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Abstract: Periodic unit-cells are the premises for applying the periodic boundary conditions in the meso-scale 

finite element analysis of textile composites. However, due to the extremely complicated microstructure, there is a 

conflict between high-quality quick mesh generation and efficient application of periodic boundary conditions. A 

freely generated mesh of the unit-cell combined with more general periodic boundary conditions is assumed to be a 

more practical approach. In this paper, the general periodic boundary conditions are imposed by establishing linear 

constraint equations between master surface nodes and slave surface nodes of the unit-cell on ABAQUS software 

platform. For the same unit-cell model of 3D braided composites with periodic mesh and free mesh, the 

deformation, stress distribution and the predicted stiffness and strength properties under typical loadings are 

compared. The numerical results obtained by means of free mesh unit-cell agree well with those using periodic 

mesh proving the effectiveness and practicability of the new approach. It can be remarked that the general periodic 

boundary conditions are suitable for the free mesh generation of unit-cells for a complicated microstructure 

reducing the difficulty of meshing and improving the quality of mesh generation. 

Key words: 3D braided composites, unit-cell, periodic boundary conditions, textile composite, mesh generation, 

finite element analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

1 Introduction 

Textile composites are increasingly used in aerospace, automotive, marine and other industries due to their 

outstanding performances over the conventional laminated composites, including better structural integrity, more 

balanced properties, higher damage tolerance and lower production costs. However, the microstructure of textile 

composites is much more complicated than the laminated composites, which brings great difficulties to their 

mechanical analysis. Fortunately, the microstructure of textile composites shows periodicity. Therefore, the 

mechanical properties of composite structures are often investigated by a micromechanical method based on a 

representative unit-cell model, so-called multi-scale techniques. The interested reader can refer to [1-3] for further 

details on multi-scale techniques. So far, theoretical analysis [4-7] and finite element method [8-15] have been 

widely employed. 

The theoretical analysis is conducted by means of a volume averaging method to attain the overall material 

properties of the textile composite, including the stiffness averaging method and the compliance averaging method 

by imposing iso-strain and iso-stress assumptions respectively. Although theoretical analysis is straightforward to 

implement, it can only obtain the elastic moduli and does not reveal the accurate micro stress distribution and 

damage characteristics of the textile composites. On the other hand, the Finite Element Method (FEM) overcomes 

these limitations and it is appropriate for simulating the damage initiation and propagation in the composites. 

Therefore, besides the study on the stiffness properties [8-11], the strength and damage properties [12-15] of textile 

composites have been investigated by using meso-scale FEM. 

In the finite element analysis based on the unit-cell model, the application of reasonable boundary conditions is 

an important step to obtain an accurate mechanical response. For continuous materials with periodic microstructure, 

two continuity conditions need to be satisfied at the boundaries of the neighboring unit-cells at the same time: (1) 

the displacement should be continuous; (2) the traction should be continuous. For the treatment of the boundary 

conditions of the unit-cell model of textile composites, homogeneous strain and stress boundary conditions were 

adopted by some researchers [16-18] to simplify the loading application process. However, it has been proven that 

[19] if the homogeneous strain boundary conditions are imposed in the unit-cell, the upper-bound of the material 

elastic constants are obtained while the traction continuity condition cannot be satisfied. Again, if the homogeneous 

stress boundary conditions are imposed in the unit-cell, the lower-bound of elastic constants are obtained while the 

displacement continuity condition cannot be satisfied. Whitcomb et al. [20], Xia et al. [21] and Li et al. [22] 

presented the mathematical expressions of the periodic boundary conditions and applied them to different textile 

composites. Meso-scale finite element analyses with periodic boundary conditions provide accurate mechanical 

behavior. 

Due to the complicated reinforcement architecture of textile composites, mesh generation may be a large 

obstacle for meso-scale finite element analysis even with sophisticated meshing tools. The conformal meshing 

method needs a large number of meshes to coincide with the complex boundaries between the impregnated yarns 

and the matrix. Meanwhile, many irregular elements appear in these boundaries which result in negative influences 

on the performance prediction. However, the premise of applying the periodic boundary conditions is to ensure 

identical mesh at opposite surfaces of the unit-cell, that is, the periodic mesh is required. This further increases the 

difficulty of the mesh generation and also reduces the quality of the generated mesh. If it is not required to make 



  

any restrictions (so-called free mesh) on the paired surfaces of the unit-cell, the mesh generation becomes relatively 

easy and the mesh quality can be improved. Accordingly, the more general periodic boundary conditions should be 

developed. 

