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Abstract  

A novel local mesh refinement approach for failure analysis of three-dimensional (3-D) linear 

elastic solids is developed, considering both 3-D straight and curved planar cracks. The present local 

mesh refinement formulation is in terms of the extended finite element methods and variable-node 

hexahedron elements, driven by a posteriori error indicator. Our 3-D formulation using hexahedron 

elements rigorously embraces a posteriori error estimation scheme, a structural coupling scale-meshes 

strategy and an enrichment technique. Remeshing is only performed where it is needed, e.g., a vicinity 

of crack, through an error estimator based on the recovery stress procedure. To treat the mismatching 

problem induced by different scale-meshes in the domain, a structural coupling scheme employing 

variable-node transition hexahedron elements based on the generic point interpolation with an arbitrary 

number of nodes on each of their faces is presented. The 3-D finite element approximations of field 

variables are enhanced by enrichments so that the mesh is fully independent of the crack geometry. The 

displacement extrapolation method is taken for the evaluation of linear elastic fracture parameters (e.g., 

stress intensity factors - SIFs). To show the accuracy and performance of our 3-D proposed formulation, 

six numerical examples of planar 3-D straight and curved shaped cracks with single and mixed-mode 

fractures and different configurations are considered and analyzed. The SIFs computed by the 

developed method are validated with respect to analytical solutions and the ones derived from the 

conventional XFEM. Associated with an adaptive process, the present 3-D formulation allows the 

analysts to gain a desirable accuracy with a few trials, which is suited for practices purpose. 

 

 

Keywords: Fracture; XFEM; Error estimation; Adaptive; Variable-node element; 3D cracks; 

Hexahedron element. 
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1. Introduction 

Over the past few decades, studies on the numerical computations of fracture phenomena 

of materials and structures has progressed significantly, which have had a tremendous impact 

on engineering practice and design. Defects or cracks whose existence in structures is 

unavoidable have a strong effect on the integrity and performance of engineering materials and 

structures. Major cracks in structures must be fully considered to evaluate the residual strength 

of cracked structures, which could essentially provide valuable information and knowledge to 

the designers to mitigate the detrimental effects caused by cracks. Compared with the size of 

structures, the geometry of crack is often small, and in order to represent the geometry of such a 

crack, a fine mesh discretized for the cracked area is usually made. However, the computation 

for that is obviously time-consuming, especially if the whole structure in 3-D discretized by a 

fine mesh is taken. In some particular cases, the computational tasks even can not be conducted 

successfully. The costs may be saved significantly if a coarser mesh is used for region without 

cracks. As a result, a domain that comprises both fine and coarse meshes induces the 

mismatching problem of different meshes, and an appropriate technique to couple the fine and 

coarse meshes is hence needed.  

Furthermore, another important problem that is often encountered in the vicinity of crack, 

particularly near crack-tip, is the high gradients [1-3]. Modeling the high gradients using 

mesh-based methods usually requires a fine mesh in the vicinity of crack. Therefore, accurate 

solutions obtained by utilizing mesh-based methods (e.g., finite elements) are the results 

derived from a model in which a fine mesh around the crack is used, while a coarser mesh is for 

the rest of the body. The use of different meshes in such high gradient model also causes the 

mismatching problems, and a structural coupling technique to link the meshes at different levels 

is mandatory.  

The numerical difficulty for the adoption of a non-uniform mesh is the treatment of 

transition elements which have hanging nodes. Numerous special techniques have been 

developed for treating the mismatching problems caused by different meshes such as the 

Lagrange multipliers [4], projection method [5], penalty function parameters [6], mortar 

method [7], Arlequin method [8]. Belytschko et al. [9] introduced a multiscale aggregating 

discontinuity method to treat the discontinuity at macroscale level via the extended finite 
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element method (XFEM) [10]. The underlying characteristic of their model lies in the treatment 

of material instabilities occurring in the micromodel, while an equivalent discontinuity is 

injected into the macromodel. The method was then applied to the analysis of micro-macro 

failure of composites [11, 12]. Plews and Duarte [13] developed a bridging multiple structural 

scales aimed at resolving the challenging multiscale phenomena within the framework of the 

generalized FEM with global-local enrichment functions. Loehnert and Belytschko [5] reported 

an interesting work that combines the multiscale projection method and the XFEM for 2-D 

macrocrack/microcrack at different length scales. With the aid of the projection method, the 

resulting fine-scale stress fields are hence estimated onto the coarse-scale. There are several 

other multiscale models available in literature, e.g., see Refs. [14-18], and the underlying idea 

of those methods is to impose constraints at nodes on mismatching interfaces to connect 

different scale meshes. Those methods however often require some modifications on the 

system matrix whenever the constraints are imposed [19]. Kumar et al. [20, 21] proposed a 

homogenized XFEM to simulate fatigue crack growth and a virtual node XFEM to represent 

kinked cracks based on a non-uniform mesh. In order to ensure the continuity in the 

displacement fields, six-node and five-node transition elements were developed, respectively. 

Recently, the variable-node transition elements [19, 22], which have an arbitrary number 

of nodes on the element sides and faces, are developed based on the generic point interpolation 

for solving engineering problems. By using the variable-node elements, the mismatching 

interfaces are converted into matching interfaces in a straightforward manner, thus the system 

matrix does not need to be modified, an effective feature that does not valid in some of the 

previous methods.  

In light of XFEM developments, the authors have recently applied the XFEM to fracture 

mechanics problems in multiphase homogeneous and nonhomogeneous functional smart 

composite materials under static, dynamic and thermal coupled electromechanical loading 

conditions, e.g., see Refs.[23-28]. Fatigue crack growth of interfacial cracks in bi-layered 

functionally graded materials is also studied using the XFEM [29]. Recently, XFEM simulation 

for cohesive crack growth in concrete structures with two new solution algorithms is presented 

[30]. A stabilized discrete shear gap extended element is developed for cracked Mindlin plates 

considering distorted mesh [31] and cracked functionally graded plates [32]. The XFEM for 
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hydraulic fracturing in rock mass is analyzed in [33]. More recently, the authors proposed an 

enhanced XFEM using consecutive-interpolation procedure for accurately extracting stress 

intensity factors as detailed in [34]. The authors have found that the standard XFEM is well 

suited for modeling problems with non-smoothed solutions but to make the method more 

flexible and effective in practical applications, we devote our motivation to the novel approach 

that is reported in the present manuscript.  

It is believed that the determination of accurate fracture parameters of straight or curved 

cracks in 3-D configurations with mixed-mode loading remains a great challenge in the 

computational fracture mechanics. Pathak et al. [35] proposed a simple and efficient XFEM 

approach for 3-D cracks. A crack front is divided into a number of piecewise curve segments to 

avoid an iterative solution. In crack front elements, the level set functions are approximated by 

higher order shape functions which assure the accurate modeling of the crack front. Later, they 

applied the method to model fatigue crack growth simulations of 3-D problems [36, 37]. 

Sharma et al. [38] employed XFEM to obtain the stress intensity factors of a semi-elliptical part 

through thickness axial crack. Level set functions are approximated using higher order shape 

functions in the crack front elements to ensure the accurate modeling of the crack. This paper 

particularly focuses on the development of an effective and accurate local mesh refinement 

XFEM (Lm-XFEM) using hexahedron elements to accurately estimate linear elastic fracture 

parameters of both planar 3-D straight and curved cracks. The proposed approach runs with an 

engine embracing three components of tackling different tasks, an adaptation algorithm for 

local mesh refinement, an enrichment scheme for capturing the cracks, and a coupling method 

for treating mismatching meshes in the model.  

