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ABSTRACT: Resonantly driven quantum emitters offer a
very promising route to obtain highly coherent sources of
single photons required for applications in quantum
information processing (QIP). Realizing this for on-chip
scalable devices would be important for scientific advances and
practical applications in the field of integrated quantum optics.
Here we report on-chip quantum dot (QD) resonance
fluorescence (RF) efficiently coupled into a single-mode
waveguide, a key component of a photonic integrated circuit,
with a negligible resonant laser background and show that the
QD coherence is enhanced by more than a factor of 4
compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge
dynamics are revealed in autocorrelation g(2) measurements. The potential for triggered operation is verified in pulsed RF. These
results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with
embedded resonantly driven quantum emitters.
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Advances in nanotechnology provide techniques for the
realization of integrated quantum-optical circuits for on-

chip quantum information processing (QIP).1−3 Highly
coherent, indistinguishable single photons are required for
such devices. Such photons4,5 can be generated by parametric
down-conversion6,7 or from quantum emitters such as color
centers8 and quantum dots9 (QDs). Among these, semi-
conductor QDs offer distinctive capabilities including on-
demand operation,10 adiabatic rapid passage,11 coherent
control,12 frequency tuning,13 and compatibility with semi-
conductor nanotechnology that allow fabrication of photonic
devices with embedded single photon emitters.
The indistinguishability of single photons is determined by

the ratio of the dephasing time T2 to the radiative lifetime T1;
close to Fourier-transform-limited coherence with T2 approach-
ing 2T1 is required for ideal gate fidelities in QIP applications.
This benchmark is not achieved when the dots are excited
above the band gap or quasi-resonantly in the p-shell.10,14,15 On
the other hand, the resonant excitation of the fundamental s-
shell exciton transition reduces the dephasing10,15 as a result of
the reduction in electrostatic environmental fluctuations and
elimination of incoherent phonon assisted relaxation:10,15,16

hence the coherence of QD photons can be significantly
enhanced in resonance fluorescence15,17−19 (RF). Moreover,
resonant excitation combined with RF provides a means for the
manipulation and read-out of QD spin-qubit states.20 RF into
free space was first observed from a QD in 200721,22 and is now

an established technique in several laboratories worldwide.
However, the implementation of QD RF in scalable on-chip
geometries has so far not been achieved.
In this work we report the experimental observation of

resonance fluorescence from a QD coupled efficiently to a
single-mode waveguide in a photonic chip. We employ
suspended single mode waveguides with high refractive index
contrast to provide strong light confinement. Such waveguides
have favorable attributes for on-chip quantum optical circuits.
They enable low loss transmission of photons around bends of
radius less than 2 μm as required for on-chip components such
as beam splitters23 and more complex circuit architectures, as
well as high QD coupling efficiencies in excess of 90% into the
waveguide mode24 (see Supporting Information, Figure S2).
The waveguide geometry also provides a ready-made means to
separate stray laser photons from the RF: the RF photons
propagate perpendicular to the laser allowing the excitation and
collection spots to be spatially separated. Moreover, the
polarization of the excitation laser can be set to be orthogonal
to the one supported by the waveguide, which further
suppresses the laser photons. However, in practice the presence
of etched surfaces may cause stray laser scattering that may in
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turn obscure the RF signal, which may explain why on-chip RF
has not been observed before.
The structure we use consisted of a single self-assembled

InGaAs quantum dot embedded within a single-mode,
suspended vacuum-clad GaAs waveguide with an out-coupler
at its end for efficient photon extraction.25 (See sample details
in the Methods section.) The dot was selected from within a
QD ensemble of density ∼109 cm−2. The QD was excited
resonantly by a tunable single-frequency diode laser, and the RF
was detected by a single-photon-detection-system (SPDS) after
propagating ∼10 μm along the single-mode waveguide to the
out-coupler, as shown schematically in Figure 1. The

suppression of the stray laser resonant light by both the
intrinsic geometry and the polarization filtering enabled an RF
signal to laser background ratio of S/B ∼ 102 to be achieved. In
this way we have been able to detect antibunched RF photons
with enhanced coherence when using a continuous wave (CW)
laser and triggered single RF photon operation with a pulsed
laser.
Figure 2 shows the RF signal detected from the QD under

