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Abstract
Pulmonary inflammation and bacterial colonization are central to the pathogenesis of

chronic obstructive pulmonary disease (COPD). Defects in macrophage phagocytosis of

both bacteria and apoptotic cells contribute to the COPD phenotype. Small molecule inhibi-

tors with anti-inflammatory activity against p38 mitogen activated protein kinases (MAPKs),

phosphatidyl-inositol-3 kinase (PI3K) and Rho kinase (ROCK) are being investigated as

novel therapeutics in COPD. Concerns exist, however, about off-target effects. We investi-

gated the effect of p38 MAPK inhibitors (VX745 and SCIO469), specific inhibitors of PI3K α
(NVS-P13K-2), δ (NVS-P13K-3) or γ (NVS-P13K-5) and a ROCK inhibitor PF4950834 on

macrophage phagocytosis, early intracellular killing of bacteria and efferocytosis of apopto-

tic neutrophils. Alveolar macrophages (AM) obtained from broncho-alveolar lavage (BAL)

or monocyte-derived macrophages (MDM) from COPD patients (GOLD stage II/III) enrolled

from a well characterized clinical cohort (MRC COPD-MAP consortium) or from healthy ex-

smoker controls were studied. Both COPD AM and MDM exhibited lower levels of bacterial

phagocytosis (using Streptococcus pneumoniae and non-typeable Haemophilus influen-

zae) and efferocytosis than healthy controls. None of the inhibitors altered bacterial inter-

nalization or early intracellular bacterial killing in AM or MDM. Conversely PF4950834, but

not other inhibitors, enhanced efferocytosis in COPD AM and MDM. These results suggest
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none of these inhibitors are likely to exacerbate phagocytosis-related defects in COPD,

while confirming ROCK inhibitors can enhance efferocytosis in COPD.

Introduction

Chronic obstructivepulmonary disease (COPD) is a chronic inflammatory lung condition in
which patients suffer progressive worsening of lung function characterisedby an obstructivepat-
tern of airflow limitation, which is only partially reversible [1, 2]. Smoking is the main aetiological
cause of the disease,which is expected to become the third leading cause of death worldwide by
2020 [3]. Patients with COPD have an accelerated decline in lung function and experience episodes
of acute exacerbations, associatedwith increased lung inflammation. These events are a common
cause of hospitalization [4, 5] and impose a considerable financial burden on health services.

Use of inhaled corticosteroids (ICS) in COPD patients reduces the rate of exacerbations,
retards the rate of decline in quality of life measures and in the TORCH trial also the rate of
decline in the forced expiratory volume in one second (FEV1); however, side effects of their use
include an increased rate of pneumonia [6, 7]. The increased incidence of pneumonia in COPD
itself and with ICS use emphasises the importance of developing alternative treatment strategies
that do not further exacerbate the altered innate immune responses observed in COPD. In addi-
tion corticosteroids only partially block the induction of inflammatory cytokines in ex vivo exper-
iments [8, 9]. There is, therefore, an unmet clinical need for the development of alternative anti-
inflammatory therapies that do not significantly alter host defense, while ensuring a high-degree
of modulation of pro-inflammatory responses. The human kinome contains multiple drugable
targets which could be used to modify chronic inflammatory processes [10]. A variety of small
molecule kinase inhibitors are being investigated as novel therapeutics with which to treat airway
inflammation[11] and several have potential therapeutic value in COPD [12] [13].

