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signalling pathway regulates predator-induced phenotypic 
plasticity; (2) the hormone titre (ligand), rather than recep-
tor, regulates predator-induced developmental plasticity; 
(3) evolution has favoured the harnessing of a major, highly 
conserved endocrine pathway in arthropod development to 
regulate the response to cues about changing environments 
(risk) from another organism (predator).

Keywords Phenotypic plasticity · Daphnia pulex · 
Juvenile hormone · Gene expression · Developmental 
control · Predation risk

Introduction

Phenotypic plasticity—the expression of different pheno-
types in different environments by single genotypes—can 
alter the mean and variance of traits on which selection 
can act. This topic draws the attention of ecologists inter-
ested in the origins and consequences of trait variation, of 
evolutionary biologists interested in plasticity as a source 
of selectable variation, and of developmental biologists 
interested in genes, hormones and the developmental con-
trol of traits such as morphology and life history (Nijhout 
2003b; Pigliucci 2001; Sultan 2007; Tollrian and Harvell 
1999). Identifying the role of development and physiol-
ogy in the expression of plasticity is central to defining 
the mechanisms that underpin trait variation. Strong links 
between phenotypic plasticity and developmental biol-
ogy are established in plants, where it is understood how 
endocrine physiology mediates environmental signals to 
produce phenotypes. Plant biology long ago embraced a 
molecular physiology–ecology agenda to link population 
and physiological and molecular ecology (e.g. Baldwin 
et al. 2001; Weston et al. 2008). In contrast, developmental 

Abstract Elucidating the developmental and genetic con-
trol of phenotypic plasticity remains a central agenda in 
evolutionary ecology. Here, we investigate the physiologi-
cal regulation of phenotypic plasticity induced by another 
organism, specifically predator-induced phenotypic plas-
ticity in the model ecological and evolutionary organism 
Daphnia pulex. Our research centres on using molecular 
tools to test among alternative mechanisms of develop-
mental control tied to hormone titres, receptors and their 
timing in the life cycle. First, we synthesize detail about 
predator-induced defenses and the physiological regula-
tion of arthropod somatic growth and morphology, lead-
ing to a clear prediction that morphological defences are 
regulated by juvenile hormone and life-history plasticity by 
ecdysone and juvenile hormone. We then show how a small 
network of genes can differentiate phenotype expression 
between the two primary developmental control pathways 
in arthropods: juvenoid and ecdysteroid hormone signal-
ling. Then, by applying an experimental gradient of preda-
tion risk, we show dose-dependent gene expression linking 
predator-induced plasticity to the juvenoid hormone path-
way. Our data support three conclusions: (1) the juvenoid 
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and physiological explanations for phenotypic plasticity in 
animals are much less frequent and less developed (for a 
recent review, see Flatt and Heyland 2011).

There are several animal examples detailing how endo-
crine signalling can mediate single trait responses to abiotic 
features of the environment (Table 1). Classic examples 
centre on arthropods and their two major developmental 
hormones—juvenile hormones and ecdysteroids. They 
include examples of endocrine control of polymorphism 
such as seasonal colour variation in butterfly wings (Roun-
tree and Nijhout 1995) and temperature regulation of col-
our morph in Manduca sexta (Truman et al. 1973). They 
also include examples of the endocrine control of thresh-
old traits (on–off; polyphenism) as examples of plasticity 
including butterfly wing patterning (Brakefield et al. 1998), 
sexual ornaments in horned beetles (Emlen and Nijhout 
1999) and temperature-dependent sex determination in 
Daphnia (Olmstead and LeBlanc 2007). The central feature 
of these examples is a response of the juvenoid and ecdys-
teroid hormone signalling pathways to an abiotic environ-
mental stress, producing change in a single trait. These 
examples (Table 1) provide valuable evidence that poly-
morphisms and polyphenisms are under endocrine control. 
Here, we extend such efforts to reveal endocrine control of 
phenotypic plasticity in response to another organism—the 
case of predator-induced phenotypic plasticity.