In the present Lm-XFEM formulation, an adaptive algorithm whose role is to refine the 

elements is required. The elements to be refined have been detected by a posteriori error 

estimation algorithm. The adaptive procedure using a posteriori error estimation in terms of the 

XFEM is adopted from the work done by Prange et al. [3]. The Zienkiewicz and Zhu error 

estimator [39] is used and that is based on a stress smoothing technique. The enhanced 

smoothed stresses incorporating the discontinuities and singularities induced by cracks are 

recovered, by which the error estimation for arbitrary distributed cracks can be made. It is noted 

that every stress component is recovered separately and the nodal enhanced smoothed stresses 
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are recovered with a least square fit. An error indicator applied to subsequently refined meshes 

is gained with a relative error, and every element with a relative error exceeds a given specified 

value of tolerance error is then refined with a set of subdivision elements. For further 

information, interested readers can refer to [2, 3, 18].  

The Lm-XFEM utilizing the variable-node hexahedron elements [19, 22] with an arbitrary 

number of nodes on each of their faces is to couple the meshes at different levels; while the 

enrichment scheme [10, 40] for describing the discontinuities induced by the crack surfaces and 

the singularities because of crack front is taken. Notice that the variable-node hexahedron 

elements [19, 22] are further extended to carry cracks in this work. In fact, unlike the problems 

with smoothed solutions, the problems under investigation involving cracks (or non-smoothed 

solutions type) require not only a regular variable-node element, but also a variable-node 

element that can carry crack. As can be seen in the subsequent sections the variable-node 

hexahedron elements can be cut by a crack or contain a crack-tip, which do exist in the present 

model. Therefore, such cut and crack-tip variable-node hexahedron transition elements must be 

developed as well to fully assure the compatibility of the configuration, the convergence of the 

solutions or avoid the undesirable behaviors.  

The Lm-XFEM enables one to utilize a refined mesh only in the vicinity of the crack 

where it is required, and the matching interfaces between different meshes are directly obtained. 

Therefore, small crack sizes can be considered in the analysis of the whole large structures and 

the accuracy of the solutions around the cracks can be significantly improved with a low cost.  

More importantly the accuracy of the results is controllable.  

It is also worth noting that the traditional fixed-node element is one special case for the 

variable-node elements, hence the variable-node hexahedron elements can be implemented 

within an existing 3-D XFEM computer code with little modification and effort. The 

Lm-XFEM associated with an adaptive process allows the users to achieve desired accuracies 

with some trials. Another important point is that each node of the variable-node hexahedron 

element has its own degree of freedom and a symmetric system matrix is constructed in the 

same way as the standard FEM [19]. 

It is known that the most important characterizing fracture parameters to represent the 

strength of the singular fields at the crack tips in 2-D and crack front in 3-D are the stress 
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intensity factors (SIFs). Several well-known methods have been proposed to determine the SIFs, 

and in this paper the displacement extrapolation method near the crack tip [41] is adopted for 

our 3-D straight and curved cracks. We will again discuss this issue a bit more detail in the 

subsequent sections. Basically, the displacement extrapolation method can be used for direct 

evaluation of the SIFs according to the relative crack surface displacements.  

It is very important to mention here that our aim is to develop a novel effective local mesh 

refinement in terms of XFEM for the simulation of cracks in 3-D, and thus this paper does not 

devote to a micro-macro multiscale failure analysis. A misleading/misunderstanding of 

multiscale failure of solids in terms of homogenization frame however should be avoided. 

The body of paper is structured as follows. In Section 2, the 3-D Lm-XFEM formulation is 

presented in which the variable-node hexahedron elements to link the different scale elements, 

a posteriori recovery-based error estimator for the adaptive purpose, numerical integration, 

enriched displacement approximations, etc. are detailed. Computation of 3-D stress intensity 

factors (SIFs) using the displacement extrapolation method is briefly described in Section 3. 

Numerical examples are analyzed and discussed in Section 4, and some conclusions and 

outlook drawn from the study are given in Section 5.   

 

2. Formulation of three-dimensional local mesh refinement XFEM 

2.1 Enriched finite element approximation 

The underlying idea of the XFEM is that the standard finite element approximation is 

locally enriched by additional functions based on the partition of unity to model the 

discontinuities to be independent of the meshes. For a cracked medium, the extended 

displacement approximation can be written as [10] 

[ ]
cut tip

4
h

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s

i i j j j k k k
i j k

N N H H N F Fα α α
α =∈ ∈ ∈

⎡ ⎤= + − + −⎣ ⎦∑ ∑ ∑ ∑
N N N

u x x u x x x a x x x b  (1)

where iu  is the vector of nodal degrees of freedom defined in standard finite elements, ja  and 

kαb  are the vectors of nodal enrichment variables; ( )iN x  denote the standard finite element 

shape functions. Because of the enrichment, the discretized nodes of entire domain are 

generally categorized into three different sets: (a) sN defines the set of all nodes in the 
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discretization; (b) cutN is the set of nodes whose basis function support is entirely split by the 

crack and are enriched with a discontinuous Heaviside function ( )H x . The function takes on 

the value +1 above the crack and -1 below the crack; and (c) tipN  is the last one that defines the 

set of nodes enriched with the asymptotic crack-tip enrichment functions ( )Fα x ( 1, ,4)α = A . 

The set tipN represents the set of nodes whose basis function support is partly split by the crack.  

To model the crack front and to represent the crack-tip fields in 3-D isotropic elasticity 

computation, the 2-D crack-tip branch enrichment functions ( )Fα x  are used in elements which 

contain the crack front, and are given by  

( ) , 1, ,4 sin cos sin sin cos sin
2 2 2 2

F r r r rα
θ θ θ θα θ θ⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

Ax  (2)

where r  and θ  are the crack-tip polar co-ordinates. 

In XFEM, crack surfaces are often described by using the level sets. Two signed distance 

functions are defined to describe a 3-D crack. Two iso-zero level sets can define the crack 

location, and the enrichment type of each node can be determined according to the value of 

nodal level set function [42]. Sukumar et al. [40] discussed the computational geometry issues 

associated with the representation of the crack and the enrichment of the finite element 

approximation in detail.  

Remark #1: It is important to point out here that the 2-D crack-tip branch enrichments in 

Eq. (2) are also valid for 3-D crack problems. Preceding studies [40, 42] already indicate that 

the asymptotic fields are two-dimensional in nature in the neighborhood of the crack front in 

3-D problems. Also notice that only the first term of the enrichment functions is discontinuous 

while others are added to enhance the accuracy in elastic fracture mechanics problems. The 2-D 

branch functions in Eq. (2) span the near-tip asymptotic solutions for an elastic crack in two 

dimensions, and more importantly, Sukumar et al. [40] and Moës et al. [42] have found that 

such 2-D basis to be quite adequate accuracy for 3-D crack problems.  

Remark #2: Blending elements do exist in the displacement approximation shown in Eq. 

(1). Blending elements in the XFEM may reduce the overall convergence rate as stated in [43]. 

Some approaches have been proposed to treat the blending elements, and these approaches may 

be divided into four categories: corrected or weighted XFEM [44, 45], suppressing blending 
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elements by coupling enriched and standard regions [43, 46], hierarchical shape functions in 

blending elements [47], and assumed strain blending elements [48]. In this study, the blending 

element issue is not considered, but it would be a potential work for our future study. 