The p38 mitogen-activated protein kinase (p38 MAPK) pathway stimulates pro-inflamma-
tory cytokine expression [14], is activated by cigarette smoke [15] and has increased activity in
COPD alveolar macrophages [16], a cell type in which p38 MAPK inhibition reduces cytokine
expression [17]. An oral p38 inhibitor PH-797804 reached phase II clinical trials, with patients
with moderate to severe COPD displaying improvements in lung function and dyspnoea over
placebo [18]. Inhaled p38 inhibitors also have potential and may represent a means to limit sys-
temic side-effects of treatment [19, 20] and are also in clinical trials for COPD (ClinicalTrials.
gov identifier:NCT00642148) and could limit systemic side-effects of treatment. Phosphatidy-
linositol 3-kinases (PI3Ks) also showed increased activity in COPD patients [21]. Of the three
isoforms of PI3K (α, γ and δ), PI3K γ is known to be pro-inflammatory and involved in neutro-
phil migration [22, 23] whereas PI3K δ activation contributes to corticosteroid resistance [21].
Furthermore, in a murine model of COPD, administration of an aerosolizedPI3K γ/ δ inhibitor
(TG100-115) suppressed lung inflammation [24]. Although PI3Kγ inhibitors are not in clinical
development, PI3Kα inhibitors are in clinical trials for cancer and an oral PI3Kδ inhibitor
(CAL-101) is in a Phase II trial for haematological malignancies (ClinicalTrials.gov identifier:
NCT00710528). The Rho-associated protein kinase (ROCK) pathway is also implicated in the
pathogenesis of COPD; ROCK is activated in the endothelial cells of smokers [25] and the
pathway plays a role in the remodelling of the COPD airway, inducing contraction of airway
smoothmuscle [26]. ROCK also regulates the organization of stress fibres in fibroblasts, which
contributes to fibrosis [27]. In addition ROCK pathways are also involved in the migration of
inflammatory leukocytes [28] and ROCK inhibition has an anti-inflammatory effect on airways
[29].
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However, in addition to their pro-inflammatory function, p38 MAPK, PI3K and ROCK are
known to have other roles within cells, including in the regulation of phagocytosis, efferocyto-
sis and membrane trafficking [30–34]. To date, few studies have addressed how inhibition of
these pathways might influence innate immune function of relevance to COPD. The lungs of
patients with COPD are frequently colonizedwith bacteria, particularlyHaemophilus influen-
zae and Streptococcus pneumoniae [35], and this colonization is associated with increased
exacerbation frequency [36]. Alveolar macrophages play a critical role in the clearance of bacte-
ria and apoptotic cells [37]. Any potential anti-inflammatory benefits of p38 MAPK, PI3K and
ROCK inhibition would be tempered if there were also significant inhibition of key innate
immune functions.We therefore tested whether p38, PI3K or ROCK inhibitors altered the abil-
ity of COPDmacrophages to ingest bacteria and apoptotic cells using samples from a well-
characterised clinical cohort of patients with COPD.

Materials and Methods

Macrophage donors

The COPD patients were enrolled in the UKMedical Research Council (MRC) COPD-MAP
consortium of GOLD II/III patients. They were current or ex-smokers with a greater than 10
pack years smoking history and moderate to severe disease (GOLD stages II and III), (Tables 1
and 2). The controls were healthy current or ex-smokers smokers demonstrated not to have
COPD after screening, which involved spirometry, clinical examination and a medical history.
Exacerbation frequencywas determined by questionnaire and frequent exacerbators were
defined as having� 2 exacerbations in the preceding 12 months. Alveolar macrophages (AM)
and monocyte-derivedmacrophages (MDM) from COPD patients or healthy controls for this
study were isolated from broncho-alveolar lavage (BAL) or whole blood respectively, with writ-
ten informed consent. The study was approved by the National Research Ethics ServiceCom-
mittee of Yorkshire and the Humber, the National Research Ethics ServiceCommittee of
Manchester, and the National Research Ethics ServiceCommittee of London.

Compounds

The p38 mitogen-activated protein kinase (MAPK) inhibitors used were SCIO469 or VX745
(Tocris). SCIO469 has a reported in vitro IC50 for p38α of 9nM with a 10-fold selectivity over

Table 1. Demographics of participants in AM experiments.

Healthy COPD

N 12 16

Age (years) 58 ± 2 68 ± 2 *

Gender M:F 10:2 14:2

Smoking History (Pack Years) 10 ± 4 59 ± 8***

FEV1(L) 2.71 ± 0.2 1.90±0.2***

FVC (L) 3.66 ± 0.2 3.6 ± 0.2

FEV1 (% predicted) 109 ± 6 64 ± 3***

FEV1:FVC 0.74 ± 0.01 0.52 ± 0.02***

GOLD Stage (II/III) 16/0

Non Frequent (NF)/Frequent Exacerbators (F) NF 12/F4

Data are presented as absolute numbers or mean ± SEM where

* represents p<0.05 and

*** p<0.001 for differences from healthy, comparison by unpaired t-test or Fisher’s Exact test.

doi:10.1371/journal.pone.0163139.t001
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p38β and>2000 fold selectivity over other kinases [38]. VX745 is also ~20-fold more selective
for p38α over p38β with a reported Ki of 220nM and no activity against a panel of 50 kinases at
2μM [39]. The phosphatidylinositol-3-kinase (PI3K) class I isoform selective inhibitors
NVS-PI3-2 (α selective), NVS-PI3-3 (δ selective) and NVS-PI3-5 (γ selective) were obtained
fromNovartis. The Rho-associated protein kinase (ROCK) inhibitor PF4950834 was obtained
from Pfizer. Compounds were added at least 2 h before bacterial challenge or exposure to apo-
ptotic cells at the indicated concentrations, and were present for the duration of experiments.
Establishing levels of necrosis and apoptosis of macrophages confirmed lack of toxicity after
exposure to each inhibitor or vehicle (DMSO) control.

