
phase, which is a standard step before level-1A processing,
but there might be a small residual unknown phase offset. The
first-order inverse of G is

G−1

=
1

Δ

⎡
⎢⎢⎣
1 + 2ε1 + 2ε2 −δ2 −δ4 0

−δ1 1 + ε1 + 2ε2 0 −δ4
−δ3 0 1 + 2ε1 + ε2 −δ2
0 −δ3 −δ1 1 + ε1 + ε2

⎤
⎥⎥⎦

(9)

where Δ = 1 + 2ε1 + 2ε2; this will exist unless ε1 + ε2 ≈
−1/2, which would only occur for much larger values of εi
than would be expected in any well-designed system.

Since the exact inverse of G is unknown (either because
no measurements of the system distortion have been made or
because their estimates will inevitably not be perfect), correc-
tion for system effects requires the distortion terms in (9) to be
replaced by their estimates, i.e., ε̂i and δ̂i, leading to

Ĝ−1G =

⎡
⎢⎢⎣

1 Δδ2 Δδ4 0
Δδ1 1 + Δε1 0 Δδ4
Δδ3 0 1 + Δε2 Δδ2
0 Δδ3 Δδ1 1 + Δε1 +Δε2

⎤
⎥⎥⎦

= I+E1 +E2 (10)

where second-order products have been neglected, Δδi = δi −
δ̂i, Δεi = εi − ε̂i, I is the identity matrix, and error matrices
E1 and E2 only contain δ and ε terms, respectively, i.e.,

E1 =

⎡
⎢⎢⎣

0 Δδ2 Δδ4 0
Δδ1 0 0 Δδ4
Δδ3 0 0 Δδ2
0 Δδ3 Δδ1 0

⎤
⎥⎥⎦

E2 =

⎡
⎢⎢⎣
0 0 0 0
0 Δε1 0 0
0 0 Δε2 0
0 0 0 Δε1 +Δε2

⎤
⎥⎥⎦ .

If no calibration is performed, Δδi and Δεi should be
replaced by δi and εi, respectively, in these and all subsequent
expressions.

Equation (7) can be now written as

M̂ = FS+ (E1 +E2)FS+ Ĝ−1 N (11a)

with

FS =

⎛
⎜⎜⎝

c2Shh − s2Svv

−cs(Shh + Svv) + Shv

cs(Shh + Svv) + Shv

−s2Shh + c2Svv

⎞
⎟⎟⎠ (11b)

E1FS =

⎛
⎜⎜⎝

Δδ2[FS]2 +Δδ4[FS]3
Δδ1[FS]1 +Δδ4[FS]4
Δδ3[FS]1 +Δδ2[FS]4
Δδ3[FS]2 +Δδ1[FS]3

⎞
⎟⎟⎠ (11c)

E2FS =

⎛
⎜⎜⎝

0
Δε1[FS]2
Δε2[FS]3

(Δε1 +Δε2) [FS]4

⎞
⎟⎟⎠ . (11d)

In (11c) and (11d), [FS]i denotes the ith component in the
4× 1 vector FS.

V. ERROR IN BACKSCATTERING COEFFICIENTS

DUE TO SYSTEM DISTORTION AND NOISE

Expressions (6) and (11) are now used to provide first-order
approximations for the backscattering coefficients. The analysis
for σhv differs from that of the copolarized terms because
it does not depend on the estimate of the Faraday rotation
[see (6)] but is affected by its actual value.

A. Error in Cross-Polarized Backscattering Coefficient σhv

The cross-polarized backscattering coefficient, i.e., σhv, is
crucial in biomass retrieval [15]–[22], and it is therefore critical
to know how large its error can be in the presence of system
effects. Using (6b) and (11), the first-order approximation for
Shv is given by

Ŝhv =Shv +
1

2

{
Shh

(
c2(Δδ1 +Δδ3)− s2(Δδ2 +Δδ4)

)

+ Svv

(
c2(Δδ2+Δδ4)− s2(Δδ1 +Δδ3)

)
+ cs(Shh + Svv)(Δε2 −Δε1)

+Shv(Δε1 +Δε2) +N ′
hv +N ′

vh} . (12)

Notations N ′
hv and N ′

vh here refer to the noise terms in (11a)
involving the estimate Ĝ−1, whereas in (5), a similar notation
refers to noise terms involving the exact inverse G−1, but this
should not cause confusion. In Appendix 3, it is shown that, if
the noise is uncorrelated with the signal and between different
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channels, the associated estimate of the HV backscattering
coefficient, i.e., σhv, is

σ̂hv =σhv|1 + Σ̄ε|2 + σhh|c2 Σ̄13 − s2Σ̄24|
2

+ σvv| c2Σ̄24 − s2Σ̄13|2

+ c2s2 (σhh + σvv + 2R cos θ)|Ȳ21|2

+2Re
{
(c2Σ̄13−s2Σ̄24)

(
c2Σ̄∗

24−s2Σ̄∗
13

)
Rejθ

}
+ 2csRe

{
(c2 Σ̄13 − s2Σ̄24)(σhh +Rejθ) Ȳ ∗

21

+(c2Σ̄24−s2Σ̄13)(σvv+Re−jθ)Ȳ ∗
21

}
+ 2Re

{
S∗
hv(1 + Σ̄∗

ε)
[
(c2 Σ̄13 − s2Σ̄24)Shh

+ (c2 Σ̄24 − s2Σ̄13)Svv

+cs (Shh + Svv) Ȳ21

]}
+ σ′

n/2
(13)

where σpq = 〈|S2
pq|〉, with p and q being either h or v,

〈ShhS
∗
vv〉 = Rejθ, Σ̄13 = (Δδ1 +Δδ3)/2 (the average of the

crosstalk from V into H on transmit and the crosstalk from H
into V on receive), Σ̄24 = (Δδ2 +Δδ4)/2 (the average of the
crosstalk from H into V on transmit and the crosstalk from
V into H on receive), Σ̄ε = (Δε1 +Δε2)/2, Ȳ21 = (Δε2 −
Δε1)/2, and we have assumed that the noise terms in the HV
and VH channels in (11a) all have the same noise equivalent
backscattering coefficient, i.e., σ′

n.