 

2.2 Linkage meshes technique using variable-node transition elements  

One layer of variable-node transition elements exists between two different scale elements 

as schematically represented in yellow in Fig. 1 for hexahedron elements. The variable-node 

elements [19], which have an arbitrary number of nodes on the element faces, with special 

bases that have slope discontinuities in 3-D domains, and the elements retain the linear 

interpolation between any two neighboring nodes. As stated by Sohn et al. [19] or Lim et al. [22] 

that the variable-node elements can provide a flexibility to resolve non-mismatching mesh 

problems like the mesh connection and adaptive mesh refinement. It hence motivates us to 

adopt the variable-node elements to solve the mismatching problems of different scale meshes 

in the present formulation.  

 

 

(a) 

 

(b) 

Fig. 1 Hexahedral meshes discretization of a straight edge crack in a 3-D solid containing two 

different scale hexahedron elements (a). Schematically showing one layer of variable-node 

transition hexahedron elements connected two different meshes as marked in yellow and its 

front view (b). The blue line represents the crack.  

Let us consider the approximate displacements h ( )u ȟ  for ( )u ȟ  by the point interpolation, 
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with pN  based-polynomials, h ( )u ȟ  can then be expressed as follows: 

( ) ( )h

1

( )
pN

T

i i
i=

= =∑u ȟ N ȟ u a p ȟ  (3)

where pN  is the number of sampling points in the point interpolation;  

0 0

0 0

0 0

i

i i

i

N

N

N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N  (4)

is the shape function matrix, in which 
iN  is the shape function that is associated with node i; 

[ ]T

i i i iu v w=u  is the nodal variable vector; Ta  is the 3 × pN  matrix of the unknown 

coefficients while ( )p ȟ  is the pN  × 1 column vector of the polynomial basis.  

For the eight-node hexahedron element, the polynomial basis can be given by 

( ) [ ]T
1       ξ η ζ ξη ηζ ξζ ξηζ=p ȟ  (5)

where ξ  , η  and  ζ  are the local coordinates in the isoparametric element. 

The point interpolation follows that is then expressed as 

( ) ( )h T T -1( ) = =u ȟ a p ȟ U q p ȟ  (6)

with 

[ ]1 8...=q p p (7)

[ ]T

1 8...=U u u  (8)

From Eqs. (3) to (8), the shape functions of the eight-node hexahedron element are 

obtained and are written in general form as  

( ) ( )( ) ( )1
1 1 1+

8i i i iN ξξ ηη ζζ= + +ȟ  (9)

By adding some extra special basis to meet the point interpolation characteristics, 

variable-node elements can then be generated. Basically, the choice for the extra special basis 

often depends on the interpolation type that is required on the element-surfaces. A linear 

variable-node hexahedron element, that is called as a (8+j+k+l+p+q+r)-node element, all 

nodes can be divided into 7 types as follow: Type 1: 8 corner nodes of the hexahedron element; 

Type 2: j nodes on the edges of = 1ξ ± ˈ = 1η ± , and 1ζ ≠ ± ; Type 3: k additional nodes on the 
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edges of = 1η ± , = 1ζ ± , and 1ξ ≠ ± ;  Type 4: l additional nodes on the edges of = 1ξ ± , = 1ζ ± , 

and 1η ≠ ± ;  Type 5: p additional nodes on the surfaces of = 1ξ ± ; Type 6: q additional nodes on 

the surfaces of= 1η ± ; and Type 7: r additional nodes on the surfaces of= 1ζ ± . They are 

schematically depicted in Fig. 2. The polynomial basis can be given by  

[( ) 1,  ,  ,  ,  ,  ,  ,  ,ξ η ζ ξη ηζ ξζ ξηζ=p ȟ 9 9 9( ( ))( ( )) ,  ,sign signξ ξ η η ζ ζ+ + − A

8 8 8( ( ))( ( )) ,j j jsign signξ ξ η η ζ ζ+ + ++ + − 8 1 8 1 8 1( ( ))( ( )), ,j j jsign signξ ξ η η ζ ζ+ + + + + +− + + A

8 8 8( ( ))( ( )),j k j k j ksign signξ ξ η η ζ ζ+ + + + + +− + + 8 1 8 1 8 1( ( )) ( ( )),  ,j k j k j ksign signξ ξ η η ζ ζ+ + + + + + + + ++ − + A

8 8 8( ( )) ( ( )),j k l j k l j k lsign signξ ξ η η ζ ζ+ + + + + + + + ++ − + 8 1 8 1 8 1( ( )) ,  ,j k l j k l j k lsignξ ξ η η ζ ζ+ + + + + + + + + + + ++ − − A

8 8 8( ( )) ,j k l p j k l p j k l psignξ ξ η η ζ ζ+ + + + + + + + + + + ++ − − 8 1 8 1 8 1( ( )) ,  ,j k l p j k l p j k l psignξ ξ η η ζ ζ+ + + + + + + + + + + + + + +− + − A

8 8 8( ( )) ,j k l p q j k l p q j k l p qsignξ ξ η η ζ ζ+ + + + + + + + + + + + + + +− + − 8 1 8 1j k l p q j k l p qξ ξ η η+ + + + + + + + + + + +− − , 

8 1( ( )),  ,j k l p qsignζ ζ + + + + + ++ A
T

8 8 8( ( ))j k l p q r j k l p q r j k l p q rsignξ ξ η η ζ ζ+ + + + + + + + + + + + + + + + + +
⎤− − + ⎦          (10) 

The corresponding ( )i=q p ȟ  and T
U  are given by 

T

1 8i j k l p q r... ... + + + + + +⎡ ⎤= ⎣ ⎦U u u u  (11)

From Eq. (5), the shape functions of the (8+j+k+l+p+q+r)-node element can be obtained 

as 

( )T -1

1 8 j k l p q rN , ,N + + + + + +⎡ ⎤ =⎣ ⎦A q p ȟ  (12)

Furthermore, the shape functions of a typical 3-D variable 13-node hexahedron element 

are depicted in Fig. 3. It is noted that the shape functions at each node possess the Kronecker’s 

delta function property.  
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Fig. 2 Schematic notation of a (8+j+k+l+p+q+r)-node element and the definition of its 

division into seven types of different grouped nodes. 
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(a) 

(b) 

Fig. 3 A typical 3-D variable 13-node hexahedron element (a) and its representative shape 

functions possessing the Kronecker’s delta function property at each node.  
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2.3 Recovery based error estimator 

By employing an adaptive refinement procedure, an error estimator must be defined in the 

model to detect elements that whose determinable relative errors exceed a specific tolerance are 

refined. 

2.3.1 Recovery of the stress fields 

In the present work, the recovery of the stress fields can be revised according to the 

Zienkiewicz–Zhu error estimator [39]. Basically, the enhanced smoothed stresses are recovered 

by projecting the element stresses onto the nodes, and by interpolating the nodal stresses with 

the same ansatz functions that are being used for calculating the displacements. In order to 

accurately reflect stress discontinuity along crack face as well as stress singularity at crack tip, 

Prange et al. [3] adopted the asymptotic stress fields in linear elastic fracture mechanics as the 

crack-tip branch enrichment functions for the smoothed stresses. The approximation of 

smoothed stresses can be written as 

3

11, 11, 11,
1

3

22, 22, 22,
1

3

33, 33, 33,
1

3

12, 12, 12,
1

13, 13,

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

k k

k k

k k
s

i i j j j k
i j

k k

G x G x b

G x G x b

G x G x b
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α α α
α

α α α
α

α α α
α

α α α
α

α

σ σ
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=
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∈ ∈ ∗

=
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⎡ ⎤= + − +⎣ ⎦
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−

∑

∑
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13,
1
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1

( )
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      (13) 

where iσ
∗ , ja∗  and ,pq kb∗  reflect the nodal degrees of freedom of the enhanced smoothed stresses. 

pq,G α are the crack tip enrichment functions.  