scanning resonant CW excitation, together with background
contributions recorded separately. The CW RF results
presented were made in the low power RF regime well below
the Mollow triplet domain,18,21 i.e., below saturation (Rabi
frequency Ω ≈ 0.5 GHz < ΩSAT ≈ 1/√2T1 ≈ 0.6 GHz). A
weak nonresonant laser was applied to stabilize the dot (see
Methods), and the resonant laser was slowly scanned
repeatedly through the QD fundamental exciton transition as
shown in the inset to Figure 2. The resulting RF signal fitted to
a Gaussian function gave a full-width-at-half-maximum (fwhm)
hΔν ∼ 9 μeV (Δν ∼ 2.2 GHz). The measured peak count rate
was ∼3500 s−1, consistent with the calculated overall coupling
efficiency to the waveguide of >90% (Supplementary Sections 2
and 3).
The coherence time T2 extracted from the fwhm was ∼240

ps, significantly shorter than the radiative lifetime T1 = 1.2 ±

0.1 ns (see Figure 3c). We attribute the broadening to
fluctuations in the QD electrostatic environment that lead to
spectral diffusion26,27 on a time scale faster than the scanning
rate of the resonant laser, in agreement with autocorrelation
measurements presented below. The smallest linewidth
observed for QDs in the bulk of the wafer was ∼6 μeV
(∼1.5 GHz, T2 ∼ 365 ps), which is larger than the best values
reported for dots embedded well below the surface (see, e.g.,
ref 18). In our sample the short distance of ∼70 nm to the
surface may have an adverse effect on the bulk linewidth,
although broadening due to local defects and impurities cannot
be ruled out.28 The approximately 30% smaller T2 time in the
waveguide may arise from additional fluctuations introduced by
the proximity to the etched surfaces introduced in the
fabrication. It should be noted that the adverse effect of slow
charge fluctuations can, in principle, be reduced by implement-
ing a fast scanning technique29 or by locking the QD resonance
to an external frequency reference.30

The QD coherence was further investigated by using
Michelson interferometer techniques. The first-order correla-
tion function g(1)(τ) is shown in Figure 3a. Under nonresonant
excitation, the g(1)(τ) data fitted to a Gaussian function as
expected for inhomogeneous broadening and yielded T2 = 154
± 5 ps. Under resonant excitation the g(1)(τ) data changed to
the exponential decay characteristic of homogeneous broad-
ening, and the value of T2 increased by more than four times to
T2

RL = 640 ± 40 ps. Fourier transforms of the fitted g(1)(τ)

Figure 1. Experimental scheme for observing QD resonance
fluorescence in a waveguide. The QD is located in a single-mode
waveguide and couples only to the TE mode polarized along the y
direction. The calculated |Ey|

2 intensity profile is shown in the inset.
(See Supporting Information.) The laser is polarized along the axis (x)
orthogonal to the TE mode and is tuned to resonance with the QD
exciton transition. The laser excites electron−hole dipoles oriented in
the xy-plane, and RF photons generated in the dot are guided by the
waveguide toward the out-coupler, where they are collected into a
single-photon detection system (SPDS). The cross-polarization of the
excitation laser and the waveguide strongly suppresses the stray laser
photons scattered from the structure. A detailed schematic of the
experimental setup is given in the Supplementary Figure S1b.

Figure 2. QD resonance fluorescence with slow-scanning resonant
laser. The QD resonance fluorescence signal plotted as a function of
laser detuning δblue circles. Background contributions: gray
circleslaboratory background mainly due to APD dark counts
when both lasers are blocked (Bexp ∼ 750 c/s); red circles
background B measured when only the nonresonant laser (NRL) is
incident on the device (B = BNRL + Bexp ∼ 1050 c/s, BNRL ∼ 300 c/s);
black squaresbackground measured when only the resonant laser
(RL) is incident (B = BRL + Bexp, BRL ∼ 40 c/s). The negligible
contribution from the resonant laser leads to a high ratio of RF signal
to resonant laser background of S/BRL ∼ 90. The overall signal to
background ratio S/B = S/(BRL + BNRL) falls to ∼10 when both lasers
are present, due to the additional background PL photons originating
from nonresonant excitation. The latter would be expected to be
absent for a QD in a more stable electrostatic environment. The solid
line shows a fit to a Gaussian function with inhomogeneous
broadening of Δν ∼ 2.24 GHz corresponding to a coherence time
T2 ∼ 240 ps. Inset: Energy-level diagram of the scanning resonant laser
experiment.
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functions are plotted in Figure 3b. A clear transition from
inhomogeneous broadening (Gaussian linewidth with hΔν ∼
14 μeV, Δν ∼ 3.4 GHz) under nonresonant pumping to
homogeneous broadening (Lorentzian linewidth with hΔν ∼ 2
μeV, Δν ∼ 0.5 GHz) under resonant excitation is observed.31