Cells and infection

Alveolar macrophages were isolated from BAL as previously described [40]. Cells were>95%
alveolar macrophages as assessed by Diff-Quick staining (Dade Behring) visualised by light
microscopy (Leica DMRB 1000). Due to limitations in cell number, not all assays were per-
formed on all donors. Human monocyte-derivedmacrophages (MDM) were differentiated for
12 d from PBMC isolated from whole blood by Percoll (Sigma) gradient. Cells were cultured in
RPMI (Lonza) supplemented with 10% (v/v) fetal calf serum (FCS) with low lipopolysaccha-
ride (LPS) (Lonza) and were differentiated from PBMC by culturing with 2ng/ml granulocyte
macrophage-colony stimulating factor (GM-CSF) (R&D Systems Ltd). Bonemarrow-derived
macrophages (BMDM) were obtained by culturingmarrow frommice in DMEM containing
10% fetal calf serum (FCS) with low LPS (HyClone, Thermo Scientific) and 10% L929 condi-
tionedmedium for 14 days [41]. For experiments with live bacteria, cells were infected at a
multiplicity of infection of 10. Following bacterial challenge, extracellular bacteria where
washed off after 4 h, and media replaced.

Bacteria

Serotype 14 S. pneumoniae (NCTC11902) was used in infections as a serotype commonly caus-
ing infection in the COPD lung [42]. Stocks were grown as previously described [43]. Non-
typeableH. influenzae (NCTC 1269) was cultured on chocolate agar overnight and then grown
to OD 0.6 in brain heart infusion (BHI) (Oxoid) supplemented with 20% (v/v) FCS (Sigma),

Table 2. Demographics of participants in MDM experiments.

Healthy COPD

N 14 13

Age (years) 58 ± 2 71.8 ± 2 ***

Gender M:F 8:6 7:6

Smoking History (Pack Years) 11 ± 5 44 ± 10*

FEV1(L) 2.8 ± 0.2 1.3±0.1***

FVC (L) 3.8 ± 0.2 2.6 ± 0.2**

FEV1 (% predicted) 101.7 ± 3 72.7 ± 6**

FEV1:FVC 0.75 ± 0.02 0.49 ± 5.5***

GOLD Stage (II/III) 3/6

Data are presented as absolute numbers or mean ± SEM where

* represents p<0.05

** p<0.01 and

*** p<0.001 for differences from healthy, comparison by unpaired t-test or Fisher’s Exact test.

doi:10.1371/journal.pone.0163139.t002
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20 μg/ml NAD (Sigma) and 10 μg/ml Heme (Sigma). Bacteria were not opsonized. Heat-killed
(HK) bacteria were generated by incubation at 65°C for 10 min as describedpreviously [44].

Fluorescent labelling of HK bacteria

Bacterial cultures were centrifuged and the pellet resuspended in 1ml NaHCO3 buffer contain-
ing 10 μl of AlexaFluor 488 NHS ester (1 mg lyophilised dye in 1ml DMSO, Life Technologies)
and incubated overnight at room temperature on a windmill rotator. The bacteria were then
centrifuged and the supernatant aspirated before the pellet was resuspended in 1ml PBS and
washed twice. The final pellet was resuspended in 1ml PBS. Samples were pooled together and
the dilution adjusted to give an OD600 of between 1.8 and 2.0 for S. pneumoniae or 1.5–1.7 for
H. influenzae. Samples were stored at -20°C