Predator-induced plasticity (i.e. predator-induced 
defences) has emerged across many taxa as an example 
of continuous phenotypic plasticity, despite years of being 

considered an on–off, threshold trait (Roff 2002). The 
plasticity is typically detected in three classes of traits: 
morphology, life history and behaviour. The ecological 
responses of freshwater vertebrates and invertebrates to 
predator cues have been well studied (e.g. Beckerman et al. 
2010; Dennis et al. 2011; Hammill et al. 2008; Hoverman 
and Relyea 2009, 2001b; Riessen 1999; Tollrian 1995b; 
Tollrian and Harvell 1999). Key findings from cladocera 
and rotifera (for reviews see Lass and Spaak 2003; Tollrian 
and Dodson 1999), and anuran and odonate species (e.g. 
Laurila et al. 2002; Relyea 2001a; Van Buskirk 2002) indi-
cate that predator-induced defences are continuous, mul-
tivariate, adaptive, confer a survival benefit, alter the dis-
tribution of populations and species, and can substantially 
influence population dynamics. The reaction norms for 
these induced defences (responses) are also rarely as steep 
as a simple polyphenism definition would suggest (see 
Dennis et al. 2011; Hammill et al. 2008).

The predator-induced variation in the timing of the life 
cycle and morphology that defines predator-induced plas-
ticity indicates that it is likely a function of variation in the 
temporal and spatial regulation of development. This sys-
tem thus offers one of the richest possibilities for extend-
ing our understanding about how endocrine physiology 
mediates developmental control of phenotypic plasticity, 
extending previous efforts limited to single trait responses 
to abiotic stress (Table 1). Here we provide a functional 
explanation of how predator-induced phenotypic plasticity 
is generated.

Table 1  Examples of endocrine-mediated polyphenisms (trait), the identified mechanisms and their environmental cues

Organism Polymorphism Mechanism Cue References

Butterflies Hindwing melanism and  
eyespot size

Ecdysteroid timing and  
duration

Seasonal: photoperiod
Temperature

Beldade and Brakefield (2002), 
Brakefield et al. (1998), Endo 
and Kamata (1985), Rountree 
and Nijhout (1995), Sawada 
et al. (2002)

Eyespot presence Ecdysteroid receptor  
expression

Seasonal: photoperiod
Temperature

Manduca sexta larvae Larval colour green/black JH titre Temperature Safranek and Riddiford (1975), 
Suzuki and Nijhout (2006)

Onthophagus beetles Horn growth Ecdysteroid pulse Body size Emlen and Nijhout (1999), 
Moczek and Emlen (1999)Horn size JH titre

Daphnia spp. Sex determination JH titre Seasonal: photoperiod
Temperature
Nutrition
Pop density

Hebert (1978), Olmstead and 
Leblanc (2002), Tatarazako 
et al. (2003)

Crickets Wing length JH titre Temperature
Photoperiod
Diet
Pop density

Zera and Bottsford (2001), 
Zera and Denno (1997)Ecdysteroid titre

Termites Caste differentiation JH titre Pheromone Hartfelder and Emlen (2005), 
Zhou et al. (2007)

Aphids Winged forms (alates) JH titre Seasonal: photoperiod
Temperature
Pop density

Hardie (1980), Hardie et al. 
(1985)
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Specifically, we show that predator-induced prey mor-
phological defences in Daphnia pulex are regulated in a 
dose-dependent manner by the juvenoid hormone signal-
ling pathway, which, along with ecdysteroids, form the 
major endocrine signalling pathways in most arthropods. 
Specifically, we show that evolution has favoured the har-
nessing of a major, highly conserved endocrine pathway 
in arthropod development to regulate the response to cues 
about changing environments (risk) from another organism 
(predator).

We present three sets of data central to this result. First, 
we present a concise and novel synthesis of predation and 
the physiological regulation of arthropod somatic growth 
and morphology, leading to a clear prediction that morpho-
logical defences are regulated by juvenile hormone and life-
history plasticity by ecdysone and juvenile hormone. Sec-
ond, we present a small gene network dominated by highly 
conserved nuclear receptors (Escriva et al. 2004) that can, 
via RT-qPCR, be used to distinguish between activity of the 
juvenile hormone and ecdysone signalling pathways under 
experimental conditions. Finally, we present experimen-
tal data on gene expression using this network to clearly 
show that predator-induced prey morphological defences in 
Daphnia pulex are regulated in a dose-dependent manner 
by the juvenile hormone pathway.

Methods

Our methods consist of four steps. First we document, via 
a synthetic review of the arthropod developmental biol-
ogy literature, that inducible defences in arthropods must 
be under hormonal control by the juvenoid or ecdyster-
oid hormone signalling pathway. In contrast to recent 
work focusing on neurotransmitters (Weiss et al. 2012), 
we focus our study on endocrine regulation. Environmen-
tal signals received by sensory apparatus are transmitted, 
usually via neurotransmitters and the nervous system, to 
the endocrine system, which then orchestrates appropriate 
phenotypic responses in target tissues. The effective inte-
gration of all these processes is common and important but 
the endocrine system is always required for phenotypic 
plasticity in life history and morphology, whereas neuro-
transmitters alone are sometimes sufficient for behavioural 
change.