B. Error in Copolarized Backscattering Coefficients
σhh and σvv

The estimates of the copolarized backscatter [see (6a) and
(6c)] depend on the estimated Faraday rotation, but this can
be readily taken into account if we assume that the estimation
error in the angle is small. Neglecting terms involving second-
order products of small quantities, we can then write (see
Appendix 4)

Ŝhh ≈Shh +
Shh

2
{S(X31 −X24) + (1− C)Σε}

+
Shv

2
{(1 + C)Σ24 − (1− C)Σ31 + SY21}

+ noise terms (14)

σ̂hh ≈σhh {1 + Re (S(X31 −X24) + (1− C)Σε)}
+Re{S∗

hhShv ((1+C)Σ24−(1−C)Σ31+SY21)}
+ σ′

n (15)

Ŝvv ≈Svv +
Svv

2
{S(−X31 +X24) + (1 + C)Σε}

+
Shv

2
{(1 + C)Σ31 − (1− C)Σ24 + SY21}

+ noise terms (16)

σ̂vv ≈σvv {1 + Re (S(−X31 +X24) + (1 + C)Σε)}
+Re{S∗

vvShv((1+C)Σ31−(1−C)Σ24+SY21)}
+ σ′

n (17)

where C = cos(2Ω), S = sin(2Ω), Σ24 = Δδ2 +Δδ4, Σ31 =
Δδ3 +Δδ1, X24 = Δδ2 −Δδ4, X31 = Δδ3 −Δδ1, Σε =
Δε1 +Δε2, Y21 = Δε2 −Δε1, and in (15) and (17), we have
again assumed that the noise terms in (11a) all have the same
noise equivalent backscattering coefficient, i.e., σ′

n.

VI. MAXIMIZING ERRORS IN BACKSCATTERING

COEFFICIENTS

The expressions derived in Section V are independent of
frequency and thus equally apply to P-band and L-band (and
higher frequencies). However, when evaluating how large these
errors can be, it must be remembered that, at L-band, the
Faraday rotation is normally no more than a few degrees
(although midlatitude values can be as large as 27◦ at the solar
maximum [28]), whereas at P-band, it is about nine times larger.
Hence, although the optimizations over Ω in the following
sections allow Ω to take any value in the range from −π to
π, this range should be constrained depending on the frequency
being considered.

A. Maximizing Error in σhv

Expression (13) is analytic and is hence easy to evaluate for
the given values of the distortion terms, but using it to find the
maximum error in σhv as the distortion terms vary is compli-
cated in the general case. However, when the channel imbalance
can be neglected and for azimuthally symmetric targets (so that
〈ShhS

∗
hv〉 = 〈SvvS

∗
hv〉 = 0 and the term preceding the noise

terms in (13) is zero), the following three conditions must be
met to give the largest possible error in σhv (see Appendix 3).

1) Ω = kπ/2; thus, either sin2 Ω = 1, or cos2 Ω = 1.
2) arg(Δδ1) = arg(Δδ3), and arg(Δδ2) = arg(Δδ4).
3) All the crosstalk amplitudes should be as large as possible

within their constraints.

The largest error occurs when:

• arg(Δδ1)− arg(Δδ2) = θ + 2kπ if sin2 Ω = 1, and
• arg(Δδ1)− arg(Δδ2) = −θ + 2kπ if cos2 Ω = 1,

where θ = arg〈ShhS
∗
vv〉. This largest error has the following

modulus:

|σ̂hv − σhv| = Δδ2M (σhh + σvv + 2R) + σn/2 (18)

where all δi have their maximum permitted modulus denoted
by ΔδM (assumed to be the same for all δi), R = |〈ShhS

∗
vv〉|,

the noise in both the cross-polarized channels in (1) is assumed
to have the same noise equivalent σ0 (NESZ), i.e., σn, and we
have used Appendix 2 to approximate the modified noise terms
by the NESZ of the original data. Note that, for L-band, this
maximum error would be only attained when Ω = 0, but other
values of the Faraday rotation would be relevant at P-band.

B. Maximizing Error in Copolarized Terms

Under reflection symmetry, the second term in (15) is zero,
and it is easy to see that the error in σhh due to the crosstalk
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will be maximal if X31 and X24 have phases differing by π and
if each has its largest possible real part. If we assume that all the
crosstalk terms Δδi have the same maximum possible modulus
ΔδM , this occurs when Δδi are real, with Δδ1 = −Δδ3 =
±ΔδM and Δδ4 = −Δδ2 = ∓ΔδM . Similarly, if both channel
imbalance terms Δεi have the same maximum possible modu-
lus ΔεM , the error due to the channel imbalance is maximal
when Δε1 = Δε2 = ±ΔεM , and the maximum error in σhh is
then

±σhh (4|S|ΔδM + 2(1− C)ΔεM ) .

By the same reasoning, the maximum error in σvv is

±σvv (4|S|ΔδM + 2(1 + C)ΔεM ) .

Both errors vary as Ω varies and are maximal when tan(2Ω) =
±2ΔδM/ΔεM (which may not be attainable at L-band, de-
pending on the values of ΔδM and ΔεM , but could be fre-
quently possible at P-band).

The corresponding maximum error in σhh is

±2σhh

(
ΔεM +

√
4Δδ2M +Δε2M

)
.

Replacing σhh by σvv in this expression yields the maximum
VV error. However, because the terms involving X31 −X24

in (15) and (17) have opposite signs and (1 + C)Σε and (1−
C)Σε have the same sign, both errors cannot be maximized at
the same time. Note that these errors can be substantial, e.g., if
ΔδM = ΔεM , the maximum relative error in σhh is given by

σ̂hh − σhh

σhh
= 2(1 +

√
5) ΔδM

which has a value of 65% if ΔδM = 0.1 (−20 dB) and 20% if
ΔδM = 0.0316 (−30 dB).

It should also be noted that the copolarized backscattering
coefficients cannot be maximized at the same time as σhv since
the former requires the arguments of Δδ1 and Δδ3 (and Δδ2
and Δδ4) to differ by π, whereas the latter requires them to be
the same.