Bacterial internalization

Viable intracellular bacteria were measured at 4 h post-challenge as a measure of bacterial
internalization using a gentamicin protection assay as previously described [45]. At 4 h cells
were washed three times in PBS before being incubated for 30 min at 37°C in RPMI containing
40 μU penicillin (Sigma) and 20 μg/ml gentamicin (Sanofi) to kill extracellular bacteria. Cells
were then washed three times in PBS before being lysed in 250 μl 2% (w/v) saponin for 12 min.
The lysate was made to 1 ml in PBS, and intracellular bacterial numbers determined by Miles-
Misra viable count. To measure internalisation of fluorescently labelledHK bacteria, fluores-
cent stocks (as above) were sonicated to ensure even distribution of bacteria. 100 μL of bacterial
stock was added to 900 μL RPMI.Media was removed from cells and 100μL of bacterial sus-
pension was added and incubated at 37°C for 4 h. Cells were then washed and extracellular
fluorescence quenched by adding 100 μL trypan blue (Sigma, 2% v/v) for 2 min at room tem-
perature. The trypan blue was then discarded and fluorescence determined using a fluoromet-
ric plate reader (BMG Fluorostar) excitation 480nm, emission 520nm.

Bacterial killing

For assessment of early S. pneumoniae killing, cells were infected for 2 h before extracellular
bacteria were killed at 2 h as in the internalization experiment above, after which cultures were
placed in media containing 0.75μg/ml vancomycin. At the designated time points, levels of
intracellular viable bacteria were then determined as above.

Efferocytosis

Neutrophils from whole bloodwere purified by Percoll gradient, before being washed in serum
free media. Neutrophils were stained with PKH-26 red fluorescent dye (Sigma) according to
manufacturer’s instructions. Staining was stopped by addition of 2ml 1% (w/v) BSA. Cells were
washed three times in RPMI before being resuspended at 5.0 x 106 cells/ml in RPMI supple-
mented with 10% (v/v) FCS. Cells were then cultured for 20 h. This resulted in>80% apoptotic
and fewer than 5% necrotic cells as measured by Annexin V Topro staining [46]. Apoptotic
cells were added to macrophages at an MOI of 5 for a period of 90 min. Cells were then washed
to remove non internalized neutrophils, and fluorescence analysed by flow cytometry using a
BD FacsCalibur and the FL-2 channel. 10,000 events were captured and median fluorescence
intensity (MFI) was recorded. The MFI of duplicate samples incubated on ice for 90min were
subtracted to control for surface-boundnon-internalized neutrophils.

Effects of p38 MAPK, PI3K Kinase or Rho Kinase Inhibitors on COPD Alveolar Macrophages
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Toxicity assays

Nuclear fragmentation and condensation indicative of apoptosis were detected at 20 h using
4060-diamidino-2-phenylindole (DAPI), by reviewers blinded to sample origin, as previously
described [43]. Necrosis was measured by the release of lactate dehydrogenase into superna-
tants using the Cytotox 96 cell viability kit (Promega), used according to the manufacturer’s
instructions. Alternatively, cell viability was measured using metabolic activity as a surrogate,
using 0.1% (w/v) MTT-3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT).
Cells were incubated with 50μl MTT per well at 37°C for 30 min. MTTwas removed and 50μl
of dimethyl sulfoxide (DMSO) added to lyse the cells. Absorbance was read using a Spectramax
photometer at 570nm and values normalized to 100% non-stimulated cell controls for each
condition.

Western blot

Whole cell extracts were isolated using SDS-lysis buffer as describedbefore [47] and equal pro-
tein loaded per lane. Proteins were separated by SDS gel electrophoresis, blotted onto a PVDF
membrane, and blocked for 60 min at room temperature in PBS containing 0.05% (v/v) Tween
with 5% (w/v) skimmilk powder. Membranes were incubated overnight at 4°C with antibodies
against either heat-shock protein 27 (HSP27) (HSP27(G31), Mouse monoclonal #2402, Cell
Signalling 1:1000), phospho-HSP27 (p-HSP27(Ser82), rabbit monoclonal #2401, Cell signal-
ling, 1:1000), protein kinase B (AKT) (rabbit polyclonal #9271, Cell signalling 1:1000), phos-
pho-AKT (p-AKT) (p-AKT(Ser473), rabbit polyclonal #9271, Cell signalling 1:1000), myosin
light chain 2 (MLC) (rabbit polyclonal #3672, Cell signalling, 1:1000), or phosphorylated-MLC
(p-MLC) (p-MLC(Thr18/ser19), rabbit polyclonal #3672, Cell signalling, 1:1000). Proteins
were detected using HRP-conjugated secondary antibodies (1:2000; Dako) and ECL (Amer-
sham Pharmacia).