Second, via the same arthropod development literature, 
we document a small gene network capable of distinguish-
ing, via RT-qPCR, the activity of either pathway under 
experimental conditions. Third, we use this network via 
RT-qPCR and experimental exposure of daphnids along a 
gradient of predation pressure to reveal which pathway is 
mediating the plastic response to predation risk.

Study system

We use Daphnia pulex, a model organism for ecological 
interactions, ecotoxicology, arthropod developmental biol-
ogy and environmental genomics (Colbourne et al. 2011). 
It is a common freshwater crustacean (water flea) that 
experiences predation risk from the phantom midge Chaob-
orous flavicans. The midge predator produces a low molec-
ular weight kairomone that induces changes in D. pulex 
life history and morphology (Tollrian and Von Elert 1994). 
Specifically, C. flavicans induces later age and larger size at 
maturity as well as prominent neckteeth during the second 
and third instars of development, corresponding to the age 
(size) classes most sensitive to midge predation (see Fig. 1 
and Tollrian 1995a). There is extensive genetic variation 
in these responses (i.e. genetic variation in plasticity), and 
the responses are adaptive (Beckerman et al. 2010; Ham-
mill et al. 2008; Tollrian 1995b). For example, the induced 
neckteeth can increase survival by up to 45 % (Hammill 
et al. 2008). These ecological patterns and decades of 
research make D. pulex a model ecological example.

Physiological review and discovery of the gene network

We investigated the arthropod literature on the regulation 
of somatic growth and morphology by juvenoid and ecdys-
teroid signalling in arthropods. These data provide detailed 
information on how the regulation of development by the 
endocrine system may determine patterns of growth, devel-
opment and morphology under predation risk. These data 
also identify a gene network capable of distinguishing, via 
RT-qPCR, the activity of either pathway under experimen-
tal conditions.

Kairomone exposure to reveal juvenoid or ecdysteroid 
control

In order to discriminate between juvenoid and ecdyster-
oid control of predator-induced plasticity using the gene 
network, D. pulex were exposed to predator chemical cues 
along a gradient of increasing predation risk and serially 
sampled to isolate RNA.

Daphnids were routinely maintained in hard artificial 
pond water (ASTM 2007), and fed the algae Chlorella vul-
garis at 21 °C in controlled-temperature rooms on a 16:8 
light cycle. We extracted kairomone from frozen Chao-
borus flavicans (Honka, Germany), following the method 
developed by Tollrian (see also Hammill et al. 2008; Toll-
rian 1995b).

To produce a gradient of predation risk, we exposed rep-
licate individuals independently to four concentrations of 
extracted predator cue (0, 0.1, 0.5, 1 µL mL−1).
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For each treatment, 60 third-generation mothers who had 
finished their second brood were each exposed to the relevant 
concentration of chemical cue. Exposures began when third-
brood embryos developed eyespots (approximately 24 h prior 
to release from the brood chamber). Each jar was checked 

hourly, and neonates (10–15) were collected at the time of 
brood pouch release. Neonates from three sets of 20 mothers 
for each treatment were pooled in RNALater for subsequent 
RNA extraction. We focused on expression at brood release 
because it is in the middle of the established perinatal time 

Fig. 1  Exposure to chemical 
cues from midge (Chaoborus 
flavicans) larvae results in a 
defended phenotype in Daphnia 
pulex. a Second-instar daphnid 
exhibiting a defended morphol-
ogy. b An undefended second-
instar daphnid

Dappu−EcRb Dappu−HB2 Dappu−HR3 Dappu−E75 Dappu−RXR
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Fig. 2  Relative expression of the five genes in the proposed mini 
gene network. Significant predator kairomone dose-dependent upreg-
ulation of Dappu-EcRb, Dappu-HR3 and Dappu-HB2 expression are 
consistent with an increase in juvenoid hormone titres. Inset: a five-
gene network, dominated by nuclear receptors central to arthropod 

development, that can discriminate between activity in the ecdyster-
oid and juvenoid endocrine pathways. Solid lines indicate upregula-
tion (more expression) and dashed lines indicate downregulation (less 
expression). Thicker vs. thinner lines indicate relative (qualitative) 
magnitudes of gene expression
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course of induced morphological change: embryo exposure 
to predator kairomones results in substantial morphological 
expression of neckteeth (Fig. 2a) on a pedestal at instar two, 
a time delay of ~3–4 days, with release of neonates from the 
brood pouch being in the middle (Laforsch and Tollrian 2004; 
Naraki et al. 2013; Parejko 1992).