For the 3-D isotropic elasticity, the crack-tip enrichment functions pq,G α  are defined as 

[53] 
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1 3
cos 1 sin sin

2 2 2
G

r

θ θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                                           (14a) 
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11,2
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θ θ θ− ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                                         (14b) 

11,3 0G =                                                                                               (14c) 
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                                          (14d) 
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                                                 (14e) 

22,3 0G =                                                                                              (14f) 
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                                                 (14g) 
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2 2 2
G

r

θ θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                                        (14h) 

12,3 0G =                                                                                             (14i) 

13,1 13,2 13,3

1
0, sin

2
G G G
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θ⎛ ⎞= = = − ⎜ ⎟
⎝ ⎠

                                                 (14j) 

23,1 23,2 23,3

1
0, cos

2
G G G

r

θ⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

                                                 (14k) 

( )33,1 11,1 22,1G G Gν= +                                                                         (14l) 

( )33,2 11,2 22,2G G Gν= +                                                                      (14m) 

( )33,3 11,3 22,3G G Gν= +                                                                       (14n) 

where ν  is Poisson’s ratio. 

In order to fully define the smoothed stress field, we need to evaluate the coefficients ∗ı , 

∗a  and ∗b , which is often accomplished by minimization of the square of the L2 norm of the 

difference between the XFEM stress field and the smoothed stress field over the whole domain, 

i.e., 
2
d mins

Ω

− Ω→∫ ı ı  (15)
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where x y z xy xz yzσ σ σ τ τ τ⎡ ⎤= ⎣ ⎦ı is the stresses computed by means of the 

displacement field of the XFEM solution. 

From Eq. (15), the following linear equation system can be obtained 
* =AȤ B  (16)

where * * * * T[   ]=Ȥ ı a b  is the vector of nodal unknowns in the smoothed stress field, and A  

and B  are the coefficient matrix and nodal coefficient vector, respectively. 

The element contribution to A  is expressed as follows: 

a b
ij ij ij

a a a a b
ij ij ij ij

b b a b b
ij ij ij

σ σ σ σ

σ

σ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
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⎡ ⎤
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⎢ ⎥⎣ ⎦

a a a

a a a a

a a a

 (17)

where 

( ) ( ); , , ,
e
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(24)

and the element contribution to B  is as follows 

a b
i i i i

σ ∗ ∗ ∗⎡ ⎤= ⎣ ⎦b b b b  (25)

e
i i dσ σ σ

∗ ∗

Ω
= Ω∫b B  (26)

e

a a
i i dσ
∗ ∗

Ω
= Ω∫b B  (27)

e

b b
i i dσ
∗ ∗

Ω
= Ω∫b B  (28)

 

2.3.2 Error estimator  

As the error estimator is based on a stress smoothing method, the nodal enhanced stresses 

are hence recovered with a least square fit. The L2 norm error of stresses for element i  is 

computed at the element level by the following equation [3] 

( ) ( ) ( )1
d

e

Ts s

e

err i
Ω

= − − Ω
Ω ∫ ı ı ı ı  (29)

with eΩ  being the area of the element. The maximum L2 norm stress of the elements is maxerr , 

then the relative discretization error for element i  is estimated as  

( ) ( )
max

err
100%

err

i
iη = ×  (30)

This factor is known as an error indicator applicable to subsequently refined meshes, and every 

element (called parent elements) with a relative discretization error greater than a specified 

permitted value is refined with a set of sub-elements (called children elements). In this 3-D 

work, a set of 3 3 3× × sub-division elements or children elements is used throughout the study 
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unless stated otherwise. One must be noted that this adaptive refinement procedure naturally 

leads to incompatible hanging nodes between parents and children elements. However, the 

incompatible feature of the meshes is then merged by the aid of the variable-node transition 

elements [19, 22]. 

The L2 norm error of the stresses for the whole domain is then calculated by 

( ) ( )Total d
e

Ts serr
Ω

= − − Ω∫ ı ı ı ı  (31)

 

2.4 Numerical integrations 

In the present Lm-XFEM, there exist different types of elements mainly induced by cracks 

and different scale meshes. The numerical integration used for those elements is crucial and 

important to the success of the approach. The influence of the numerical integration on the 

performance and the accuracy of the XFEM in general or the present Lm-XFEM in particular is 

not trivial. Previous efforts have devoted to the development of effective and accurate methods 

for the numerical integration in the context of the XFEM. Relevant references are not given 

here due to the sake of brevity of the manuscript, but interested readers may find them in the 

literature effortlessly.  

To ensure the strain field to be adequately integrated, the following integration schemes 

are utilized in the present formulation.  

(1) Eight-node hexahedron elements: For the eight-node hexahedron elements, the 

conventional second-order Gaussian quadrature scheme is employed for treating elements that 

do not contain any enriched nodes. For the elements that include enriched nodes (but are not cut 

by the crack), high-order Gaussian quadrature rule is handled to improve the accuracy of the 

results. However, it needs a special treatment of the numerical integration for the elements that 

are cut by a crack or contain a crack-front, called “cut element” and “crack-front element”, 

respectively. The treatment can be fulfilled by partitioning the cut or split elements and 

crack-front elements into sub-tetrahedrons, as schematically shown in Fig.4, whose boundaries 

align with the crack geometry, e.g., see also Refs.[10, 40] for more information. In the 

sub-tetrahedrons, high-order Gaussian quadrature rules are often taken to ensure and improve 

the accuracy of the results. Nonetheless, the use of the Gaussian points for all the computations 
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is detailed in the numerical examples section. 

 

 

(a) 

 

(b) 

Fig. 4 Generation of sub-tetrahedrons for the quadrature: element cut by a crack (a); and 

element containing a crack-front (b). The red represents the crack surface. 

 

(2) Variable-node hexahedron elements: Since the variable-node elements have been 

integrated into the model, treating the numerical integration for those variable-node elements 

that neither contain any crack nor cut by a crack is briefly described here. The nodal shape 

functions are computed through Eq. (12), and the slope discontinuity of the shape functions 

may give rise to the inter-subdomain boundaries. To overcome the slope discontinuity in the 
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numerical integration, sub- hexahedrons are hence generated, where the shape functions still 

show the linear interpolation within a sub-hexahedron, shown in Fig. 5. The standard 

second-order Gauss quadrature rule can then be applied for those sub- hexahedrons.  

 

 

Fig. 5 Generation of quadrature sub-domains for a regular variable-node hexahedron element 

which neither cut by a crack or nor contain a crack. The solid points represent the nodal points, 

while the hollow points represent the supplementary points.  

 

(3) Fully cut or split variable-node hexahedron elements: When the mesh is subsequently 

refined by more than one step of refinement, the variable-node transition elements may be split 

by a crack or in other words, a fully cut variable-node element does appear, as a result of 

representing in Fig. 6. In such circumstance, a special treatment required for the numerical 

integration of the fully cut variable-node elements is needed. Sub-division of the cut 

variable-node hexahedron element is performed as schematically depicted in Fig. 7a, and 

sub-hexahedrons are then obtained. All sub-hexahedrons are denoted by the term “(a)” in the 

figure, meaning that they are thought as the “cut elements” and their numerical integration is 

hence treated the same as that for regular cut elements.  