VII. EXACT SIMULATIONS

To test the accuracy of the first-order approximations derived
in Section V, we developed a simulator for the measurement
process that makes no approximations and directly works from
the system model given by (1). In addition, this allows the
whole process of biomass estimation from a given data set to
be simulated under appropriate assumptions about the relation
between the polarimetric measurements and the biomass. In
particular, we assume the following:

1) a known relation between the biomass, i.e., B, and the
associated covariance matrix, i.e., C(B);

2) a known power-law relation between the biomass and the
cross-polarized backscattering coefficient, i.e.,

B=Aσp
hv or log10 B=log10 A+p×log10 σhv. (19)

TABLE I
COVARIANCE MATRIX VALUES FOR DIFFERENT BIOMASS VALUES

The values used in (19) are A = 101 573 t · ha−1 and p =
2.37521; these are estimated from the BIOMASS End-to-End
Mission Performance Simulator (BEES) [29] and are appro-
priate for P-band. Together with the values of the covariance
terms (see Table I), they are based on airborne measurements
over hemiboreal forest stands with biomass ranging from 50
to 270 t · ha−1 taken during the 2007 BIOSAR-1 campaign in
Sweden; a full description of the field data is given in [20]. Note
that, in some calculations, we use biomass values outside the
observed range (up to 350 t · ha−1) under the same power law
to investigate the sensitivity of errors to the biomass.

Although the biomass can be better estimated by using all
polarizations [7], [21], methods to do so rely on regression
against a reference data set and would need to be analyzed
on an individual basis, almost certainly relying on simulation.
In contrast, using a power law (19) only involving σhv as the
basis for biomass estimation in this paper allows an analytic
treatment and yields insights that would be lost in more com-
plex schemes, as illustrated in Section VIII-A. Furthermore,
regression analysis for seven airborne P-band data sets from
tropical, temperate, and boreal sites found R2 values between
0.71 and 0.92 in six out of the seven cases when a linear
fit was made to the log–log version of (19), whereas for the
seventh case, it was 0.46 (K. Scipal, unpublished manuscript);
this yields empirical justification for our simplified approach.

The simulator contains modules that allow the system distor-
tion terms to be estimated from a set of point target measure-
ments by a range of algorithms, e.g., see [4]. These estimates
can be then applied to carry out the calibration procedure in
(7). However, in the simulations in this paper, no calibration
is performed, and errors in the estimates arise purely from
uncorrected system distortions and noise.

The simulation involves four steps.

1) Scene data generation. For biomass value B, we generate
a large set of independent scattering matrix realizations
from a zero-mean Gaussian distribution with covariance
matrix C(B) using Choleski decomposition. Hence, the
data are exactly characterized and can be used to test
the validity of the first-order theory without complica-
tions introduced by interpixel correlation, point-spread
function effects, etc. However, the simulator can readily
accept data from other sources, such as real data or the
output from BEES [29]. Because terrain effects are not in-
cluded [30], the simulated data implicitly have reflection
symmetry.

2) Data distortion. The data are corrupted with system
distortions, Faraday rotation, and noise, as in (1). Typi-
cally, a set of equally spaced values of Ω covering the
range −π < Ω ≤ π is considered, and for each value
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of Ω, many random realizations of the distortion matrix
are generated under constraints on the amplitude of the
distortion terms but no constraints on the phase.

3) The estimation of the backscattering coefficients and the
biomass. After estimating Ω at each position using the
algorithm in [12], the scattering matrix terms, i.e., Spq,
at each pixel are estimated using (6) and are used to
estimate C(B). From the estimate of σhv, B is estimated
using (19). Because large windows are used, statistical
fluctuations in the estimates of the covariance terms are
small, and the perturbations caused by the statistical devi-
ation of the copolarized/cross-polarized correlations from
zero are negligible. The errors reported in the following
can be therefore seen as irreducible, and a complete error
analysis would include the effect of the number of looks
on the various estimates.

4) The derivation of measurement statistics and worst case
estimates. By performing Steps 1–3 for many realizations
of the scene and the system distortion matrix, we can
derive the histograms of any of the estimated parameters,
although of most interest here are σhv and the biomass.
This allows us to assess the accuracy of the first-order
theory derived in Sections V and VI, and to visualize the
likelihood of worst case errors occurring.

VIII. TESTING PREDICTIONS FROM

FIRST-ORDER ANALYSIS

In the top of Fig. 1, we compare the value of σ̂hv derived
from (13) with the value from the simulation, as Ω varies, for
a single random realization of the distortion matrix and no
noise; the calculations are for a biomass of 200 t · ha−1 using
the covariance values from Table I. The maximum permitted
error for both ΔδM and ΔεM is taken to be 0.0562 (−25 dB).
The approximation is within 0.5% of the simulated value (rising
to 1% in the worst case) and reproduces the variation with Ω.
This is typical behavior, as indicated by the histogram of
the difference between the first-order estimate of σhv and its
exact value from the simulation (see the bottom of Fig. 1).
This histogram is derived from 50 000 random values of the
crosstalk and the Faraday rotation, with the crosstalk amplitude
constrained not to exceed 0.0562 (−25 dB). The error is mean
zero and always less than 4× 10−4 m2 · m−2, which confirms
the ability of the first-order approximation to represent system
effects accurately.

The values for the maximum (18) and the corresponding
relative error, i.e., (σ̂hv − σhv)/σhv, when ΔδM = 0.0562 and
the channel imbalance and the noise are neglected are given
in the second and third columns in Table II for different
biomass values using the covariance values from Table I. The
relative error in σhv ranges from 5% to 6%. However, the
channel imbalance can cause the maximum errors to increase
significantly, as can be seen from the leading term on the
RHS of (13). If considered in isolation, to first order a channel
imbalance Σ̄ε yields an error in σhv of order 2Σ̄ε, e.g., a
channel imbalance of 0.0562 can cause an error of 12% in
σhv. Comparing this value with the errors due to the crosstalk
in Table II indicates that, if the crosstalk and the channel

Fig. 1. (Top) First-order approximation (dashed curve) and simulated value
(solid curve) of σhv as a function of Ω for a single random realization of
the system distortion with no noise. The true value of σhv, corresponding
to a biomass of 200 t · ha−1, is indicated by the horizontal dotted line. The
amplitudes of distortion terms δi and εi were constrained not to exceed 0.0562
(−25 dB). (Bottom) Error in the first-order estimate of σhv derived from (13)
compared with its value from the simulation for 50 000 random values of
the crosstalk amplitude and the Faraday rotation, with a maximum permitted
amplitude of crosstalk = 0.0562.