RNA isolation and cDNA conversion

Samples were homogenized and RNA isolated from the 
homogenate using the SV Total RNA Isolation System 
(Promega), following the manufacturer’s instructions. RNA 
yield and purity were determined by absorbance (260 nm 
and 260/280 nm ratio, respectively) using a Nanodrop 
ND-1000 spectrophotometer. RNA was reverse-transcribed 
to cDNA with random hexamers and oligo DT primers 
using the ImProm-II Reverse Transcription system (Pro-
mega) and/or the HighCap RT kit (Applied Biosystems), 
following the manufacturer’s instructions.

Primer design

Genes were identified via our review and synthesis (see 
below). Primers for β-actin, EcRb, RXR, E75, HR3 and 
HB2 were designed using Primer3 and Amplify3X (v3.1.4) 
after locating EST libraries of the genes from wFleabase. 
Primers were developed as follows. Blast searches against 
the genes from other organisms and contigs were assem-
bled using CAP3. Contigs were then blasted against the 
Daphnia pulex genome. The resulting exon–exon spanning 
primers were: β-actin forward (f)-TGGTCAGGTCATCA 
CCATTG, reverse (r)-CTCGTGGATACCGCAAGATT; 
DappuEcRb f-TCGTCATCTCGGTCATGTGT, r-TGAACT 
ACCCTCCGAAGACG; DappuRXR f-GTTCAAGAGGA 
GAGGCAACG, r-AATCACTGGTGGCATCCATATC; 
DappuE75 f-CACTGGTTCCAATTGCTTTG, r-GTCTCG 
ATCGTAACGTCTTGC; DappuHR3 f-GGGCGTCCA 
TTATGGAGTCA, r-CGGAAGAAACCCTTGCAGC; Dap-
puHB2 f-CAAAGTCCTCCTCCCAAGC, r-CTGTTGG 
GCAACGTCAACTA.

rt-QPCR (quantitative real-time PCR) was performed (in 
procedural triplicate) with an Applied Biosystems Step-One 
real-time PCR machine using default parameters. Amplifi-
cation mixtures consisted of 2.5 µL SYBR Green PCR Mas-
ter Mix (Applied Biosystems), 10 nM primers, and 250 ng 
template cDNA in a total volume of 5 µL. Reactions were 
held at 95 °C for 10 min, followed by 40 cycles of 95 °C for 
15 s followed by 60 °C for 1 min. At the end of cycling, the 
melting temperatures of PCR products were determined to 
ensure no amplification of non-target DNA. The compara-
tive CT method (Cy0) was used to assess the relative levels 
of EcRb, E75, HB2, HR3 and USP normalized to mRNA 
levels of β-actin measured with the same sample.

Results

Endocrine control of predator-induced plasticity: a 
mini-review and synthesis

There are several independent lines of published evidence 
that, when combined, predict that predator-induced phe-
notypic plasticity in morphology and life history is under 
endocrine regulation by juvenoid and ecdysteroid signal-
ling. The evidence comes from detailed information on 
why development matters under predation risk and how 
the endocrine system regulates growth, development and 
morphology in arthropods. In the following paragraphs we 
offer a concise review of this evidence.

Why development matters under predation risk

Life history (e.g. size and age at maturity) and morphol-
ogy (e.g. defence structures) are two of the three most com-
mon classes of traits that respond to predation risk (the 
third is behaviour). In vertebrates and invertebrates, adap-
tive changes of >±10 % in the size and age at maturity and 
growth rate are not uncommon (Abrams and Rowe 1996; 
Benard 2004; Peckarsky et al. 2002; Relyea 2001a; Teplit-
sky et al. 2005). In arthropods (i.e. moulting organisms), 
such changes in the timing of the life cycle can only occur 
by shifting the number of, or the duration between, moults.

There are also particularly dramatic responses to preda-
tion risk where predator chemical cues induce de novo mor-
phological changes in either shape, colour or the appear-
ance of protuberances (Hoverman and Relyea 2009; Lass 
and Spaak 2003; Relyea 2001a, b; Tollrian 1995b). The 
same prey species can often show increases and decreases 
in size at maturity, age at maturity and growth rate, depend-
ing on whether they are exposed to large- or small-sized 
selective predators (Beckerman et al. 2010).