The present work provides a new insight on the assessment of the effectiveness and practicability of the 

developed general periodic boundary conditions scheme. Herein, the application of general periodic boundary 

conditions is performed by imposing muti-point constraint equations to the related nodes on the paired surfaces, 

edges and corners of the unit-cell model. The mechanical behavior prediction of 3D braided composites, such as the 

deformation, stress distribution, stiffness, strength properties and damage, under typical loading cases are compared 

between the unit-cells with periodic mesh and free mesh. The comparison results proved that the general periodic 

boundary conditions are convenient for free meshing of complex unit-cell configurations and applicable to the 

meso-scale finite element analysis. 

2 Periodic boundary conditions and their application 

2.1 Selection of unit-cell model 

The expressions of periodic boundary conditions are associated with the selection of repetitive cell structure. 

For the periodic structure in Fig. 1(a), the unit-cell is selected as shown in Fig. 1(b). It is the representative volume 

that can re-create the whole structure only by spatial translation symmetries without using rotation or reflection 

symmetries. Certainly, if further, using the reflection symmetries, the size of the unit-cell model can be reduced to a 

quarter (shown in Fig. 1(c)). Whitcomb et al. [20], Carvalho et al. [23] and Li et al. [24, 25] presented different 

expression forms of the periodic boundary conditions of the repetitive cell according to the specific structural 

characteristics of the textile composites. In summary, these expressions depend on the structural configuration of 

the composites, the selection of repetitive cell model and the applied load conditions. 

Reducing a unit-cell into a smaller repetitive cell can lessen the number of nodes and elements required which 

in turn reduce the computation cost. However, the reduction of unit-cell will considerably increase the complexity 

for applying the periodic boundary conditions. Currently, with the rapid development of computer hardware, the 

consideration of computational cost associated to the unit-cell model can be neglected unless it is in a very complex 

nonlinear problem. The substantial increase of complexity of the periodic boundary conditions is the key reason for 

not reducing a unit-cell into a smaller repetitive cell. 

2.2 Periodic boundary conditions 

The textile composites are considered as periodic structures and composed of periodic arrangement of unit-cells; 

and the finite element analysis is based on the unit-cell model, therefore, the periodic boundary conditions should 

be imposed to replicate the repeating nature. Furthermore, the displacement continuity condition and traction 

continuity condition should be satisfied at the opposite boundaries of the neighboring unit-cells. Therefore, the 

unified displacement-difference periodic boundary conditions developed by Xia et al. [21], which can guarantee the 

two continuity conditions [26], are briefly summarized here first. 

The displacement field for the periodic structure can be presented as 

*

i ik k iu x uε= +  (1) 

In the above equation, ikε are the average strains of the unit-cell, kx is the Cartesian coordinate of a unit-cell point 



  

and 
*

iu
 

is the periodic part of the displacement components on the boundary surfaces. 

Eq. (1) is difficult to be imposed on the unit-cell boundaries because of the unknown periodic part. Fortunately, 

for most unit-cells, the boundary surfaces always appear in parallel pairs. The displacements on a pair of parallel 

opposite boundary surfaces can be given as 

*j j

i ik k iu x uε+ += +  (2) 

*j j

i ik k i
u x uε− −= +  (3) 

where the index j+ means along the positive Xj direction and j− means along the negative Xj direction. 

Since 
*

i
u  is identical on the two parallel boundaries, the difference between the above two equations is 

( )j j j j j

i i ik k k ik ku u x x xε ε+ − + −− = − = ∆  (4) 

The right side of the above equation becomes constant once 
ik

ε is specified, since
j

kx∆ are constants for each 

pair of boundary surfaces. Eq. (4) does not contain the periodic part of the displacement components and can be 

applied easily in the finite element analysis by establishing the linear constraint equations between corresponding 

nodes.  

It deserves mentioning that either force or displacement can be used as the applied load in the finite element 

analysis. In this paper, the displacement loading mode is employed. 