TABLE II
MAXIMUM AND RELATIVE ERRORS IN THE HV BACKSCATTERING

COEFFICIENT FOR DIFFERENT BIOMASS DENSITIES DERIVED FROM (18)
AND BY SIMULATION, ASSUMING THAT THE CHANNEL IMBALANCE AND

THE NOISE ARE NEGLIGIBLE, AND THE MAXIMUM PERMITTED

ERROR IN THE CROSSTALK IS 0.0562 (−25 dB)

imbalance are similar in magnitude, the latter will dominate the
error in σhv. The essential reason for this is that, in (13), there is
a term multiplying σhv that is linear in the channel imbalance,
whereas all other terms involve the quadratic products of the
distortion terms. [Although if the copolarized/cross-polarized
Hermitian products are retained, other terms that are linear in
the distortion arise, as shown in (13)]. Hence, although the true
copolarized powers are larger, the errors involving them will be
dominated by this linear term unless the channel imbalance is
much smaller than the crosstalk.

The fourth and fifth columns in Table II give the maximum
and relative maximum errors derived from the simulation under
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the same conditions. These are larger, indicating that the first-
order approximation leads to slight underestimates of the worst
possible error.

The worst case errors in σhv occur for particular combina-
tions of the Faraday rotation and the magnitudes and phases
of the distortion terms. To investigate how likely these are, the
errors were calculated for 50 000 random realizations of the
crosstalk and the Faraday rotation, with no channel imbalance
and noise, for a biomass of 200 t · ha−1, leading to the his-
tograms of errors in σhv in Fig. 2. In Fig. 2(a), the crosstalk
amplitude is random and constrained not to exceed 0.0562,
whereas in Fig. 2(b), it is fixed at 0.0562. In both cases, the
maximum error predicted by (18) is 0.00387, which is indicated
by the vertical dotted lines, whereas the maximum from the
simulation is 0.00443 (dashed lines). The maximum error in
σhv occurs far out in the tail of the distribution, and even when
all the crosstalk amplitudes are set to their maximum possible
values, the proportion of phase variations giving large errors is
small.

This is made more precise by the cumulative density func-
tions corresponding to Fig. 2(a) and (b) shown in Fig. 2(c) (solid
and dashed lines, respectively). In the first case, there is only
a 1% probability that the error exceeds 1.5× 10−3 m2 · m−2,
whereas the corresponding value in the second case is 3.3×
10−3 m2 · m−2.

A. Maximum Error in Estimated Biomass

The errors in σhv due to the system distortion, i.e., Δσhv, and
the noise, i.e., σn/2, [the first and second terms on the RHS of
(18)) can be readily converted to a biomass error using (19)
since the estimated biomass, i.e., B̂, can be written as

B̂ = A(σhv +Δσhv + σn/2)
p

= Aσp
hv

(
1 +

Δσhv

σhv
+

σn

2σhv

)p

≈ B

(
1 + p

{
Δσhv

σhv
+

σn

2σhv

})
(20)

where the approximation is valid if Δσhv � σhv and σn �
σhv. Hence, the relative errors from the system distortion and
the noise are approximately additive and given by pΔσhv/σhv

and pσn/(2σhv), respectively. This provides an easy way to
estimate the relative error and to quantify the constraints on the
total calibration error and noise to keep this error within desired
bounds. Note that (20) does not take into account any errors in
the constant A or exponent p; since these would normally be
estimated from the reference data, a full error analysis would
have to include the associated uncertainties (e.g., in [21], the
estimates of p had uncertainties of about 8%).

Table III gives the worst case estimates of the biomass for
forests with biomass densities of 200 and 350 t · ha−1, which
are derived from both the numerical optimization and the first-
order analysis, where both use the exact expression in (20).
The maximum permitted crosstalk amplitude is 0.0562, and
the channel imbalance and the system noise are neglected. As

Fig. 2. Histograms of the error in σhv for a forest with a biomass of
200 t · ha−1, which are derived from 50 000 random values of the crosstalk
and the Faraday rotation, neglecting the channel imbalance and the noise,
with (a) the maximum permitted amplitude of the crosstalk = 0.0562 and (b)
the crosstalk amplitude fixed at 0.0562. The maximum error predicted by (18)
is 0.00387 and is indicated by the vertical dotted lines. The true maximum error
is 0.00443 (dashed lines). (c) Cumulative distribution functions corresponding
to (a) (solid line) and (b) (dashed line).

predicted, all the crosstalks take their maximum amplitude,
arg(δ1) = arg(δ3), arg(δ2) = arg(δ4), and the same maximum
error occurs when Ω takes any multiple of π/2 as long as
the appropriate phase relationships hold. For a biomass of
200 t · ha−1, θ = −96.8◦ (see Table I); the first-order analy-
sis then predicts that arg(δ1)− arg(δ2) = 96.8◦ when Ω = 0◦

or 180◦ (the value from the optimization is 96.2◦) and that
arg(δ1)− arg(δ2) = −96.8◦ when Ω = ±90◦ (the optimized
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TABLE III
MAXIMUM BIOMASS ERRORS FOR FORESTS OF 200 AND 350 t · ha−1 ,
AND THE CROSSTALK PHASE VALUES UNDER WHICH THEY OCCUR,

WHICH ARE DERIVED FROM NUMERICAL OPTIMIZATION WHEN

CHANNEL IMBALANCE AND SYSTEM NOISE ARE NEGLECTED.
THE FIRST-ORDER PREDICTIONS OF THE MAXIMUM BIOMASS

ERROR ARE ALSO GIVEN. THE MAXIMUM PERMITTED

AMPLITUDE OF THE CROSSTALK IS 0.0562

Fig. 3. Maximum percentage error in the retrieved biomass for three values
of the biomass as the crosstalk magnitude varies when the channel imbalance
and the noise are neglected.

value is −96.2◦). The corresponding values for a biomass of
350 t · ha−1 are arg(δ1)− arg(δ2) = 139.1◦ when Ω = 0◦ or
180◦ and arg(δ1)− arg(δ2) = −139.1◦ when Ω = ±90◦ (the
optimized values are 135.4◦ and −135.4◦, respectively). Hence,
the theory agrees well with the observations, particularly for the
biomass of 200 t · ha−1.

Note that the errors in Table III lie within the 20% target
for BIOMASS [7], although these are maximum possible errors
and hence very unlikely, as discussed earlier. In fact, when the
channel imbalance and the noise are neglected, the crosstalk
amplitude needs to exceed −24 dB for the 20% threshold to be
breached. This is demonstrated in Fig. 3, which also indicates
that higher values of the biomass require slightly lower values
of ΔδM to keep the percentage error below a given value. For
example, a maximum possible error of 20% in the biomass
requires ΔδM < −23.6 dB for a biomass of 50 t · ha−1, but this
reduces to −24.0 dB for a biomass of 350 t · ha−1.