The slightly larger linewidth in Figure 3b under nonresonant
excitation compared to the scanning RF experiment in Figure 2
suggests that the additional carriers associated with such
excitation cause additional broadening due to increased charge
fluctuations. However, the main point is that when the laser is
tuned to resonance with the QD, a substantial increase in the
coherence time is observed. In these conditions, the ratio of
coherent photons to the total signal emitted by the QD is given
by T2/2T1.

17 Pure dephasing processes on a time scale T2*
limit the coherence through T2

−1 = (2T1)
−1 + (T2*)

−1. The
value of T1 was determined by time-resolved photolumines-
cence measurements to be 1.2 ± 0.1 ns (see Figure 3c), which
implies that the coherent ratio in our experiment was ∼27%,
and the pure dephasing time T2* calculated was ∼870 ps. The
significant enhancement of the coherence is a key advantage of
using RF photons; coherence times limited only by the laser
itself should ultimately be achievable in the T2 = 2T1 Fourier
limit from a dot with a smaller linewidth.18,19

Hanbury Brown and Twiss (HBT) measurements were
performed to investigate the statistics of the RF photons. The
two-photon correlation function g(2)(τ) was first measured for
the QD exciton photoluminescence (PL) generated by
nonresonant excitation with power PNRL close to the saturation
level PSAT (see Figure 4a). A clear antibunching dip was
observed with a fitted value of g(2)(0) < 0.04 after background
subtraction (Supplementary Section 4). The antibunching dip
fitted well to the same radiative lifetime of T1 = 1.2 ns
determined from time-resolved PL (see Figure 3c). The low
value of g(2)(0) confirms the single-photon character of the
emission. The HBT experiment was then repeated for the RF
photons generated with the laser in resonance with the QD
(laser detuning δ ≈ 0). Figure 4b displays a more complex
behavior with clear antibunching at short times (τ < T1) and

Figure 3. QD coherence time. (a) Michelson interferometer fringe
amplitude versus time delay τ. The amplitude is proportional to the
first order correlation function g(1)(τ). The blue and red data points
correspond respectively to nonresonant excitation and resonant
excitation with detuning δ ≈ 0. The nonresonant laser power PNRL
was ∼ 0.5PSAT, while the resonant laser power was maintained in the
low power RF regime18,21 (Ω ≈ 0.4 GHz < ΩSAT ≈ 1/√2T1 ≈ 0.6
GHz). Blue curveGaussian fit with T2 = 154 ± 5 ps. Red curve
exponential fit with T2

RL = 640 ± 40 ps. (b) Fourier transform of the
g(1)(τ) functions from (a) calculated from the fitted curves. Light blue
and light red correspond respectively to nonresonant and resonant
excitation and have linewidths hΔν of ∼14 μeV (Δν ∼ 3.4 GHz) and
∼2 μeV (Δν ∼ 0.5 GHz).31 (c) Lifetime measurement datalight
gray points. Dark gray curveAPD instrument response function with
fwhm ∼400 ps. Black curveexponential fit with T1 = 1.2 ± 0.1 ns.