(4) Crack-front variable-node elements: In some other particular cases, the variable-node 

transition elements may contain a crack as sketched in Fig. 7b. Although this type of element 

does not appear to any numerical examples examined in the present manuscript the authors, 

however, decide to develop it because of the flexibility and applicability of the computer codes. 
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The treatment of the numerical integration for this case is similar to the previous case of fully 

cut variable elements, but it is a bit more complicated than the case described in Fig. 7a. For this 

element, we first bypass or ignore the presence of the crack, sub-hexahedrons are generated at 

this stage as schematically shown in Fig. 7b. These sub-hexahedrons can then be divided into 3 

types. Type 1: elements that are cut by the crack, denoted by the term “(a)” that is the same as in 

Fig. 7a; Type 2: elements that contain a crack-front, denoted by the term “(b)”; and Type 3: 

regular elements that neither contain any crack nor cut by crack. Then, the Gauss quadrature 

scheme is used for the numerical integrations of those types of sub-elements. 

Once again, the special treatment of the numerical integration in the present codes as 

described above is necessary since it is to ensure the convergence of the solutions or avoid some 

undesirable situations.   

 

 

Fig. 6 Hexahedral meshes discretization of a straight edge crack in a finite 3-D solid obtained 

by two steps of refinement. A fully cut variable-node hexahedron element appears in the model 

when the mesh is refined up to the second step of refinement. The larger layer of variable-node 

transition elements as marked in yellow obtained by the first step of refinement, while the 

smaller layer, also marked in yellow, is gained by the subsequent second step. It is obvious to 

see a fully cut variable-node hexahedron element appeared therein. The blue line represents the 

crack. 
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(a) 

 

(b) 

Fig. 7 Generation of quadrature sub-domains for a variable-node hexahedron element: A fully 

cut variable-node hexahedron element (a); and a crack-front variable-node hexahedron element 

(b). The solid points represent the nodal points, while the hollow points represent the 

supplementary points. The crack surface is marked and filled in red. 

 

2.5 Numerical implementation 

Before closing this section, let us summarize the main solution procedure of the whole 

problem by using the proposed method: 
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(1) The problem domain is discretized with coarse-scale meshes, without considering the 

crack shape and location.  

(2) Loop over the number of refinement. 

a. Enriched nodes are selected using the level set method. 

b. Assemble the global stiffness matrix and load array. 

c. Solve the governing equations considering the constraint conditions. 

d. Calculate the smoothed stress field through Eq. (13). 

e. Calculate the L2 norm error of the stresses for each element through Eq. (29). 

f. Calculate the relative error for each element through Eq. (30). 

g. The elements in which the relative error exceeds the tolerance are refined.  

(3) Evaluate the stress intensity factors. 

 

3. Stress intensity factors computation 

In linear elastic fracture mechanics for solids, the stress intensity factors (SIFs) are the 

most important characterizing fracture parameters to represent the strength of the singular fields 

at the crack tips. The SIFs can be obtained based on the results from three-dimensional local 

mesh refinement XFEM. Several previous methods have been proposed to determine the 

SIFs, such as the displacement extrapolation method near the crack tip [41], the virtual crack 

extension method [49], the virtual crack closure method [50], and the M-integral method [51]. 

Though the M-integral method has found to be one of the best methods for two-dimension 

problems, the accurate determination of the SIFs based on the M-integral method, especially for 

three-dimensional curved crack, is related to the integration path issue, and the relationship 

between them has not been well interpreted yet. González-Albuixech et al. [52] pointed out that 

the domain extraction is controlled through the use of a specific function dependent upon the 

level set coordinates, while Moës et al. [42] took the domain as a parallelepiped one. The 

displacement extrapolation method can be used for direct evaluation of the SIFs according to 
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the relative crack surface displacements. Throughout this study, the displacement extrapolation 

method is employed for estimating the SIFs for our 3-D numerical examples.  

Nevertheless, future works would be interesting if the M1-integral method could be 

integrated into the present formulation to extract the fracture parameters. In fact the authors 

have made some preliminary attempts to the use of the M1-integral method for extracting the 

SIFs of planar 3-D straight and curved cracks in the framework of the Lm-XFEM. The accuracy 

that we have observed however does not reach our final goal as less accuracy is observed in the 

SIFs exacted by the method for 3-D curved cracks, and more importantly the dependent path of 

J-integral is problematic. Further developments to improve the accuracy of the SIFs using the 

M1-integral method for 3-D curved cracks are thus necessary, but it would probably take much 

effort in fulfilling the tasks, and in the present circumstance it is out of the scope of this 

manuscript. Therefore, we have scheduled to study this discussed issue in our next manuscript 

comprehensively. 

In the crack-tip Cartesian coordinates, the relation between the relative displacements and 

the SIFs are [54] 
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where G  is the shearing modulus; 
3

1
k

ν
ν
−

=
+

 , ν  is the Poisson’s ratio; r  is the ray distance 

from the crack front; while uΔ , vΔ , and wΔ  are the relative displacements near the crack 

front in the crack front Cartesian coordinates on the crack surface. 

 Some points in the same normal direction from the crack front on the crack surface is taken 

to construct a set array ( , , )i i i ir K K KΙ ΙΙ ΙΙΙ , where ir  is the distance from point i  to the crack front 

and iKΙ , iKΙΙ , iKΙΙΙ  are the SIFs of point i .  By using the least squares method to fit the set array, 

the SIFs at crack front can then be determined through the following relations [55]: 
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where N  is the number of chosen points in the same normal direction from the crack front on 

the crack surface, 10N =  is adopted in this study.  

From Eq. (1), it is obvious that the relative displacements on the crack surface depend only 

on the enrichment variables, so it is easy to determine the SIFs using the relative displacements 

on the crack surface in the XFEM. 

 

4. Numerical experiments and discussions 

In this section, we particularly concentrate our attention on numerical experiments and 

accurate investigation of the SIFs calculated by the present method.  An in-house 3-D 

MATLAB code for solving SIFs using the 3-D local mesh refinement XFEM with 

variable-node hexahedron elements is developed. To this end, six numerical examples of planar 

straight and curved cracks embedded in 3-D solids with single and mixed-mode fractures are 

hence considered:  

• The first three examples deal with single and mixed-mode fracture in 3-D by 

considering an edge straight crack, a central straight crack and an edge inclined 

straight crack.  

• The last three examples deal with curved cracks in 3-D by considering a central 

penny shaped crack, a central ellipse shaped crack and an edge ellipse shaped 

crack.  

All the numerical results are analyzed and validated against the reference solutions to show 

the accuracy and effectiveness of the developed Lm-XFEM. The SIFs extracted by using the 

displacement extrapolation method are then compared with analytical solutions available in 

literature and the conventional XFEM with fine meshes.  
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Regarding the number of Gaussian quadrature point used in the numerical computations, 

the cut or split element is divided into 12 sub-elements and each sub-element uses 4 Gaussian 

points, so all of them total 48 points. For the tip element, it is divided into 18 sub-elements and 

each of them uses 5 Gaussian points and thus its total is 90 points. Elements that do not contain 

any crack but engage tip nodes use 4 4 4× × Gaussian points, while other elements use 2 2 2× ×  

points. 

 

4.1 An edge straight crack   

A cube of size 10m 10m 10m× ×  containing an edge straight crack as schematically 

depicted in Fig. 8 is considered. A crack length of 2.5m as shown in the figure is taken. The top 

surface of the cube is subjected to a uniform traction of 1Paσ =  while the bottom surface is 

constrained in all directions. The following material parameters, the Young’s modulus 

206GPaE =  and the Poisson ratio 0.3ν = , are used throughout the study if not specified 

otherwise.  

Under the plane strain condition, the analytical solution of this edge crack problem for 

0.6
d

l
≤  is given by [56] 

ref
I

d
K d F

l
σ π ⎛ ⎞= ⎜ ⎟

⎝ ⎠
                                                             (36) 

with  

2 3 4

1.12 0.231 10.55 21.72 30.39
d d d d

F
l l l l

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                (37) 

where d  denotes the crack length while l  is the length of the cube along the crack direction. 