It should be remembered that the maximum error occurs
under specific conditions on the amplitude and phase of the
crosstalk terms. To assess the likelihood of these occurring,
histograms of the biomass error for a biomass of 200 t · ha−1

were derived from 50 000 random realizations of the crosstalk
with no channel imbalance [see the top of Fig. 4(a)] and
the channel imbalance with no crosstalk [see the bottom of
Fig. 4(a)]. The maximum amplitude of the distortion terms is
taken to be 0.0316, 0.0562, or 0.1 (−30, −25, or −20 dB,
respectively), and their phases and that of Ω are uniformly

distributed between −π and π. The vertical bars indicate the
maximum observed errors, which are also given in Table IV.
Fig. 4(b) is similar, but here, the distortion terms are fixed at
their maximum values and only the phases are randomized.
As predicted, the maximum error in σhv occurs when all the
distortion terms adopt their maximum values; thus, the max-
imum values are the same in Fig. 4(a) and (b). In addition,
as predicted, the maximum error from the channel imbalance
is larger than that from the crosstalk if their magnitudes are
similar.

If the channel imbalance is neglected, the maximum error
in the biomass is less than 20%, even if the crosstalk is as
large as −24 dB, but exceeds 20% if the channel imbalance
has a value of −28 dB with no crosstalk. However, as shown
in Fig. 4(a), the maximum error occurs very far out in the
tail of the distribution when the amplitude of the distortions is
randomly distributed (up to some maximum value) since it re-
quires all the distortion terms to take their largest permitted am-
plitudes and particular relations to hold among their phases. If
all the distortion terms are fixed at their maximum amplitudes,
then the maximum error occurs more frequently [see Fig. 4(b)]
since it will arise from many different phase arrangements as
long as they obey the conditions preceding (18).

The maximum percentage biomass error when both cross-
talk and channel imbalance are present is shown as a contour
plot in Fig. 5. It can be seen that, to keep the error below
20%, the channel imbalance and the crosstalk must not exceed
−28 and −24 dB, respectively. For crosstalks of −30 and
−25 dB, the corresponding limits on the channel imbalance
to keep the relative error below 20% are −31 and −41 dB,
respectively, whereas if the crosstalk reaches −20 dB, the
maximum error always lies well above 40%. Again, it should be
noted that these are worst possible cases and are hence of low
probability.

The biomass percentage error due to the noise alone is
shown in Fig. 6 for three levels of the biomass. The noise
is particularly damaging for lower biomass forests because
of their lower values of σhv. Keeping the error below 20%
requires the NESZ to be less than −22 dB for a biomass of
50 t · ha−1, which relaxes to NESZ < −18.6 dB for a biomass
of 350 t · ha−1.

IX. CONCLUSION

This paper has provided first-order approximations to the
errors in the polarimetric backscattering coefficients caused by
system distortions and noise in the presence of Faraday rotation,
thus giving a clear insight into the factors controlling these
errors. The approximations are differentiable and can be used
to derive conditions on the amplitudes and phases of the
crosstalk and channel imbalance terms that yield the greatest
possible errors in the backscattering coefficients given the con-
straints on the amplitudes. To first order, we found the following
to be true.

• The error in σhv depends on the true value of σhv only
through the channel imbalance but has contributions from
σhh and σvv arising from both the channel imbalance and
the crosstalk.
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Fig. 4. (a) Histograms of the retrieved biomass for a biomass of 200 t · ha−1 for 50 000 random samples of (top row) crosstalk with no channel imbalance and
(bottom row) channel imbalance with no crosstalk, together with Faraday rotation. In each sample, the amplitude of δ or ε is uniformly generated in the range of
(left to right) 0–0.0316, 0–0.0562, or 0–0.1, i.e., −30, −25, and −20 dB, respectively, and the phase, together with that of Ω, is uniformly distributed between
−π and π. The vertical lines mark the maximum observed biomass. (b) Same as (a), except that, in each sample, the amplitude of δ or ε is set to the fixed value
0.0316, 0.0562, or 0.1.

TABLE IV
MAXIMUM BIOMASS ERRORS PRODUCED BY THE SIMULATION FOR A

FOREST WITH A BIOMASS OF 200 t · ha−1 WHEN ONLY THE CROSSTALK

OR ONLY THE CHANNEL IMBALANCE IS CONSIDERED FOR THREE

LEVELS OF THE MAXIMUM DISTORTION AMPLITUDE

• The error in σhh depends on σhh and 〈S∗
hhShv〉 (but not

on σvv), both of which have coefficients that are linear in
the distortion terms; equivalent remarks apply to the error
in σvv.

In both cases, the system noise makes an independent additive
contribution to the error. The analysis is applicable to any

radar frequency, but the calculation of the maximum possible
errors must take into account that the range of possible Faraday
rotation angles depends on the frequency.

Exact simulations confirm the predictions of the first-order
analysis and can be used to investigate the complete process,
from the measured data to the estimates of the biomass under
any given relationship between the biomass and the backscat-
tering coefficients; they can be also used to empirically derive
the statistical properties of the various estimates. The simplified
analysis here assumes a known power-law relationship between
the biomass and σhv, and it is most appropriate for P-band
data; however, the simulation approach can be readily used
to investigate effects such as uncertainty in the power-law
exponent, other forms of the relationship between the biomass
and σhv, more complex relationships between the biomass and
the full set of backscattering coefficients, etc.
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Fig. 5. Contour plot of the maximum percentage error in the biomass for a
forest of 200 t · ha−1 as the crosstalk and channel imbalance amplitudes vary.
Contours are labeled with percentage error.

Fig. 6. Percentage error in the retrieved biomass for three values of the
biomass solely due to the noise without system distortions.

The following were demonstrated.

1) The deviation of the channel imbalance from unity causes
greater errors in σhv than the crosstalk if their amplitudes
are comparable, and to yield similar errors, it must be
kept to levels around 4–5 dB less than the crosstalk. In
contrast, the maximum error in the estimate of the Fara-
day rotation is insensitive to the channel imbalance and is
almost entirely controlled by the crosstalk amplitude [9].

2) The phases of the distortion terms have significant effects
on the size of the errors in the backscattering coefficients
and the biomass, and the worst possible errors occur
for particular phase relationships between the distortion
terms.

3) If the phase and amplitude errors are considered random,
errors near the largest possible value are very unlikely
to occur, and weaker conditions on the crosstalk and
channel imbalance amplitudes are acceptable to meet the
target accuracy on the backscattering coefficients and the
biomass.