2.3 Application of periodic boundary conditions in finite element analysis 

In the finite element analysis, the traction boundary conditions are automatically satisfied by the minimum total 

potential energy principle. This kind of boundary conditions is named as natural boundary conditions. Accordingly, 

to apply the periodic boundary conditions, only imposing the displacement boundary conditions is sufficient. Of 

course, the uniqueness and certainty of the numerical results can be guaranteed. The periodic displacement 

boundary conditions are imposed by establishing the linear constraint equations between the corresponding nodes 

on the surface of the unit-cell. This is the reason why periodic boundary conditions are also called as equation 

boundary conditions. 

Up to date, in most references, only the mathematical expressions of periodic boundary conditions proposed by 

Whitcomb et al. [20], Xia et al. [21] and Li et al. [22] are introduced. However, how to implement the periodic 

boundary conditions in finite element analysis is rarely mentioned. In this section, the constraint equations of 

periodic boundary conditions between the related nodes on the paired surfaces, edges and corners of the unit-cell 

model are expressed in detail, which provides certain references to the researchers in the field of micromechanical 

analysis of textile composites. 

2.3.1 Constraint equations between surface nodes 

As shown in Fig. 2, the length, width and height of the cuboid unit-cell or representative volume are Wx, Wy and 

h, respectively. The origin of the coordinates is point D. Under the six typical strain loadings

0 0 0 0 0 0( , , , , , )x y z xy xz yzε ε ε γ γ γ , the periodic boundary conditions given by Eq. (4) can be realized by the following 

equations: 

On the opposite surfaces perpendicular to the x axis: 
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On the opposite surfaces perpendicular to the y axis: 
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On the opposite surfaces perpendicular to the z axis: 
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In the above equations, three coordinate planes x=Wx, y=Wy, z=h are defined as master planes, and the nodes on 

them are called master nodes; the parallel planes opposite to master planes are defined as slave planes and nodes on 

them are called slave nodes. For the master surface nodes and slave surface nodes (O’-O, P’-P and Q’-Q as shown 

in Fig. 2), the linear constraint equations of periodic boundary conditions have been given by Eqs. (5) - (7). 

2.3.2 Constraint equations between edge nodes 

For the nodes on the edges and corners of the unit-cell model, they located in the intersection planes and lines 

of the coordinate planes, thus they satisfy two or three groups of Eqs. (5) - (7). However, these equations are not 

independent to each other. If all these constraint equations are applied in the finite element analysis, the unit-cell 

model will be over constrained and the computation cannot be carried out. Therefore, the constraint equations of 

the corresponding nodes on the edges and corners should be combined to form the independent equations. 

For the 12 edges of the unit-cell model, they can be divided into three types: parallel to the x axis (AD, BC, FG 

and EH), parallel to the y axis (CD, BA, FE and GH) and parallel to the z axis (HD, EA, FB and GC). In this paper, 

we only give three groups of linear constraint equations between the four edges that are parallel to z axis when the 

HD edge is defined as the reference edge, namely 

0

0

0

EA HD x x
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EA HD
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Applying the above constraint equations can ensure the complete constraint of these four edges. That is, the 

under constraint and over constraint problems will not appear in the subsequent calculation. For the other two types 

of edge constraint equations, referred to Eqs. (8) - (10) and combined with the deformation states of the unit-cell 

under corresponding strain loadings, they can be easily derived. 

2.3.3 Constraint equations between corner nodes 

Special attention should be paid to the constraint equations between 8 corner nodes of the unit-cell model. 

Selecting node D as the reference point, the constraint equations between nodes E, F, G and D are given as: 

0 0

0

0

E D x x xz

E D yz

E D z

u u W h

v v h
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ε γ
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ε
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0 0 0

0 0

0
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G D z

u u W h
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w w h

γ γ

ε γ

ε
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Similarly, for the constraint equations between other corner nodes A, B, C, H and the reference point D, referred 

to Eqs. (11) - (13) and combined with the corresponding deformation states, they can also be easily achieved. 

3 General Periodic boundary conditions and their application 

It should be noted that imposing the above periodic boundary conditions to the unit-cell is dependent on a 

perfect periodic mesh. However, perfect periodic mesh may increase the difficulty of meshing a unit-cell with 

complex microstructure and reduce the quality of the generated mesh. Free mesh (non-periodic) is regard as a more 

practical approach. To the unit-cell model with free mesh generation, Nguyen et al. [27] and Jarvis and Garnich [28] 

developed the concept of general periodic boundary conditions. In the present paper, the general periodic boundary 

conditions scheme will be implemented explicitly in the meso-scale finite element analysis on the platform of 

ABAQUS software, and the effectiveness and applicability will be verified by comparison research. 