For this example, only mode-I SIF is extracted using the displacement extrapolation 

method. The mode-I SIF is then estimated for each step of refinement using the Lm-XFEM and 

is compared with the results derived from the conventional XFEM as well as analytical 

solutions. The study is to show the accuracy of the developed Lm-XFEM in determining the 

SIFs of a planar 3-D edge straight crack in a elastic cube. 
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Fig. 8 Geometric notation of a cube with an edge straight crack (in red) and its configuration 

parameters 

 

 

A tolerance error of 0.1 is taken for this example. By applying the proposed procedure, the 

elements which have a relative error greater than the specific tolerance error will be refined 

with 3 3 3× ×  sub-elements. It means that an eight-node hexahedron element (say parent 

element), which has been detected to be refined, is then sub-divided into 3 3 3× ×  sub-elements 

(say children elements). Actually, the children elements can be arbitrary, but based on our 

numerical experiments, refinement with a set of 3 3 3× ×  children elements is recommended 

and we use this set throughout the study unless stated otherwise.  

An initial mesh, 7 7 7× ×  elements as shown in Fig. 9a for instance, is generated using the 

Lm-XFEM as its initial step of refinement. The adaptive algorithm based on error estimator is 

then applied and all the discretized elements of the domain of interest are detected and a set of 

elements around the crack is selected and labeled. The detected elements are those that will be 

refined in the next step of refinement algorithm. As a result, the initial mesh in Fig. 9a is then 

refined that results in a refined mesh as depicted in Fig. 9b. The algorithm is repeated the same 

for the next refinement until reaching the specified number of steps. Fig. 9c shows the mesh 

fulfilled by the second step of refinement. Interestingly, it can be observed in Fig. 9c that the 

refined mesh discretized by the second step of refinement contains a variable-node transition 

element cut by crack. That is exactly the case that we have discussed and can be found in the 
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numerical integration, i.e., subsection 2.4.  

 

 

 

(a)                                                                (b) 

 

(c)                                                                (d) 

Fig. 9 An edge straight crack in a finite domain: initial mesh (a); the first refined Lm-XFEM 

mesh (b); the second refined Lm-XFEM mesh (c) and a mesh using the conventional XFEM (d) 

 

It is important to stress here that the number of refinement steps must be defined by the 

analysts. Our own numerical experiments particularly in this work have found that by 

indicating one or two steps of refinement acceptable solutions could be reached. For practical 
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purposes however at least two steps of refinement or even more is recommended. Determining 

an appropriate number of refinement steps for each particular problem is trivial.  

The subsequent numerical investigations, one or two steps of refinement have been 

examined and studied. For comparison, the entire computational domain using small-scale 

elements as shown in Fig. 9d is also added, which is derived from the conventional XFEM. All 

the meshes sketched in Fig. 9 are very interesting since it reveals the advantages of the 

developed Lm-XFEM over the traditional XFEM. It is because the refined mesh deals with the 

region that only covers the crack and the areas far from the crack do not take into account. In 

addition, the number of elements or nodes gained by the conventional XFEM is much larger 

than that discretized by the Lm-XFEM. This issue is addressed and illustrated in the following 

numerical results. 

For convenience in representing the numerical results, the SIFs are normalized by 

* /I IK K dσ π= . Fig. 10 shows the calculated results of *
IK  at crack front with respect to 

different distances along crack front using the Lm-XFEM and the conventional XFEM with a 

fine mesh, e.g., 21 21 21× × elements. Unlike the edge crack in 2-D solids where only one crack 

tip exists, the edge crack in 3-D is however more complicated than that as there exists a crack 

front (not a crack tip). The *
IK  at certain points at the crack front, different locations, are 

computed and presented here. Therefore, the numerical results plotted in Fig. 10 represent the 

*
IK  at different distances along the crack front. The *

IK  results gained by the Lm-XFEM 

approach well to the exact solutions. Not surprisingly, the initial results using the initial mesh 

exhibit so poor but the accuracy of the *
IK  increases significantly after each step of refinement, 

which exactly reflects the desirable characteristics of the developed Lm-XFEM. In addition, the 

accuracy of the SIFs calculated by the standard XFEM with a fine mesh is far way from the 

exact solutions as compared with that derived from the second step of refinement using the 

Lm-XFEM. From the results sketched in Fig. 10, one can see that the SIFs measured at different 

locations along the crack front are slightly different.  

There is another interesting point regarding the standard XFEM that must be discussed here. 

It is, in general, the accuracy of the standard XFEM can be further improved by taking a finer 
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mesh, but one must pay attention to the considerable computational time of the conventional 

XFEM if a very fine mesh is taken. In practices, the efficiency of a method must be taken into 

account and the refinement methods, often, like the one being studied in this work, is preferable. 

Nevertheless, the number of elements discretized by using the Lm-XFEM is much less than that 

by the common XFEM. This feature is one of the advantages of the Lm-XFEM, and that makes 

the method to be an ideal candidate for practical problems. Furthermore, Table 1 presents the 

SIFs results computed by the Lm-XFEM and the common XFEM at the central point of the 

crack front. The numerical results in Table 1 are very interesting as the number of DOFs and the 

percentage errors reported reveal the domination of the present method. Clearly, it is important 

to see that high accuracy can be achieved through the Lm-XFEM but a much less number of 

DOFs compared to the conventional XFEM is used. The adaptive refinement significantly 

improves the accuracy as it can be clearly seen in Table 1 (or Fig. 10) for the first and second 

steps of the refinements. Consequently, by employing the Lm-XFEM, we not only obtain high 

accuracy on the SIFs, but the computational time can also be saved. From Table 1, it is found 

that the accuracy of the SIFs from the displacement extrapolation method near the crack tip is 

slightly lower than that from the M-integral method [51]. 

 

Fig. 10 Comparison of the normalized stress intensity factor (mode-I) at different distance 

along the crack front for a cube with an edge straight crack among the Lm-XFEM, the 

conventional XFEM and the exact solution. 
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Table 1  

Normalized stress intensity factor (mode-I) and its percentage errors obtained by the 

Lm-XFEM for different steps of refinements of an edge straight crack at the central point of 

crack front. The exact solutions and the conventional XFEM results are also added for the 

comparison purpose.The values in the ( ) are obtained with the M-integral method [51]. 

 Exact Initial mesh First refined Second refined XFEM 

DOFs  512 2548 8248 10648 

*
IK  1.5010 1.36867(1.4040) 1.45631(1.5418) 1.52191(1.5205) 1.46919(1.5323)

Error 

(%) 
 -8.8137(-6.4694) -2.9748(2.7204) 1.3958(1.2987) -2.1166(2.0877) 

 

A specified tolerance error has been used in all the computations but remarks on its 

selection are addressed here. Theoretically, the smaller the tolerance is taken the better the 

results are obtained. However, the computational cost must be a critical factor for the selection 

of this tolerance error. The tolerance error for a given problem can be straightforwardly 

determined through numerical experiments using the Lm-XFEM as the accuracy is controlled 

due to the adaptive algorithm. We have found that different problems may use different values 

of tolerance error, but its determination is trivial. Throughout the study, a tolerance error of 0.1 

is taken. 

 

4.2. A central straight crack 

The same cube as the previous example, which has a size of 10m 10m 10m× ×  containing a 

central straight crack as schematically depicted in Fig. 11, is considered. The boundary 

condition applied to the bottom surface and the loading applied to the top surface of cube are 

assumed the same as the previous example. A crack length of 2m is taken. Under the plane 

strain condition, the analytical solution of this central crack problem is determined by 

K p aπΙ =  [53], where a   is half of the center crack length. 