It is important to note that the aim of this paper has been
to provide insight into how system distortions and Faraday
rotation affect the estimates of the backscattering coefficients
and the biomass, and it therefore adopts simplifications that

would need to be relaxed for a complete error analysis in a more
general situation. Issues to be considered in such an analysis
include the following.

1) More complete algorithms to retrieve the biomass use
the full polarimetric covariance matrix, not just the HV
backscattering coefficient [7], [21].

2) Many of the world’s forests are in hilly areas; this gives
rise to distortion of the covariance matrix and nonzero
correlation between the copolarized and cross-polarized
channels, and correction methods exploit the full covari-
ance matrix [30].

3) The algebraic analysis does not account for statistical
fluctuations in the estimates of the covariance terms, and
the simulations use windows that are so large that these
can be neglected. The effect of the number of looks on
the errors therefore has not been studied in this paper.

Although it may be possible to extend the algebraic analysis
to partly cover these more general conditions, it is likely that
their investigation would have to lean heavily on simulation.

APPENDIX 1
MAXIMUM LIKELIHOOD ESTIMATE OF S

Equation (4) can be written as

M ′
i = aiShh + biShv + ciSvv +N ′

i, i = 1−4 (A1.1)

where M′=(M ′
1, M

′
2, M

′
3, M

′
4)

T =[M ′
hh,M

′
hv,M

′
vh,M

′
vv]

T

and N′ = (N ′
1, N

′
2, N

′
3, N

′
4)

T are vectors corresponding to
the LHS and the noise term on the RHS of (4), respectively,
S = (Shh, Shv, Svv)

T = (x, y, z)T , and the 4× 1 coefficient
vectors a, b, and c arise from the first term on the RHS
of (4). This system can be resolved by assuming that the
noise is independent identically distributed complex zero-mean
Gaussian in all channels and by maximizing the likelihood. The
log likelihood is proportional to

L =

4∑
1

|mi − aix− biy − ciz|2

=

4∑
1

(vi − pix1 + qix2 − riy1 + siy2 − tiz1 + uiz2)
2

+ (wi − pix2 − qix1 − riy2 − siy1 − tiz2 − uiz1)
2

where mi = vi + jwi, ai = pi + jqi, bi = ri + jsi, and ci =
ti + jui.

Put

A =
∂L

∂x1
∝
∑

−pi (vi−pix1+qix2−riy1+siy2−tiz1+uiz2)

− qi(wi − pix2 − qix1 − riy2 − siy1 − tiz2 − uiz1)

=
∑

−(pivi + qiwi) + x1|ai|2 + y1(piri + qisi)

+ y2(−pisi+qiri)+z1(piti + qiui) + z2(−piui + qiti)
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B =
∂L

∂x2
∝
∑

qi(vi−pix1+qix2−riy1+siy2−tiz1+uiz2)

− pi(wi − pix2 − qix1 − riy2 − siy1 − tiz2 − uiz1)

=
∑

qivi − piwi + x2|ai|2 + y1(−qiri + pisi)

+ y2(qisi + piri) + z1(−qiti + piui) + z2(qiui + piti).

Setting A = B = 0 and forming A+ jB yields

∑
−mia

∗
i+x|ai|2+y1bia

∗
i+jy2bia

∗
i+z1cia

∗
i+jz2cia

∗
i = 0

i.e.,

4∑
1

x|ai|2 + ybia
∗
i + zcia

∗
i =

4∑
1

mia
∗
i .

More compactly, writing (a,b) =
∑4

1 aib
∗
i , we have

x (a,a) + y(b,a) + z(c,a) = (m,a) (A1.2a)

Similarly

x(a,b) + y(b,b) + z(c,b) = (m,b) (A1.2b)

x(a, c) + y(b, c) + z(c, c) = (m, c). (A1.2c)

This has the following form:

PS = Q (A1.3)

where P is the coefficient vector in this system of equations,
and Q is the RHS 3× 1 vector; thus

S = P−1Q. (A1.4)

Here, P−1 is a Hermitian matrix, i.e.,

P−1

=
1

Δ

⎛
⎝ P22P33−|P23|2 −P12P33+P13P

∗
23 P12P23−P13P22

−P ∗
12P33+P ∗

13P23 P11P33−|P13|2 −P11P23+P13P
∗
12

P ∗
12P

∗
23−P ∗

13P22−P11P
∗
23+P ∗

13P12 P11P22−|P12|2

⎞
⎠

(A1.5a)

where

Δ =det(P)

=P11P22P33−
(
P11|P23|2+P22|P13|2+P33|P12|2

)
+ 2Re(P12P23P

∗
13). (A1.5b)

APPENDIX 2
NOISE STATISTICS AFTER CORRECTING FOR G

Using the first-order inverse of G given by (9), we can write
the corrected noise terms in (7) as

N′ = Ĝ−1N = (N ′
1, N ′

2, N
′
3, N

′
4)

T
.

Since

Ĝ−1 =
1

X

⎡
⎢⎢⎢⎣

X −δ̂2 −δ̂4 0

−ˆ̂
δ1 X − ε̂1 0 −δ̂4

−δ̂3 0 X − ε̂2 −δ̂2
0 −δ̂3 −δ̂1 X − ε̂1 − ε̂2

⎤
⎥⎥⎥⎦

where X = 1 + 2ε̂1 + 2ε̂1, the noise powers in the four chan-
nels of the corrected noise terms in (7) are then given by

VN (1, 1− 2Re(ε̂1), 1− 2Re(ε̂2), 1− 2Re(ε̂1 + ε̂2))
T

where VN = 〈|N |2〉 is the noise power in (1), which is as-
sumed equal in all channels. Hence, the noise power is slightly
changed after system correction. In addition, the noise channels
become slightly correlated as follows:

〈
N̂1N̂

∗
2

〉
≈−VN

(
δ̂∗1X + δ̂2

(X∗ − ε̂∗1)

|X|2
)

≈ −VN

(
δ̂∗1 + δ̂2

)

〈
N̂1N̂

∗
3

〉
≈−VN

(
δ̂∗3X + δ̂4

(X∗ − ε̂∗2)

|X|2
)

≈ −VN

(
δ̂∗3 + δ̂4

)

〈
N̂4N̂

∗
2

〉
≈−VN

δ̂3(X
∗ − ε̂∗1) + δ̂∗4(X − ε̂1 − ε̂2)

|X|2

≈−VN

(
δ̂3 + δ̂∗4

)
〈
N̂4N̂

∗
3

〉
≈−VN

δ̂1(X
∗ − ε̂∗2) + δ̂∗2(X − ε̂1 − ε̂2)

|X|2

≈−VN

(
δ̂1 + δ̂∗2

)
〈
N̂1N̂

∗
4

〉
≈
〈
N̂2N̂

∗
3

〉
≈ 0.