Such changes in the timing of maturation/metamorphic 
events and in morphology require major alternations of the 
physiological processes that regulate somatic growth and 
development—processes that are well understood in ver-
tebrates and invertebrates. In arthropods (the focus of this 
study), the timing and spatial patterning of development 
are regulated by the endocrine system and specifically by 
the juvenoid/ecdysteroid signalling pathway (see Flatt and 
Heyland 2011).

Endocrine mediation of growth, development 
and morphology in arthropods

Evidence from a wide range of arthropod species indi-
cates that two hormones oversee the developmental regu-
lation of the timing of moults and the inter-moult dura-
tion as well as the transition from juvenile to reproductive 
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adult: juvenile hormone and ecdysteroids (e.g. Cruz et al. 
2003; Davidowitz and Nijhout 2004; Flatt and Heyland 
2011; Gelman et al. 2002; Riddiford 1993; Riddiford et al. 
2003; Truman and Riddiford 2007). Furthermore, research 
on major morphological changes in insects identifies juve-
nile hormones as the major regulating factor (e.g. Berger 
and Dubrovsky 2005; Chang et al. 1993; Hall 1999), either 
directly as a transcriptional regulator of target genes or indi-
rectly through suppression or augmentation of ecdysteroid-
dependent transcriptional regulation (Berger and Dubrovsky 
2005; Jindra and Riddiford 1996). Essentially, existing 
data underpin and spawn our hypothesis that morphologi-
cal responses to predators in arthropods should be under the 
control of juvenile hormone, and that life-history responses 
to predators should be under the control of the interplay 
between ecdysteroid regulation of the moult and juvenile 
hormone limitation of maturation. This established develop-
mental detail, combined with knowledge of the continuous 
nature of predator-induced phenotypic plasticity in D. pulex 
and other arthropods, suggest the following formal predic-
tion: kairomones—external cues of risk from predators—
alter phenotypes by mobilising and mediating ecdysteroid 
and juvenoid hormone and hormone receptor expression in 
a dose-dependent manner, facilitating fine-scale, adaptive 
developmental changes in phenotype to predation risk.

How to discriminate between juvenoid and ecdysteroid 
signalling

The previous section defined our hypothesis that predator-
induced phenotypic plasticity in arthropods should be con-
trolled by the juvenoid and/or ecdysteroid signalling path-
ways. The literature on arthropod developmental control 
also reveals that gene expression patterns in a small gene 
network (Fig. 2), dominated by nuclear receptors, can dis-
criminate between whether the juvenoid or ecdysteroid 
pathway is correlated with phenotypic plasticity. In addi-
tion to supplying a formal tool for investigating physiologi-
cal regulation of plasticity, we show below that this gene 
network can also help identify the developmental control 
mechanism (i.e. changes in receptor or ligand expression 
profiles, see Nijhout 1999) underpinning this activity.

This network (Fig. 2) comprises five genes (referenced 
here to the Daphnia pulex genome by the prefix “Dappu-”) 
with orthologues throughout the arthropods: the two com-
ponents of the nuclear receptor heterodimer for ecdys-
teroids, Dappu-EcR and Dappu-RXR, and the “early” 
response genes Dappu-HR3, Dappu-E75 and Dappu-HB2 
(a haemoglobin gene). Four of these five gene products 
(the exception being HB2) are essential for moulting and 
metamorphosis in Tribolium (Tan and Palli 2008) and prob-
ably all arthropods (Erezyilmaz 2011; Heyland et al. 2011; 
King-Jones and Thummel 2005).

Figure 2 shows endocrine pathway specific expression 
patterns for ecdysteroid or juvenoid action. We derived 
these pathway-specific patterns of expression from the fol-
lowing detail. Upregulation of HR3 indicates involvement 
of the ecdysteroid and/or juvenoid pathways without dis-
crimination between them, as both pathways elicit a posi-
tive response (Hannas and LeBlanc 2010). In several taxa, 
E75 is unresponsive to juvenoids but upregulated by ecdys-
teroid pathway activation (Hannas and LeBlanc 2010; Soin 
et al. 2008). Moreover, E75 expression is coincident with 
ecdysteroid pulses in many other insects (King-Jones and 
Thummel 2005; Sullivan and Thummel 2003), is known 
to cycle its expression in response to ecdysteroids during 
the moult cycle in both insects and crustaceans (Priya et al. 
2010; Siaussat et al. 2004), and is a repressor of HR3 activ-
ity (Hannas et al. 2010). Its precise role during moulting in 
daphnids remains unclear, but we include it in our profiling 
due to its regulation of HR3 activity (Hannas et al. 2010).