Fig. 12a shows an initial mesh of 9 9 9× ×  elements and its refined mesh for the first step of 

refinement is shown in Fig. 12b. The figure representing the refined mesh indicates clearly that 
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only region around the crack is refined, and this is a great advantage of the method, especially 

for 3-D problems where the computational efficiency takes place as a critical factor.  

The SIFs are calculated using the displacement extrapolation method for only one crack 

front due to the symmetric configuration. The computed SIFs at different distance along the 

crack front for the central crack are visualized in Fig. 13, showing a comparison between the 

present results with respect to the conventional XFEM solution using a fine mesh of 

27 27 27× ×  elements. Note that the SIFs reported here represent their real values and are not 

normalized. The SIFs based on the initial mesh is again found to be inaccurate whereas that 

achieved by the Lm-XFEM approach well to the exact solutions [53] and match well with the 

common XFEM results. We perform only one step of refinement since its results obtained are 

adequately accurate, and further steps of refinement may not be necessary. However, as stated 

above higher numbers of refinement steps may be necessary, especially for practical problems.  

 

 

 

Fig. 11 Geometric notation of a cube with a central straight crack and its configuration 

parameters showing the boundary and loading conditions 
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(a)                                                            (b) 

Fig. 12 A central straight crack in a finite domain: Initial mesh (a);  and 3 3 3× ×  refined 

Lm-XFEM mesh (b). 

 

 

 

 

Fig. 13 Comparison of the stress intensity factor (mode-I) at different distance along the crack 

front for a cube with a central straight crack among the Lm-XFEM, the traditional XFEM and 

the exact solution. 
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4.3. A mixed-mode edge inclined straight crack  

This example is mainly devoted to study the mixed-mode fracture problem in 3-D planar 

cracks using the present method. It is accomplished by considering an edge inclined straight 

crack in a plate under uniform tension as depicted in Fig.14. The size of the plate is 

10m 25m 25m× ×  and the angle of the inclined crack is set to be 45c . The material parameters 

and the boundary conditions as well as the loading conditions are taken the same as the previous 

examples. The length of the crack front is equal to the size of the body, i.e., 25m, see Fig. 14, 

while the crack length is indicated by a  as shown in the same figure. Different crack lengths 

are studied by varying a  from 3 to 5, and the corresponding SIFs for each a  are then estimated, 

respectively.  

In this example, two different sets of subdivisions elements or children elements e. g., 

2 2 2× ×  and 3 3 3× × , are considered. The use of different sets of subdivided elements is to 

clarify the effect of the number of subdivisions per element on the accuracy of the SIFs. The 

same initial mesh of 5 11 11× ×  elements as sketched in Fig. 15a is taken, and the refined meshes 

derived from the Lm-XFEM for the two subdivisions of  2 2 2× ×  and 3 3 3× ×  children 

elements are shown in Figs. 15b and 15c, respectively. Note that the refined meshes for 3ma = , 

for instance, is performed. The SIFs are calculated by the displacement extrapolation method 

with one step of refinement for different values of the parameter a . They are then normalized 

by *
, , /I II I IIK K dσ π=  and eventually depicted in Figs. 16a (mode-I) and 16b (mode-II), 

respectively. The normalized mode-I and mode-II are estimated at a central position of the 

crack front. Numerical results for each set of subdivided children elements are calculated for 

different values of a . Compared with the reference solutions given by Institute of China 

Aeronaut [57], the Lm-XFEM using the subdivided set of 3 3 3× × children elements offers the 

*
,I IIK  more accurate than that utilizing the subdivided set of 2 2 2× ×  elements. In other words, 

the SIFs derived from the 3 3 3× × children elements approach to the exact solutions better than 

that from 2 2 2× ×  elements. More interestingly, it is very important to note that the effect of the 

crack length on the *
,I IIK  is significant. The *

,I IIK  SIFs increase with increasing the crack length, 
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as a result of the finite size effect in fracture mechanic problems. 

 

 

Fig. 14 Schematic configuration of an edge inclined straight crack in a finite domain showing 

the boundary and loading conditions 

 

 

(a)                                            (b)                                              (c) 

Fig. 15 An edge inclined crack in a finite domain for a crack-length of 3ma = : Initial mesh (a); 
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a 2 2 2× ×  refined Lm-XFEM mesh (b) and a 3 3 3× ×  refined Lm-XFEM mesh (c). 

     

 

Fig. 16 Variation of the normalized stress intensity factors *,I IIK  with respect to crack length a . 

 

 

4.4. A central penny shaped crack  

Accurate numerical simulation of planar curved cracks in 3-D is difficult and remains a 

challenging problem in the computational mechanics. Specially, accurately determining the 

SIFs of 3-D curved cracks is still an important topic as many preceding efforts have put onto the 

improvement of the accuracy of the solutions. In this study, the three following examples are 
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devoted to illustrate the applicability of the developed Lm-XFEM in simulating 3-D curved 

cracks. The accuracy of the SIFs are hence examined and validated. 

We start by examining a cuboid of size 1m 1m 1m× ×  containing a penny shaped crack as 

shown in Fig.17. The radius of the penny is taken as 0.1mr = . The analytical solutions of this 

problem are available in Ref. [58], i.e., 2
r

K σ
πΙ =  and 0K KΙΙ ΙΙΙ= = . Similarly, the 

Lm-XFEM is applied to solve this example. By accomplishing that, an initial mesh of 9 9 9× ×  

elements is discretized using the Lm-XFEM. Fig. 18a shows the top-side view of cross-section 

for the initial mesh of the penny shaped crack while its refined mesh is sketched in Fig. 18b, 

also the top-side view of cross-section. Different from the previous examples, the SIFs for this 

penny shaped crack are however estimated at different angles and their computed results are 

plotted in Fig. 19. Note that the SIFs reported here represent their real values and are not 

normalized. For verification, results obtained by the traditional XFEM with a fine mesh are also 

added. The present results indicate the accuracy of the Lm-XFEM as its obtained SIFs approach 

well to the exact solutions. The SIFs obtained by the traditional XFEM using a fine mesh of 

27 27 27× ×  elements are in a good agreement with the Lm-XFEM as clearly shown in the 

figure. Even through the accuracy of the SIFs is equivalent but one must note that the great 

difference distinguishing between the Lm-XFEM and the traditional XFEM is the 

computational cost and the number of DOFs that are being used for the implementation. The 

Lm-XFEM with refinement and adaptive algorithm always offers a great advantage over the 

traditional XFEM to these facts. Nonetheless, the SIFs of this penny shaped crack behave an 

oscillation around the exact solutions for some angles at the crack front. However, the error on 

the numerical results obtained by the Lm-XFEM with respect to the exact solutions is small. It 

is noted that the “bump” of the SIFs obtained by the XFEM in Fig. 19 can be caused by the 

finite domain used in the computations. By increasing the computational domain the error can 

substantially be reduced. 
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Fig. 17 Schematic configuration of a central penny shaped crack in a finite domain showing the 

boundary and loading conditions 

 

 

 

(a)                                                             (b) 

Fig.18 Top-side views of cross-section of a central penny shaped crack in a finite domain: 

initial mesh (a); a 3 3 3× ×  refined Lm-XFEM mesh (b) 

 



 39

 

Fig. 19 Comparison of the stress intensity factor (mode-I) at different angles of crack front for a 

cuboid with a central penny shaped crack among the Lm-XFEM, the conventional XFEM and 

the exact solution. 