3.1 General periodic boundary conditions 

Due to the non-periodic meshing, the mapping point M of a master node M’ on the slave plane is not just in the 

position of a node but within an element. The displacement of the point M can be determined by nodal 

displacement interpolation, namely 

{ } [ ]{ }u N δ=  (14) 



  

where {u} is the displacement matrix of the mapping point, [N] is the shape function matrix of the element, and {δ} 

is the displacement matrix of the element nodes. 

Owing to the complexity of the microstructure, 3D solid tetrahedral elements (C3D4) available in ABAQUS are 

always adopted for mesh generation of textile composites because of its excellent geometry adaptability. In this 

paper, C3D4 elements are used for the periodic mesh and the free mesh generation of 3D braided composites. At 

this time, the mapping point M is surrounded by a triangular element on the slave plane, as shown in Fig. 2. Similar 

to Eq. (4), the general periodic boundary conditions can be written as [28] 

[ ]
1 _
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1 2 3 2
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 − = ∆ 
  

( , 1, 2,3)i j =  (15) 

3.2 Application of general periodic boundary conditions in finite element analysis 

As shown in Fig. 3, the position of the mapping point M in
1 2 3

S S S∆ on the slave surface can be given by 

1 2 1 3 1*( ) *( )M S x S S y S S= + − + −  (16) 

If the coefficient x and y satisfy Eq. (17), it can be confirmed that the mapping point M is located in the 

triangular element (including the boundary). 

0, 0, 1x y x y≥ ≥ + ≤  (17) 

Moreover, the shape function matrix [N] of the element can be determined by the coordinates of point M and 

vertices of 1 2 3S S S∆ . 

For the application of general periodic boundary conditions, to realize the constraint equation between the 

surface nodes, it is just needed to replace the second term in Eqs. (5) - (7) with Eq. (14). For the edges of the 

unit-cell, the mapping points of the edge nodes locate between two nodes of the reference edge. At this time, the 

shape function matrix [N] is similar to that of one-dimensional bar element. It is also just needed to replace the 

second term in Eqs. (8) - (10) with Eq. (14). For the corners of the unit-cell, the constraint equations between the 

corner nodes are identical to Eqs. (11) - (13). In particular, when the element shape function matrix [N] is only one 

component of 1 while the rest of 0 (i.e. periodic meshing), Eq. (15) exactly reduces to the Eq. (4) as periodic 

boundary conditions. 

Finally, a FORTRAN pre-compiler code involving these constraint equations is written and implemented based 

on the platform of finite element software ABAQUS. 

4 Finite element model 

4.1 Unit-cell structural model 

In order to verify the effectiveness and applicability of the explicit general periodic boundary conditions given 

in this paper, a unit-cell structural model of 3D braided composites proposed by Xu and Xu [29] is utilized here for 

comparison analysis. The cross section shape of the braiding yarns is considered as octagon containing an inscribed 

ellipse. The relationship between the major radius a and minor radius b of the ellipse and interior braiding angle of 

braided composites γ, is expressed as 



  

3 cosa b γ=  (18) 

As displayed in Fig. 4, Wx, Wy and h represent the width, thickness and height of the unit-cell model 

respectively, and they can be calculated as: 

4 2xW b=  (19) 

4 2yW b=  (20) 

8 / tanh b γ=  (21) 

The unit-cell model of 3D braided composites consists of braiding yarns and resin matrix. The braiding yarn 

containing thousands of fibers and matrix is considered as transversely isotropic unidirectional composites in local 

coordinate and the resin matrix is assumed to be isotropic. For the local coordinate definition of braiding yarn in a 

specify orientation, local 1-axis follows the yarn centerline and local 3-axis is in the upright plane perpendicular to 

the x-y plane of the global coordinate, as shown in Fig. 4. The Stiffness and strength properties of constituents are 

listed in Table 1, and the structural parameters of the unit-cell model in this paper are given as follows: γ =46.4, 

Wx=Wy=1.662mm, h=2.238mm, Vf=52%. 