In Tribolium, the haemoglobin gene HB2 is upregulated 
by juvenoids and downregulated by ecdysteroids (Par-
thasarathy and Palli 2009). Similarly, HB2 expression can 
be induced by juvenoids in both D. magna and D. pulex 
(Dm-HB2 and Dappu-HB2, respectively) (Rider et al. 
2005). If the same pattern (downregulation by ecdysteroids) 
is true of Dappu-HB2, expression changes in Dappu-HB2 
would provide discrimination between the two (juvenoids 
and ecdysteroids), with the caveat that oxygen tension may 
also alter the haemoglobin dissociation curve (Lambertsen 
et al. 1952) and therefore expression of Dappu-HB2. In this 
context, therefore, Dappu-HB2 may only be an appropriate 
indicator for laboratory studies. In D. magna, EcRb (Dm-
EcRb; Dm = D. magna) is downregulated by ecdysteroids 
and upregulated by juvenoids, while expression of its het-
erodimeric partner (Dm-RXR) is unaffected by either class 
of hormone. In insects, juvenoid mimics (e.g. methoprene) 
affect expression of EcRb variably: expression is margin-
ally upregulated at time points distal to ecdysis and down-
regulated by juvenoids near ecdysis (see Parthasarathy and 
Palli 2009).

These details combine to allow the gene expression 
pattern based discrimination of developmental pathways 
(Fig. 2). They provide a diagnostic tool for experimental 
evaluation of how environmental stress such as predation 
is captured by developmental processes to generate pheno-
typic plasticity. In the next two sections, we use this gene 
network to reveal the juvenoid pathway regulation of pred-
ator-induced plasticity.

Gene expression and pathway identification

We exposed D. pulex to a gradient of four midge kair-
omone concentrations (control + three concentrations; 
see “Methods”) and used RT-qPCR to assess expression 
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pattern in the Fig. 2 gene network along this gradient. The 
discriminatory power of our network revealed which hor-
mone pathway likely regulates predator-induced plasticity: 
juvenoids.

At brood release, we detect a correlated and very clear, 
predator-cue, concentration-dependent pattern of relative 
gene expression consistent with juvenile hormone action 
(Fig. 2). The same four kairomone concentrations also 
produce a sigmoid and increasing expression of morpho-
logical defence at second instar (see Dennis et al. 2011). 
Three genes, Dappu-EcRb, Dappu-HR3 and Dappu-HB2, 
are upregulated in a kairomone-dose-dependent manner 
relative to control conditions. The remaining two genes, 
Dappu-RXR and Dappu-E75, are neither up- nor downreg-
ulated. This pattern of expression is most coincident with 
the juvenoid expression profile (Fig. 2, inset). Our conclu-
sion is made more robust by the absence of Dappu-E75 up- 
and downregulation.

Discussion

By combining an experiment with D. pulex exposed or not 
exposed to Chaoborus kairomone with expression pro-
files from a small gene network capable of discriminating 
between developmental control hormone action, we have 
shown that juvenile hormone signalling is strongly impli-
cated in predator-induced plasticity in a predator cue, dose-
dependent manner (Fig. 2).

Our data demonstrate that an environmental signal (kai-
romone) received during embryonic development is able 
to co-opt juvenoid signalling for de novo production of a 
defensive structure. Juvenoid control of morphological 
change is well established in many arthropods (e.g. Cruz 
et al. 2003; Davidowitz and Nijhout 2004; Gelman et al. 
2002; Riddiford 1993; Riddiford et al. 2003; Truman and 
Riddiford 2007). Decades of insect research shows that the 
titre of juvenile hormone influences the phenotype in the 
next developmental stage.

Several workers have shown that juvenoids can influ-
ence daphnid morphology. Oda and colleagues (2011) 
exposed D. galeata to increasing concentrations of methyl 
farnesoate and fenoxycarb (pesticide juvenile hormone 
analogue), both of which generated allometric shifts in the 
relationship between head shape and body size. Further-
more, Miyakawa and colleagues (Miyakawa et al. 2013) 
have shown that JH analogues may change the percep-
tion of the cue, but they and we (Dennis and Beckerman, 
unpublished data) find no evidence that JH can directly 
induce neckteeth de novo in D. pulex. This indicates that 
the cue for de novo defence production is not the hormone 
(JH/MF), but the cue triggers variation in the endocrine 
control of morphology, presumably via JH interaction.