Figure 4. Photon statistics in Hanbury Brown and Twiss-type experiments. (a) Autocorrelation function g(2)(τ) measured for the QD under
nonresonant excitation at PNRL ≈ PSAT/2. (b) Autocorrelation function g(2)(τ) recorded for resonant excitation in the low RF power regime18,21 (Ω
≈ 0.5 GHz < ΩSAT ≈ 1/√2T1 ≈ 0.6 GHz) and δ ≈ 0. The data have been normalized after taking account of the background (Supplementary
Section 4). (c) Schematic of the spectral diffusion process. Right: dashed (blue) linelifetime-limited Lorentzian fluctuating within the
inhomogeneous broadened Gaussian linewidth shown by the solid (black) line. The thin (red) line corresponds to the resonant laser with fwhm <1
MHz and δ ≈ 0. The left diagram displays the photon flux when the homogeneous QD line crosses the laser line, which results in single photons
with lifetime T1 and bunches of photons with duration Tx.
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additional bunched shoulders out to ∼10 ns. The value of
g(2)(0) after correction for background (Supplementary Section
4) was ≈ 0.1 ± 0.1, and the decay of the bunching had a
characteristic time Tx ≈ 3.8 ± 0.4 ns. The bunching observed
under resonant excitation cannot be explained by Rabi
oscillations or the presence of the weak nonresonant laser
(Supplementary Section 4), and we instead attribute it to the
spectral diffusion responsible for the broadened line in Figure 2.
Figure 4c shows a schematic of the photon flux under resonant
excitation when the QD frequency jumps on account of
fluctuations in its local environment. The homogeneous QD
line moves in and out of resonance with the laser on a time
scale Tx, leading to the generation of photon bunches on the
same time scale.27,32 The measurement of the RF photon
statistics thus provides new insights into the fluctuating QD
environment in photonic structures.33

To investigate the potential for on-demand operation for the
QD single-photon source, we performed RF experiments using
a pulsed laser with 9 ps pulse duration and 80 MHz repetition
rate (see Methods). The signal emitted from the out-coupler
was filtered with a spectrometer and integrated over the QD
linewidth while scanning the pulsed laser intensity. Figure 5

shows Rabi oscillations observed in the RF signal, which
demonstrate coherent control of the QD state on a picosecond
time scale. The Rabi oscillations observed are similar to
previous RF results on QDs,10,21,22,34,35 but with the clear
difference that the single-photon source is integrated within the
photonic waveguide and the resonant photons are guided by
the waveguide nanostructure for potential implementation in
quantum-optical circuits. The usefulness of our present
experiments is limited by the high background from the pulsed
laser (S/B ∼ 0.8 for a π-pulse), but it should be possible to
overcome this technical issue by using spectrally narrow
pulses35 and/or photonic cavity on-chip filtering.36

The results presented here confirm the potential for using RF
from QDs as enhanced coherence single-photon sources in
quantum photonic circuits. Moreover, the ability to control the
QD frequency in a photonic structure via the Stark effect13 and
lock it to the laser30 opens a route to building arrays of QDs
emitting identical photons into complex quantum photonic
circuits. By synchronizing the photons to a pulsed laser,10,11 on-
demand emission should also be possible. At the same time, the
issue of spectral diffusion will need to be addressed before all
the benefits can be fully realized, as the environmental
fluctuations broaden the QD linewidth and hence limit the
resonant photon flux. One possible way to reduce these charge

fluctuations would be to increase the distance between the QD
and the etched surface by redesigning the waveguides with the
QDs located in wider taper sections. Optimisation of the crystal
growth and device processing are also likely to lead to reduced
charge fluctuations.29

In future work, a straightforward improvement could be
achieved by etching a DBR reflector37 at one end of the
waveguide. This would immediately increase the photon flux by
a factor of 2, by reflecting all the waveguide-coupled photons
into the required direction. Further improvements could be
made by locating the dot in a photonic crystal (PhC)
waveguide and using the Purcell effect to increase the radiative
rate. Such PhC waveguides offer an alternative approach to
micron-scale circuits with high QD coupling efficiencies,
although the implementation of sharp bends at short
wavelengths (900 nm as opposed to, e.g., 1.55 μm) requires
difficult fabrication.38 So far in the literature, stray laser
scattering in PhC structures is comparable to the RF20 or even
impedes the observation of RF,39 possibly due to the greater
area of etched surfaces in PhCs compared to the suspended
waveguides used here. If the issue of stray light could be
overcome, then hybrid structures combining slow light PhC
waveguides for Purcell enhancement and suspended wave-
guides for low loss propagation40 would be a highly promising
route forward for QD quantum photonic circuits. At the same
time, the application of QD registration techniques41 or site-
controlled QDs42 would be highly important for the develop-
ment of scalable devices.
In summary, we have demonstrated a single-photon source

integrated into a single-mode waveguide with coherence
enhanced by resonant excitationa key step toward realizing
scalable QD-based quantum-optical circuits. The strong light
confinement of the suspended GaAs waveguide leads to highly
efficient coupling to the QD emitter and enables design of
quantum photonic circuits with micron-scale dimensions. The
results reveal fast environmental fluctuations on nanosecond
time scales that lead to photon bunching due to spectral
diffusion. Future work will focus on improvements of the
design to reduce the environmental fluctuations and enhance
the photon flux, thus enabling ultrabright on-chip single photon
sources with a high degree of photon indistinguishability.