Cytokine production

COPDAM cultures were pre-treated with compounds for 2 hours, before being stimulated
with S14 at an MOI of 10. Supernatants harvested after 20 h. TNF-α and IL-6 levels were mea-
sured by ELISA (R & D Systems) according to manufacturer's instructions.

Statistics

Data are presented as medians or means with error bars indicating +/- SEM or IQR. Compari-
sons were made by Student’s t-test or Mann-Whitney U, or if the data were matched, by paired
t-test or Wilcoxon signed rank test. Friedman’s test was used to make comparisons involving
repeated measures. Significancewas defined as P< 0.05. Statistical tests were performed using
Prism 6.0 software (GraphPad Inc.).

Results

Demographic data

The characteristics of all of the macrophage donors are described in Tables 1 and 2. Alveolar
macrophage donors with COPD (Table 1) and MDM donors with COPD (Table 2) had a sig-
nificantly greater number of pack years of cigarette exposure, and had significantly lower FEV1

(L), % predicted FEV1 and FEV1:FVC ratio compared to the healthy controls. All samples were
collectedwhen the patient was clinically stable (free of acute exacerbation) and none of the
patients were taking long term antibiotics.
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p38 MAPK, ROCK or PI3K inhibitors have low toxicity and are active in

COPD alveolar macrophages

In order to establish that any modification of macrophage responses observedwas not due to
compounds affecting cell viability, alveolar macrophages from healthy donors or COPD
patients were assessed for apoptosis (Fig 1A–1C) or necrosis (Fig 1D–1F) after treatment with
p38 inhibitors SCIO469 and VX745 (Fig 1A and 1D), PI3K inhibitors NVS-PI3-2, NVS-PI3-3
or NVS-PI3-5 (Fig 1B and 1E) or the ROCK inhibitor PF4950834 (Fig 1C and 1F) for 20 h.
None of the compounds induced either apoptosis or necrosis compared to vehicle controls.

To ensure that the compounds were functional at the concentrations administered, in
COPD alveolar macrophages, their ability to inhibit their respective pathways was assessed.

Fig 1. Cytotoxicity and efficacy of p38, PI3K and ROCK inhibition in macrophages. (A-F) Alveolar macrophages (AM) from COPD patients

or healthy controls were incubated with either vehicle (-), or incubated with (+) 1μM SCIO469, 1μM VX745, 100nM NVS-PI3K-2/3/5 or 200nM

PF4950834 for 20 h, before cultures were assessed for apoptosis (A-C) by nuclear fragmentation, or necrosis (D-F). In all experiments, n = 4,

there was no significant differences between groups.

doi:10.1371/journal.pone.0163139.g001
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Fig 2. p38, PI3K and ROCK inhibition modulates signalling in alveolar macrophages. (A-F) COPD alveolar macrophages (AM) were pre-treated with

the designated concentrations of SCIO469 (A) VX745 (B), NVS-PI3K-2/3/5 (C-E), or PF4950834 (F), were then challenged with S. pneumoniae for 6 h,

before cells were lysed and probed for either p-HSP27 (A-B), p-AKT (C-E), or p-MLC (F). Plots are representative of three independent experiments and

densitometry from all three experiments are shown, * = p<0.05, ** = p<0.01, ANOVA with Dunnetts post-test vs control.

doi:10.1371/journal.pone.0163139.g002
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Treatment of alveolar macrophages with SCIO469 and VX745 resulted in a decrease in the
inducible levels following bacterial challenge of the activated, phosphorylated form of pHSP27
a downstream target of MAPK signalling [48] (Fig 2A and 1B). Similarly, NVS-PI3-2,
NVS-PI3-3 or NVS-PI3-5 treatment reduced AKT phosphorylation after bacterial challenge, a
downstream event in PI3K signalling [49] (Fig 2C–2E). Treatment of cells with PF4950834
resulted in a decrease in the level of phosphorylated regulatory light chain of Myosin II/Myso-
sin light chain (p-MLC) after bacterial challenge, a downstream consequence of ROCK signal-
ling [50] (Fig 2F). To further check the efficacy of the compounds we next looked at their
ability to modulate pro-inflammatory cytokine production from alveolar macrophages.