As we noted in the “Introduction”, changes in the timing 
of life-cycle events and morphology, hallmarks of predator-
induced plasticity, require major alternations of the physi-
ological processes that regulate somatic growth and devel-
opment—processes that are well understood in vertebrates 
and invertebrates. Decades of fundamental physiological 
research have shown that the juvenoid and ecdysteroid hor-
mones and signalling pathways are responsible for such 
regulation in the arthropods (Flatt and Heyland 2011; Rid-
diford 2008; Riddiford et al. 2003). Furthermore, evidence 
from vertebrates and nematodes such as C. elegans suggest 
that there may be similar core developmental pathways reg-
ulating development in most animals. This offers the tanta-
lising insight that there are, at least in the arthropods, core 
and quite conserved developmental processes that interface 
with the internal and external environment to shape devel-
opment (Flatt and Heyland 2011) and thus facilitate phe-
notypic plasticity, which is so often centred on variation 
in the timing of life-cycle events and morphology. As Flatt 
and Heyland (2011) reveal throughout their book, linking 
core developmental processes to peripheral cellular and 
physiological processes will provide the insight necessary 
to understand sources of variation and potentially targets of 
selection in life history and morphology.

Developmental control of predator-induced plasticity

The patterns of expression in the gene network (Fig. 2) fur-
ther allow us to reconstruct details about the developmen-
tal control mechanism for this dose-dependent effect of 
juvenile hormone. Developmental biologists suggest that 
changes in somatic growth and development in insects is 
controlled by variation in four features of endocrine regu-
lation (Nijhout 1999, 2003a, b): the titre, threshold, tim-
ing and sensitive period. The titre is the amount of a given 
signal (e.g. ligand: hormone/peptide). The effect of this 
titre depends on whether the amount exceeds a threshold. 
The action of the hormone involves not only surpassing 
a threshold, but doing so with timing that overlaps with a 
sensitive period defined by the receptor. An adjustment or 
change in any one of these four endocrine traits, as gener-
ated by an external cue, represents a mechanism of devel-
opmental control and a method by which adaptive plastic-
ity may arise in response to an environmental cue (Nijhout 
1999, 2003b). Furthermore, the amount of overshoot of the 
threshold by the titre, the accuracy of the timing and sen-
sitive period, and the titre of the receptor provide mecha-
nisms by which the phenotypic plasticity can be charac-
terised as a smooth reaction norm, rather than a discrete 
threshold trait.

Our data show a predator cue generated dose-dependent 
response in the major components of the juvenoid expression 
pathway. Combined with previous data on dose-dependent 
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morphological profiles (see Dennis et al. 2011; Hammill 
et al. 2008), our data indicate that the developmental control 
mechanism resides in a change in the titre of juvenoids, not 
a change in the threshold, timing or sensitive period. Specifi-
cally, in insects, E75 expression is coincident with ecdys-
teroid pulses (King-Jones and Thummel 2005); because 
Dappu-E75 expression is neither up- nor downregulated 
compared to controls, we can eliminate ecdysteroid titre 
changes between control and predator environments. Simi-
larly, as Dappu-RXR expression is unchanged, the EcR/RXR 
receptor expression appears unchanged; the upregulation of 
Dappu-EcRb is likely a result of juvenoid hormone expo-
sure, especially as neonates are far from ecdysis at this time 
(see above). The upregulation of Dappu-HR3 and Dappu-
HB2 also suggest juvenoid-like titre activity.

RT-qPCR and the detection of endocrine function

Our gene network reference tool, comprising highly con-
served nuclear receptors, offers a compelling alternative to 
more common methods of assaying hormone titres directly 
(e.g. radio-immunoassays), and one that has many benefits. 
First, the amount of biological and consumable material 
necessary to query the gene network is much less than the 
amount of haemolymph and consumables needed to use the 
most advanced tools for radio-immunoassays (RIA), HPLC, 
mass spectroscopy, etc. Importantly, the low biological mate-
rial requirements make it possible to query patterns in very 
small arthropods, which do not typically provide sufficient 
material for traditional methods. Second, the gene network 
provides a much more direct route to making inferences 
about developmental control mechanisms (see above), aug-
menting typical inferences from RIA and HPLC methods. To 
gain similar insight into developmental control mechanisms, 
RIA methods would require assays of multiple genotypes, 
each with different levels of phenotypic expression, as these 
methods only measure titres. While exploring variation in 
multiple genotypes is valuable in its own right, our approach 
indicates that it is not needed to be able to makes inferences 
about the mechanisms of developmental control.