Methods. Sample. The sample we used here was grown by
MBE on a GaAs substrate and consisted of a single layer of self-
assembled InGaAs QDs embedded at the center of a GaAs
layer of thickness 140 nm and grown on top of a Al0.6Ga0.4As
sacrificial layer of thickness 1 μm. The dot density was varied
across the wafer by using the rotation-stop technique,
permitting the selection of a region of the wafer with a suitable
dot density (∼109 cm−2). Nanofabrication techniques using
electron beam lithography and several etching steps were
applied to create suspended, single-mode, rectangular wave-
guide structures with width, height, and length of 280 nm, 140
nm, and 15 μm. An out-coupler25 was incorporated at the end
of the waveguide to enable analysis of the RF photons. A
scanning electron microscope image of the waveguide
nanostructure is given in the Supplementary Figure S1a. The
coupling of the QD to the TE waveguide mode reaches 48% for
each propagation direction in FDTD simulations (Supple-
mentary Figure S2).

Experimental Setup. All measurements were performed in a
home-built system composed of a helium bath cryostat at T =
4.2 K with ultrastable positioning control provided by X,Y,Z
piezo-stages. The cryostat insert had optical access to the

Figure 5. Rabi oscillation in resonance fluorescence. Dependence of
the QD resonance fluorescence intensity on the excitation amplitude
under pulsed resonant excitation. The solid line shows a fit of the data
with a sine squared function.12
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sample in a confocal microscope arrangement. The excitation
and collection spots were below 1 μm in diameter and could be
separately moved by more than 10 μm by scanning mirrors to
obtain the exact geometry required for each experiment. For
details of the experimental setup see the Supplementary Section
1.
RF Techniques. RF signals were only obtained when the

sample was simultaneously excited nonresonantly above the
GaAs band gap by an additional CW laser operating at 808 nm.
The excitation power PNRL was kept well below the saturation
power of the QD exciton transition PSAT, with typical values of
PNRL ∼ PSAT/50 being used. As previously observed by other
groups, this weak nonresonant excitation provides only a small
contribution to the total QD signal while helping to keep the
QD states stable for resonance fluorescence by reducing the
charge fluctuations.43 The RF signal was detected by an
avalanche photodiode after having been filtered through a
monochromator in order to remove scattered photons from the
nonresonant laser. In this way an overall signal-to-background
ratio of S/B ≈ 10 was typically achieved. The S/B ratio
determined by the background from the resonant laser alone
was ≈ 90, but the lower value measured in the RF experiment is
caused by the higher background measured when the
nonresonant laser is present.
In the Hanbury Brown and Twiss (HBT) experiments, the

output of the monochromator was sent to a 50:50 fiber beam
splitter connected to two avalanche photodiodes (APDs) and a
single-photon counting card. When using above-band ex-
citation, the incoherent QD photoluminescence filtered
through the spectrometer was used instead of the RF signal.
In the CW RF experiments, a scanning single-frequency

diode laser was used with a scan rate of 400 MHz/s. The scan
was repeated several times, and the signal was recorded every
0.5 s. The resonant laser was attenuated to a power level below
saturation deduced from RF power dependence measure-
ments18,21 (Ω < ΩSAT ≈ 1/√2T1 ≈ 0.6 GHz). In the pulsed RF
experiments, a femto-second Ti:sapphire laser with a repetition
rate of 80 MHz was employed. The pulses were filtered through
a pulse shaper to reduce their bandwidth to ∼200 μeV, which
corresponds to a pulse duration of ∼9 ps. The resonantly
emitted photons were collected from the out-coupler and sent
to the spectrometer with a CCD detector. The integrated
intensity at the QD line was plotted as a function of the optical
field amplitude after the residual background from the laser that
was linear in power had been subtracted.
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