 

 

4.5. A central ellipse shaped crack  

Similar to the penny shaped crack, this example deals with a cuboid of size 1m 1m 1m× ×  

but contains a central ellipse shaped crack as schematically shown in Fig. 20. We consider the 

elliptical crack with semi-major axis 0.1ma =  and semi-minor axis 0.05mb = . Since the 

crack dimensions are small compared to the specimen, we use the infinite domain solution as 

the reference solution. The exact SIFs solution for a planar central elliptical crack in an infinite 

domain is given by Irwin [59] and Sukumar et al. [40] 
1 42

2 2
2

sin cos
( )

b b
K

E k a

σ π θ θΙ

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
 (38) 

where θ  is the elliptic angle as depicted in Fig. 21, which is to show the position of the crack 

front, and ( )E k  is the elliptic integral of the second type and is given by 

2 22 2 2 2
20

( ) 1 sin ;
a b

E k k d k
a

π
θ θ −

= − =∫  (39) 
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The Lm-XFEM is employed to solve the central ellipse shaped crack example and the SIFs 

estimated with the aid of the displacement extrapolation method are hence visualized in Fig. 22. 

Note again that the SIFs presented here are their real values and not normalized. Once again, the 

agreement between the present results using the Lm-XFEM with refined mesh and the exact 

solutions is good. The difference on the two solutions is small and acceptable, but the maximum 

error in the SIFs is observed at 0oθ = . 

 

 

(a) 

 

 

 

 

(b) 

Fig. 20 Schematic configuration of a central ellipse crack in a finite domain showing the 

boundary and loading conditions (a); and close-up of crack and angle (b). 
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Fig. 21 Geometric definitions for a central ellipse shaped crack 

 

Fig. 22 Mode-I stress intensity factor at different angles of crack front for a cuboid with a 

central ellipse shaped crack obtained by the Lm-XFEM. 
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4.6. An edge ellipse shaped crack   

Last example deals with an edge ellipse shaped crack in a plate under uniform tension as 

shown as Fig. 23. The size of the plate is set to be 10m 4m 10m× ×  and the elliptical crack’s 

semi-major axis 2mc =  and semi-minor axis 1ma = . The body is also subjected to a uniform 

traction of 1Paσ =  and the bottom surface is also constrained in all the direction. This problem 

has been analyzed previously by different methods and numerical solutions are readily 

available in the literature. Among the solutions available, the one derived from Newman and 

Raju [60] is widely used. The stress intensity factors are normalized by   

* /I I

a
K K ac

Q

πσ=  (40) 

with 
1.65

1.65

1 1.464( / ) if   ( / ) 1

1 1.464( / ) if  ( / ) 1

a c a c
Q

c a c a

⎧ + ≤
= ⎨

+ >⎩
 (41) 

We use a set of initial mesh of 5 11 11× ×  elements to this example. To show the effect of 

the number of subdivision elements of children elements on the SIFs, we hence consider two 

different sets of the number of subdivision, for instance, 3 3 3× ×  and 5 5 5× × . Fig. 24a 

sketches the initial mesh of edge ellipse shaped crack. Note that the top-side view of 

cross-section is shown due to the convenience in the representation of the 3-D crack. Figs. 24b 

and 24c, respectively, depict the refined meshes of the cracks using the suggested number of 

subdivision elements discretized by the adaptive refinement Lm-XFEM. The numerical results 

of the SIFs estimated based on the two given sets of children elements are then shown in Fig. 25. 

Similarly, the common XFEM with fine mesh and exact solutions [60] are also plotted in the 

same figure for the validation purpose. The present results indicate clearly that the Lm-XFEM 

with 5 5 5× ×  subdivision elements can offer a good accuracy as their SIFs are closer to the 

exact solutions than other reference solutions. However, the cost that devotes to the use of a 

higher number of subdivision elements is high.  
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(a) 

 

 

 

 

(b) 

Fig. 23 Geometric notation of an edge ellipse shaped crack in finite domain and its 

configuration parameters (a); and close-up of crack and angle (b). 
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 (a)  

(b)  

(c)  

Fig. 24 Top-side views of cross-section of an edge ellipse shaped crack in finite domain: initial 

mesh (a) ; a 3 3 3× ×  refined Lm-XFEM mesh (b) and a 5 5 5× ×  refined Lm-XFEM mesh (c) 
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Fig. 25 Comparison of the normalized stress intensity factor (mode-I) at different angles along 

the crack front for an edge ellipse shaped crack among the Lm-XFEM, the conventional XFEM 

and the exact solution. 

 

 

5. Conclusions and outlook 

A novel 3-D adaptive local mesh refinement extended finite element method (Lm-XFEM) 

using hexahedron elements for the accurate computation of the stress intensity factors of 

planar straight and curved cracks in solids is presented. This 3-D approach, on one hand, 

engages a posteriori recovery-based error estimation to detect all elements that shall be 

refined in the next refinement step, the variable-node hexahedron elements, on the other hand, 

are adopted to treat the mismatching problems caused by different scale-meshes. The strategy 

presenting here reflects the robustness of an effective numerical method as the fine-scale mesh 

is only tackled to where it is required. The numerical results of the SIFs for single and 

mixed-mode 3-D crack problems obviously show the effectiveness and high accuracy of the 

proposed Lm-XFEM method.   

We have found through the numerical investigation that the variable-node hexahedron 

element based on the generic point interpolation is effective and straightforward in treating the 
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mismatching problems of different meshes. The adaptive algorithm reflects the region where 

fine meshes are required to be refined, which makes the method possible to improve the 

accuracy of the solutions around the cracks. Moreover, the Lm-XFEM carries with less DOFs 

than those through the XFEM. 

In XFEM setting, the mesh is independent of crack geometry, and small cracks in the 

analysis of large structures can be considered by employing the coupling meshes scheme. The 

Lm-XFEM proposed thus is an efficient numerical method, and is particularly suitable for 

modeling cracks embedded in large structures. Due to the accuracy, simplicity, and the 

flexibility of the Lm-XFEM, we believe that the method presented here is well and ideally 

suited for engineering analysis. The proposed formulation is general and its extension to other 

complex problems is possible. Multiple cracks, crack growth in 3-D problems, and non-planar 

3-D cracks are those that are very interesting to study. We may further develop it for modeling 

cracks in advanced composite materials, e.g., layered functionally graded materials [51], or to 

industrial applications problems. Those works inherently are challenging but would be an 

interesting subject for our future research directions.  

More specifically, the multiple branched cracks can be modelled by introducing a junction 

function to the present displacement approximation. The presented formulas in this paper can 

be further developed for solving non-planar 3-D cracks as well. In the XFEM, the crack surface 

is often described through the level sets. Compared with planar 3-D cracks, representing 

non-planar 3-D cracks with the level set method would be more complicated. The crack growth 

in 3-D problems can be modelled by introducing appropriate crack propagation criteria into the 

present formulation. The high-efficient updating algorithm of level sets and 3-D crack growth 

algorithm are two key issues in the analysis of 3-D crack propagation. Some scholars 

successfully modelled 3-D crack propagation with the XFEM, see for instance Refs. [42, 61].  

In addition, the discretization of tetrahedral elements is common in general engineering 

practice. The variable-node tetrahedral elements can be devised based on the generic point 

interpolation with an arbitrary number of nodes on each of their faces, thus the proposed 

method can be applied to complex problems discretizated with tetrahedral elements. 

Nonetheless, the current version of the developed 3-D Lm-XFEM employs the 

displacement extrapolation method to extract the SIFs. As have been shown in the subsequent 



 47

numerical examples, the current version works quite well for both straight and curved cracks as 

well as single and mixed-mode fractures. Further development by taking the M-integral method 

and integrating it into the Lm-XFEM is necessary and important. To this end, the accuracy of 

the SIFs and the path independent problem are two important issues that must be taken into 

consideration. 
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