4.2 Finite element meshing 

Attributable to the complexity of the microstructure, the solid tetrahedral elements (C3D4) are utilized to mesh 

the unit-cell model of 3D braided composites. The merged coincident meshes are adopted on the interfaces, to be 

precise, the interfaces between the yarns and matrix are assumed to be perfectly bonded. Specifically, for periodic 

meshing, the number and the position of the nodes on the master and slave planes must be exactly the same, which 

is accomplished by surface mesh replication method. However, for free meshing, no restriction is placed on the 

paired planes of the unit-cell and high-quality mesh is easier to generate. The unit-cell model with periodic mesh is 

composed of 7, 992 nodes and 40,452 C3D4 elements, and the unit-cell model with free mesh consists of 6, 923 

nodes and 33, 515 C3D4 elements respectively, as shown in Fig. 5. 

4.3 Prediction of effective elastic properties 

In this paper, homogenization method is utilized in order to predict the mechanical properties of textile 

composites. That is, the heterogeneous composites in the micro-scale are considered a homogeneous material in the 

macro-scale. The stress-strain relationship of a unit-cell can be computed by 

Cσ ε=  (22) 

where C is the effective stiffness matrix. σ  and ε  are the global average stress and global average strain 

defined by 

1
ij ij

V

dV
V

σ σ= ∫
, 

1
ij ij

V

dV
V

ε ε= ∫
 

(i, j=1, 2, 3) (23) 

In the cuboid unit-cell, 
ij

ε  is known in advance when applying periodic displacement boundary conditions. 

For ijσ , one has 
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S
σ =  (i, j=1, 2, 3) (24) 

In the above equation, (Pi)j is is the ith resultant forces on the jth boundary surface and Sj is the area of the jth 

boundary surface.  

The elastic constants of the unit-cell can be calculated by 

i
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i

E
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ε
= , i
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j

ε
µ

ε
= − , 

ij

ij

ij

G
σ

ε
=

 

(i, j=1, 2, 3) (25) 

4.4 Prediction of damage and strength properties 

Physical experiments are expensive, time-consuming, and confined to certain structural parameters. Moreover, 

it is difficult to identify the damage modes and investigate the damage evolution process of the interior components. 

The damage simulation by finite element method can conduct virtual tests of the composites and provide insights 

into the local responses thus can overcome the limitations in physical experiments. 

Damage initiation and damage evolution can be simulated by damage mechanism, which consist of failure 

criteria and material degradation. In this paper, 3D Hashin failure criteria [30] are applied to define the damage 

initiation of braiding yarns. In Hashin criteria, four distinct failure modes are considered: yarn tensile failure in L 

direction, yarn compressive failure in L direction, yarn tensile and shear failure in T and Z direction, and yarn 

compressive and shear failure in T and Z direction. Herein, L-T-Z rectangular coordinate is local coordinate 

definition of braiding yarn, and L axis, T axis and Z axis indicate the axial and two transverse directions. Maximum 

stress criteria are employed to define the initiation of matrix cracking. 

Once the damage initiation criteria are satisfied, further loading will cause degradation of material stiffness 

constants. The reduction of the stiffness constants is controlled by damage variables ranged from 0 (initial 

undamaged) to 1 (completely damaged) according to the damage situation. In this paper, a gradual degradation 

scheme coupling with Murakami damage model proposed by Lapczyk et al. [31] and Fang et al. [13] is used to 

characterize the damage process of the yarns and matrix. More detailed analysis about the damage model of 3D 

braided composites can be found in reference [13]. 

Finally, A user material subroutine (UMAT) involving the damage model is developed and implemented in the 

finite element software ABAQUS. The whole process of damage evolution of 3D braided composites is simulated, 

and the damage mechanisms are revealed in the simulation process. The strength properties of 3D braided 

composites are predicted from the computed stress-strain curves. The approach presented herein is suitable for 

inclusion of advanced damage models integrating initiation and evolution [32, 33] although these have not been 

attempted at this time. 

5 Results and discussions 

5.1 Preliminary validation of the application 

To validate the boundary conditions derived based on the unit-cell model, a simple method proposed by Li et al. 

[24] is implemented first. A small case of homogeneous isotropic block is selected as a unit-cell and the general 



  

periodic boundary conditions are imposed. Under six typical loading conditions (
0 0 0 0 0 0, , , , ,x y z xy xz yzε ε ε γ γ γ ), 

perfectly uniform stress and strain fields can be obtained. The stresses and strains are same to the average stresses 

and strains predicted by material properties assigned to the unit-cell model, which preliminarily verifies the applied 

boundary conditions. By this approach, most human mistakes in applying complicated boundary conditions can be 

avoided. 