The future of target gene approaches in the genomic era

Rapid advances in multi-omics approaches will soon super-
sede single/few-target techniques such as RT-qPCR and 
panel approaches such as microarrays. Falling costs and 
high-capacity “next-generation sequencing” mean that 
already it is economically viable and practical to capture 
an organism’s entire transcriptome simultaneously using 
RNAseq, rather than a select few targets or microarray. 
This transcriptome may at first seem attractive, and indeed 
from a data-generation perspective it is very attractive, but 
there are many pitfalls, and we advise a degree of caution 

in the use of such data-dense methods. First, there is a naïve 
assumption that all parts of the genome will be sequenced 
with the same probability, governed only by their initial 
starting abundance, and that that abundance will be propor-
tional in the sequenced dataset. Unfortunately, we already 
know that this is simply not true (Finotello et al. 2014; 
Lauss et al. 2013; Tuller 2014). Whereas RT-qPCR ensured 
“equality” through reaction optimization by designing spe-
cific (exon–exon junction spanning) primers for transcripts 
of interest, and matching amplification efficiencies, ampli-
con length and GC content, whole-transcript suffers from 
inherent biases in sequencing due to transcript length (Osh-
lack and Wakefield 2009), composition and overrepresenta-
tion of highly abundant transcripts (Young et al. 2010).

Second, genomes are rich with tens of thousands of 
genes, all of which can covary in concert and may depend 
on complicated coexpression and redundancy. Further, 
small changes in receptor occupancy (as little as 10 %) can 
have profound biological effects, or none. Therefore, subtle 
changes in expression that are biologically meaningful or 
gross changes in expression without biological significance 
can be incorrectly estimated, especially when many thou-
sands of tests are conducted: a biologically significant rela-
tionship may be found or missed purely by chance.

Together, these sequencing biases and type I and II errors 
combine to suggest a set of tools that are required when 
using genomic data to ask the types of questions we focus 
on here. Researchers must be aware of ever-improving 
statistical techniques that account for (known) sequenc-
ing biases (e.g. Beissbarth and Speed 2004; Finotello et al. 
2014; Kanehisa et al. 2008; Young et al. 2010; Zeeberg et al. 
2003). Researchers must synthesize and use existing biolog-
ical knowledge, often from multiple disciplines. Then, using 
a data-dense resource of whole-transcript sequencing in a 
post hoc directed examination of (a) target genes of known 
biological function (in a classical qPCR style approach) 
with (b) functional group analysis (e.g. gene enrichment 
data), great progress can be made in understanding genomic 
effects. However, we emphasize that it is essential to have 
a fundamental understanding of the biological processes of 
interest. That is not to say that whole-transcript studies are 
without merit; on the contrary—they are of great impor-
tance, especially when used as a library to be probed for 
explicit questions or to discover novel transcripts. However, 
we cannot stress enough the fundamental need to under-
stand the biology under investigation.

Summary

We have presented and evaluated here a developmental con-
trol hypothesis for the regulation and expression of predator-
induced phenotypic plasticity. Predator-induced morphologi-
cal plasticity is regulated by ligand dose-dependent juvenoid 
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signalling in D. pulex, and, based on our review of arthropod 
developmental biology, this may be quite a conserved process. 
We suggest that this, and the logical extension to joint juve-
noid/ecdysteroid regulation of life history, is a general mecha-
nism underpinning predator-induced plasticity in arthropods.

First, where changes in life history and morphology are 
present, and drawing on decades of arthropod endocrine–
moulting–morphology research, our eco-devo hypothesis 
(Sultan 2007) predicts the regulation of predator-induced 
changes in morphology by the juvenoid endocrine path-
way and of life history by a combination of ecdyster-
oid and juvenoid pathways. Second, we have presented a 
small gene network dominated by nuclear receptors that 
are vital for arthropod development and can discriminate 
experimentally between juvenoid and ecdysteroid action. 
Third, our endocrine pathway hypothesis is easily linked 
to established developmental control mechanisms, facilitat-
ing further prediction about the physiological regulation of 
plasticity and potentially the physiological axis on which 
genetic variation in plasticity is manifest.

Our results confirm a central role of the crustacean 
juvenile hormone (methyl farnesoate) in the induction of 
morphological change in juvenile instars of D. pulex. We 
show that the juvenoid pathway, as predicted, appears 
to regulate induced morphological defences, the central 
induced phenotypic change early in life in D. pulex. We 
also show that the developmental control of the juvenoid 
response is centred on the titre of gene products driving 
the expression. Our results, drawn from the expression of 
highly conserved genes in one of the most central endo-
crine signalling systems in arthropods, are likely to be 
generalisable to other species. The results of this experi-
ment complement previous research into abiotic forms of 
stress (see Table 1) and reveal juvenile hormone to be cen-
tral to processing stress.
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