Hence

〈
N̂1N̂

∗
2

〉
≈
〈
N̂3N̂

∗
4

〉 〈
N̂1N̂

∗
3

〉
≈
〈
N̂2N̂

∗
4

〉
.

Since the noise would remain Gaussian, the maximum like-
lihood analysis could be carried out with this more exact
covariance matrix, but this has not been performed here.

APPENDIX 3
ERROR IN ESTIMATE OF σhv

Setting

Σ̄13 =
(Δδ1 +Δδ3)

2

Σ̄24 =
(Δδ2 +Δδ4)

2

Σ̄ε =
(Δε1 +Δε2)

2

Ȳ21 =
(Δε2 −Δε1)

2
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(12) can be written as

Ŝhv = Shh(c
2Σ̄13 − s2Σ̄24) + Svv(c

2Σ̄24 − s2Σ̄13)

+ Shv(1 + Σ̄ε) + cs(Shh + Svv)Ȳ21 + (N ′
hv +N ′

vh) /2
(A3.1)

and then

|Ŝhv|2=|Shv|2|1 + Σ̄ε|2 + c2s2|Shh + Svv|2|Ȳ21|2

+ |Shh|2|c2 Σ̄13−s2Σ̄24|2+ |Svv|2|c2Σ̄24 − s2Σ̄13|2

+ 2Re
{
S∗
hv(1 + Σ̄∗

ε)
[
(c2Σ̄13 − s2Σ̄24)Shh

+(c2Σ̄24−s2Σ̄13)Svv+ cs(Shh+Svv)Ȳ21

]}
+ 2Re

{
(c2Σ̄13 − s2Σ̄24)(c

2Σ̄∗
24 − s2Σ̄∗

13)ShhS
∗
vv

}
+ 2csRe

{
(c2 Σ̄13 − s2Σ̄24)

(
|Shh|2 + ShhS

∗
vv

)
Ȳ ∗
21

+ (c2 Σ̄24 − s2Σ̄13)
(
|Svv|2 + S∗

hhSvv

)
Ȳ ∗
21

}

+
|N ′

hv +N ′
vh|2

4
+ cross products with noise.

(A3.2)

Setting 〈ShhS
∗
vv〉 = Rejθ and averaging, assuming azimuthal

symmetry, yields

σ̂hv =σhv|1 + Σ̄ε|2

+ c2s2(σhh + σvv + 2R cos θ)|Ȳ21|2

+ σhh|c2Σ̄13 − s2Σ̄24|2 + σvv|c2Σ̄24 − s2Σ̄13|2

+ 2Re
{
(c2Σ̄13 − s2Σ̄24)(c

2Σ̄∗
24 − s2Σ̄∗

13)Rejθ
}

+ 2csRe
{
(c2Σ̄13 − s2Σ̄24)(σhh +Rejθ)Ȳ ∗

21

+ (c2Σ̄24 − s2Σ̄13)(σvv +Re−jθ)Ȳ ∗
21

}
+
(
|N ′

hv|2 + |N ′
vh|2

)
/4. (A3.3)

If the channel imbalance is neglected and the noise powers in
the HV and VH channels have the same value, i.e., σ′

n, then

σ̂hv =σhv + σhh|c2 Σ̄13 − s2Σ̄24|
2

+ σvv|c2Σ̄24 − s2Σ̄13|
2

+ 2Re
{
(c2 Σ̄13 − s2Σ̄24)(c

2 Σ̄∗
24 − s2Σ̄∗

13)Rejθ
}

+ σ′
n/2. (A3.4)

Set Σ̄13 = A1e
jα1 , Σ̄24 = A2e

jα2 , and ϕ = α1 − α2. Then

σ̂hv − σhv =σhh

(
c4A2

1 + s4A2
2 − 2c2s2A1A2 cosϕ

)
+ σvv

(
c4A2

2 + s4A2
1 − 2c2s2A1A2 cosϕ

)
+ 2RRe

{(
c4Σ̄13Σ̄

∗
24+s4Σ̄∗

13Σ̄24

−s2c2
(
A2

1+A2
2

))
ejθ

}
+ σ′

n/2

i.e.,

σ̂hv − σhv =σhh

(
c4A2

1 + s4A2
2 − 2c2s2A1A2 cosϕ

)

+ σvv

(
c4A2

2 + s4A2
1 − 2c2s2A1A2 cosϕ

)

+ 2RA1A2

(
c4 cos(θ + ϕ) + s4 cos(θ − ϕ)

)

− 2Rs2c2
(
A2

1 +A2
2

)
cos θ + σ′

n/2. (A3.5)

Setting E = σ̂hv − σhv, we have

∂E

∂ Ω
=2 sin 2Ω

(
σhh

(
−c2A2

1 + s2A2
2 −A1A2 cosϕ cos 2Ω

)

+ σvv

(
−c2A2

2+s2A2
1−A1A2 cosϕ cos 2Ω

)

+ 2RA1A2

(
−c2 cos(θ+ϕ)+s2 cos(θ−ϕ)

)

−R(A2
1 +A2

2) cos θ cos 2Ω
)
. (A3.6)

Hence, there are extrema when sin 2Ω = 0, i.e., Ω = nπ/2;
thus, s2 = 1 and c2 = 0, or s2 = 0 and c2 = 1.

If s2 = 1, then Ω = kπ + π/2, and

E = σhhA
2
2 + σvvA

2
1 + 2RA1A2 cos(θ − ϕ) + σ′

n/2.
(A3.7a)

However, if c2 = 1, then Ω = kπ, and

E = σhhA
2
1 + σvvA

2
2 + 2RA1A2 cos(θ + ϕ) + σ′

n/2.
(A3.7b)

Clearly, both errors are maximized if the cosine term takes a
value of 1 and increase as either A1 or A2 increases. Hence, if
both A1 and A2 have the same absolute maximum, i.e., AM ,
then the maximum error is

A2
M (σhh + σvv + 2R) + σ′

n/2.