5.2 Comparison of elastic properties 

Due to the spatial rotation characteristics of 3D braided composites, the deformation and stress distribution of 

the unit-cell model under x and y tension, as well as under xz and yz shear, are similar. Accordingly, only the 

comparison results of elastic properties under x tension, z tension, xy shear and xz shear are given here. 

Fig. 6 displays the comparison of deformation between unit-cell models with periodic mesh and free mesh (the 

deformation scale factor is 35). It can be found that the deformation stations of the periodic meshing unit-cell are 

consistent with that of free meshing under all the four typical loading cases. The boundary surfaces of the unit-cell 

are no longer maintained as planes but warped. Especially, in the z tension, the warping extent on the top and 

bottom surface is most obvious but weaker on the other two paired surfaces. This is mainly attributed to the fact 

that the unit-cell model does not have the symmetries of geometrical structure and physical properties. However, 

the parallel opposite boundary surfaces have the same deformation, which can guarantee the displacement 

continuity between the neighboring unit-cells and provide a reasonable stress distribution. It can also be seen that 

the four deformation stations shown in Fig. 6 correctly reflect the corresponding load characteristics of the applied 

boundary conditions. 

Fig. 7 demonstrates the comparison of von-Mises stress distributions between unit-cell models with periodic 

and free mesh on un-deformed shape. The paired opposite surfaces totally have the same stress distribution, which 

ensures the traction continuity condition at the opposite boundary surfaces of the unit-cell models. Note that the 

stress in the braiding yarns is obviously larger than that in the matrix and the braiding yarns bear main loads under 

all the loading cases. This is because the stiffness of braiding yarn is much larger than matrix and the load 

distribution is determined by the stiffness properties. However, under different loadings, the load bearing 

mechanism of braiding yarn is different thus the mechanical response characteristics of the unit-cell model are also 

different. It can also be observed that the stress distributions of the two unit-cell models are very close to each other 

when subjected to the same loading conditions. That is, the stress and strain fields of the unit-cell model with 

general periodic boundary conditions agree well with that under periodic boundary conditions. 

Next, the quantitative comparison results of the unit-cell model with two different meshes are mainly presented 

by the following stiffness and strength predictions. Table 2 displays the predicted elastic constants of the unit-cell 

model with periodic mesh and free mesh. From Table 2, it is seen that the unit-cell model is almost perfect 

transversely isotropic and the corresponding prediction results are in good agreement in these two cases. It has been 

proved that excellent elastic prediction results can be obtained compared with the numerical simulation data based 

on the unit-cell model imposed by periodic boundary conditions [8-11]. Consequently, the results in Table 2 further 

verify the effectiveness and validity of the general periodic boundary conditions in the application of elastic 

properties prediction by unit-cell model with free mesh. 

5.3 Comparison of strength and damage properties 

5.3.1 Stress-strain curves 

Fig. 8 illustrates the computed stress-strain curves of unit-cell models with periodic mesh and free mesh. 

Similarly, only the comparison results under x tension, z tension, xy shear and xz shear are given. In Fig. 8, PM 

refers to periodic mesh and FM refers to free mesh. It is obvious that the computed stress-strain curves of the 



  

periodic meshing unit-cell agree well with that of free meshing under the same loading cases. Actually, the 

carbon-fiber reinforced 3D braided composites tends to exhibit brittle breaking characteristics in experiment and 

the composites will fracture when the experimental stress-strain curve reaching the maximum stress. However, the 

computed stress-strain curves provide the whole simulation process from damage initiation, propagation to 

catastrophic failure. After reaching the maximum stress, the computed curves decrease rapidly or gradually 

according to the loading cases and then the materials loss the carrying capacity. The extended unloading observed 

in the computed stress-strain curves is considered as a numerical artifact because the experimental specimens most 

likely have a more brittle fiber failure, whereas the computed curves have a more gradual unloading to promote the 

numerical stability [15]. The comparison results of predicted strength parameters and failure strains are summarized 

in Table 3. Obviously, these predicted results are very close, thus verifies that the general periodic boundary 

conditions are also suitable for strength properties prediction by unit-cell model with free mesh. 