Since A1 = |Δδ1 +Δδ3|/2 and A2 = |Δδ2 +Δδ4|/2, then,
for given amplitudes of Δδi, Ai will be maximized if
argΔδ1 = argΔδ3, which implies that argΔδ1 = arg Σ̄13 =
α1 and that argΔδ2 = argΔδ4 = arg Σ̄24 = α2.

If all the Δδi have the same largest permitted amplitude
ΔδM , then Δδ1 = Δδ3, Δδ2 = Δδ4, and |Δδi| = ΔδM for
all i, and AM = ΔδM . Furthermore, condition cos(θ − ϕ) = 1
means that the maximum of (A3.7a) occurs if θ − ϕ = 2kπ;
thus, α1 = α2 + θ + 2kπ, and Δδ1 = ejθΔδ2. Similarly, the
maximum of (A3.7b) occurs if θ + ϕ = 2kπ so that α1 = α2 −
θ + 2kπ and Δδ1 = e−jθΔδ2.

In both cases, the maximum possible error is

σ̂hv − σhv = Δδ2M (σhh + σvv + 2R) + σn/2 (A3.8)

where, using Appendix 2, σ′
n has been approximated by σn, i.e.,

the NESZ in the original measurements (1).
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APPENDIX 4
ERROR IN ESTIMATES OF COPOLARIZED CHANNELS

From (6), we have

Ŝhh =Shh(ĉ
2c2 + 2ĉŝcs+ ŝ2s2)

+ Svv(−ĉ2s2 + 2ĉŝcs− ŝ2c2)

+ ĉ2 (ShvΣ24 −X24cs(Shh + Svv))

− ŝ2 (ShvΣ31 −X31cs(Shh + Svv))

+ ĉŝ
(
X31(c

2Shh − s2Svv)

+X24(−s2Shh + c2Svv)
)

+ ĉŝ (ShvY21 +Σεcs (Shh + Svv))

− ŝ2Σε(−s2Shh + c2Svv)

+ ĉ2N ′
hh + ĉŝ (N ′

vh −N ′
hv)− ŝ2N ′

vv (A4.1)

where Σ24 = Δδ2 +Δδ4, Σ31 = Δδ3 +Δδ1, X24 = Δδ2 −
Δδ4, X31 = Δδ3 −Δδ1, Σε = Δε1 +Δε2, and Y21 = Δε2 −
Δε1.

Setting C = cos(2Ω) and S = sin(2Ω), with Ĉ and Ŝ being
their estimated values, this can be written as

Ŝhh =
Shh

2
(ĈC + SŜ + 1) +

Svv

2
(ĈC + SŜ − 1)

+
Shh

4

{
X31

(
S(1− Ĉ) + Ŝ(1 + C)

)

−X24

(
S(1 + Ĉ) + Ŝ(1− C)

)}

+
Svv

4

{
X31

(
S(1− Ĉ)− Ŝ(1− C)

)

+X24

(
Ŝ(1 + C)− S(1 + Ĉ)

)}

+
Shv

2

(
(1 + Ĉ)Σ24 − (1− Ĉ)Σ31

)

+
Σε

4

(
Shh

(
SŜ + (1− C)(1− Ĉ)

)

+Svv

(
SŜ − (1 + C)(1− Ĉ)

))

+
Shv

2
ŜY21

+
1

2

{
(1+Ĉ)N ′

hh+Ŝ (N ′
vh−N ′

hv)−(1−Ĉ)N ′
vv

}
.

(A4.2)

Putting Ω̂ = Ω + ω/2, for a small error in Ω, we can make the
approximations as follows:

Ĉ =cos(2Ω + ω) ≈ C − ωS

Ŝ =sin(2Ω + ω) ≈ S + ωC

and (A4.2) becomes

Ŝhh ≈Shh

+
Shh

4
(X31 [2S+ω(1 + C)]−X24 [2S−ω(1−C)])

+ ω
Svv

4
(X31(1− C) +X24(1 + C))

+
Shv

2
((1 + C − ωS)Σ24 − (1− C + ωS)Σ31)

+
Σε

4
(Shh(2− 2C + ωS)− ωSSvv)

+
Shv

2
(S + ωC)Y21

+
1

2

{
(1+Ĉ)N ′

hh+Ŝ (N ′
vh−N ′

hv)−(1−Ĉ)N ′
vv

}
.

(A4.3)

If we neglect the terms involving second-order products of
small quantities (such as ωX31), then (A4.3) reduces to

Ŝhh ≈Shh +
Shh

2
S (X31 −X24)

+
Shv

2
((1 + C)Σ24 − (1− C)Σ31)

+ Shh(1− C)
Σε

2
+

Shv

2
SY21

+
1

2

{
(1+Ĉ)N ′

hh+Ŝ (N ′
vh−N ′

hv)−(1−Ĉ)N ′
vv

}
.

(A4.4)

Hence

σ̂hh ≈σhh {1 + Re (S(X31 −X24) + (1− C)Σε)}
+Re {S∗

hhShv ((1 + C)Σ24 − (1− C)Σ31 + SY21)}

+
1

4

{
(1 + Ĉ)2 |N ′

hh|
2
+ Ŝ2

(
|N ′

vh|
2
+ |N ′

hv|
2
)

+(1− Ĉ)2 |N ′
vv|

2
}

(A4.5)

where we again have neglected the terms involving second-
order products of small quantities and assumed that the noise is
uncorrelated with the signal and between channels. Note that, if
the noise powers all have the same value, i.e., σ′

n, then the total
contribution from the noise is σ′

n.
The corresponding expressions for VV are

Ŝvv ≈Svv +
Svv

2
S(−X31 +X24)

+
Shv

2
((1 + C)Σ31 − (1− C)Σ24)

+ Svv(1 + C)
Σε

2
+

Shv

2
SY21

+
1

2

{
−(1− Ĉ)N ′

hh + Ŝ (N ′
vh −N ′

hv) + (1 + Ĉ)N ′
vv

}
(A4.6)

σ̂vv ≈σvv {1 + Re (S(−X31 +X24) + (1 + C)Σε)}
+Re {S∗

vvShv ((1 + C)Σ31 − (1− C)Σ24 + SY21)}

+
1

4

{
(1− Ĉ)2 |N ′

hh|
2
+ Ŝ2

(
|N ′

vh|
2
+ |N ′

hv|
2
)

+(1 + Ĉ)2 |N ′
vv|

2
}
. (A4.7)
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