5.3.2 Failure mode and damage mechanism 

The advantage of the meso-scale finite element method is not only the global stiffness and strength properties of 

the composites but also various failure mode and damage mechanism, can be studied through the analysis [21]. In 

this paper, the damage evolution processes of unit-cell models with periodic mesh and free mesh under typical 

loads are simulated. The failure mode and damage mechanism are different under different loading cases. It is 

found that the main failure modes of the braided composites are yarn tensile and shear failure in T and Z direction 

and matrix tension cracking under x tension load. Yarn compressive and shear failure in T and Z direction are very 

limited and yarn tension and compressive failure in L direction are not existed. Under z tension load, the main 

failure modes are yarn T compressive and shear failure and matrix cracking. L tensile fracture occurs in some 

elements in the braiding yarn, but the quantity is relatively small. Under xy and xz shear loads, the main failure 

modes are yarn T tension and shear failure, meanwhile, L compressive fracture occurs in some elements in the 

braiding yarn and the quantity is relatively large. Fig. 9 depicts the comparison of certain modes damage 

nephograms between unit-cell models with periodic mesh and free mesh in yarns and matrix under the same strain 

cases. It can be found that the damage stations always similar in the two mesh status under corresponding loads. 

Therefore, the general periodic boundary conditions can also be utilized for damage simulation and damage 

mechanism analysis by unit-cell model with free mesh. 

6 Conclusions 

In this paper, a study is conducted by comparing the periodic mesh and the free mesh on the mechanical 

properties prediction of 3D braided composites. For the unit-cell model with free mesh generation, the more 

general periodic boundary conditions are applied by establishing the muti-point constraint equations between the 

related nodes on the paired surfaces, edges and corners of the unit-cell model. To verify the effectiveness and 

validity of the general periodic boundary conditions, the deformation, stress distribution and the predicted stiffness 

and strength properties of the unit-cell model of 3D braided composites with periodic mesh and free mesh are 

compared. Some conclusions can be drawn herein. 

(1) In the finite element analysis, the edge nodes and corner nodes of the unit-cell model meet two or three 

groups of constraint equations for surface nodes simultaneously. However, these equations are not independent to 

each other. Before applying the periodic boundary conditions, the constraint equations of the nodes at these 

positions should be merged into independent equations. 

(2) Under non-periodic meshing condition, the mapping point of a master node on the slave plane is not just in 

the position of a node but within an element. When establishing the linear constraint equation, the displacement of 

the mapping point can be obtained by interpolating the nodal displacement of the element which surrounds the 



  

mapping point.  

(3) Imposing the general periodic boundary conditions to the free meshing unit-cell model, realistic strain and 

stress fields as well as reasonable stiffness and strength properties can be obtained. It is proved that the general 

periodic boundary conditions are suitable for the free mesh of complicated microstructure model and thus can 

reduce the difficulty of meshing and improve the quality of mesh generation. Therefore, it should be a robust and 

effective approach in future meso-scale finite element analysis of textile composites. 
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Table 1 Stiffness and strength properties of constituents 

 Ef1 (GPa) Ef2 (GPa) Gf12 (GPa) Gf23 (GPa) �f12 Em (GPa) �m XT (MPa) XC (MPa) S (MPa) 

T300 230 40 24 14.3 0.26   3528 2470  

Matrix      3.5 0.35 80 241 100 

 

 

Table 2 Predicted elastic constants of unit-cells with periodic mesh and free mesh 

Elastic constants / Gpa Periodic mesh Free mesh 

Ex 10.55 10.62 

Ey 10.55 10.61 

Ez 17.42 17.50 

Gxz 17.80 17.80 

Gyz 17.80 17.79 

Gxy 11.52 11.54 

�xy 0.30 0.30 

�zx 0.56 0.56 

�zy 0.56 0.56 

 

 

Table 3 Predicted strength parameters and failure strains of unit-cells with periodic mesh and free mesh 

Strength / MPa  Failure strain / % 

 Periodic mesh Free mesh   Periodic mesh Free mesh 

Sx 88.50 90.77  x
ε  1.20 1.24 

Sy 88.59 91.41  yε
 

1.20 1.24 

Sz 277.75 283.87  zε  2.00 2.00 

Sxz 275.16 274.14  xz
γ  1.60 1.60 

Syz 275.03 273.77  yzγ  1.60 1.60 

Sxy 228.99 225.91  
xy

γ  2.10 2.10 

 

 

 

 

 