Fig 3. p38, PI3K and ROCK inhibition modulates cytokine production in alveolar macrophages. (A-F) COPD alveolar macrophages (AM) were

pre-treated with the designated concentrations of SCIO469 or VX745 (A and D), NVS-PI3K-2/3/5 (B and E), or PF4950834 (C and F), before challenge

with S. pneumoniae for 6 h. Supernatants were collected and levels of TNFα (A-C) and IL-6 (D-F) were measured by ELISA, n = 4, * = p<0.05, ANOVA

with Dunnetts post-test vs control.

doi:10.1371/journal.pone.0163139.g003
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Inhibition of p38 with VX745 significantly reduced TNFα and IL-6 production at concentra-
tions of 100nM and above, whereas treatment with SCIO469 inhibited TNFα and IL-6 at con-
centrations of 100nM and 1000nM respectively (Fig 3A and 3D). Similarly, inhibition of
PI3Kα and P13Kδ with NVS-PI3-2 and NVS-PI3-3 significantly reduced TNFα and IL-6 pro-
duction at concentrations of 100nM (Fig 3B and 3E). The role of PI3Kγ in macrophages has
predominantly thought to be in regulating the chemotactic response [23, 51, 52], and inhibition
of PI3Kγ did not affect cytokine production in our model (Fig 3B and 3E). In keeping with its
role in cytokine production in macrophages [53], inhibition of ROCK (Fig 3C and 3F) signifi-
cantly reduced TNF or IL-6 production, at doses from 1000nm and 100nm respectively. Thus
treatment of macrophages with all classes of inhibitor resulted in anticipated changes in down-
stream signalling consistent with activity of the inhibitors and no adverse effects seen on cell
viability were seen at the concentrations used.

COPD alveolar macrophages show reduced phagocytosis of S.

pneumoniae compared to healthy macrophages, and this is not affected

by inhibition of p38, ROCK or PI3K pathways

The ability of macrophages to phagocytose and kill bacteria is one of their key immune functions
[37]. The p38 MAPK, PI3K and ROCKpathways have all been shown to modulate phagocytosis
in various models [54–58].We therefore investigated the effect of inhibiting p38, PI3K and
ROCKpathways in alveolar macrophages on bacterial phagocytosis.Measurement of viable
intracellular S. pneumoniae at 4 h after bacterial challenge revealed that COPD patients’ alveolar
macrophages had lower numbers of intracellular viable bacteria than healthy controls (Fig 4A).
Treatment of either healthy donor or COPD patients’ alveolar macrophages with p38 inhibitors
SCIO469 and VX745 (Fig 4B), PI3K inhibitors NVS-PI3-2, NVS-PI3-3 or NVS-PI3-5 (Fig 4C)
or the ROCK inhibitor PF4950834 (Fig 4D) resulted in similar levels of internalised bacteria
when compared to the matched donor sample treated with vehicle controls.

Since the number of viable intracellular bacteria is potentially influencedby both the phagocy-
tosis of bacteria and the rate of early intracellular killing of S. pneumoniae in the phagolysosome
[40] we performed an additional assay to measure the kinetics of early intracellular killing, after
all extracellular bacteria were killed. Although the starting number of intracellular bacteria was
higher in healthy AM than in the COPD patient’s alveolar macrophages, the rate of decay, as a
measure of bactericidal killing,was similar between healthy and COPD donors (Fig 5A). This
proved that the initial differences in intracellular viable bacteria betweenCOPD and healthy
donor alveolar macrophages were the result of differences in phagocytosis not early intracellular
killing. Similarly, potential alterations in phagocytosis were not beingmasked by the compounds
altering early bacterial killing as the rate of killing in COPDmacrophages for cells treated with
SCIO469 and VX745 (Fig 5B), PI3K inhibitors NVS-PI3-2, NVS-PI3-3 or NVS-PI3-5 (Fig 5C)
or the ROCK inhibitor PF4950834 (Fig 5D), were not significantly different to the paired donor
samples treated with vehicle control. These results suggested that although COPD patients’

Fig 4. COPD alveolar macrophages have reduced phagocytosis of S. pneumoniae, which is not

modified by p38, PI3K or ROCK inhibition. (A) Alveolar macrophages (AM) from COPD patients or

healthy controls were challenged with S. pneumoniae (Spn) at a multiplicity of infection (MOI) of 10. 4 h post

challenge, the number of viable intracellular bacteria was determined. Data presented as median ± IQR,

n = 10/14 healthy/COPD, *** = p<0.001, Mann-Whitney U test. (B-D) Healthy or COPD AM were treated

with vehicle (-) or the designated doses of SCIO469, VX745 (B), NVS-PI3K-2/3/5, (C) or PF4950834 (D)

before challenge with Spn at MOI 10. 4 h post challenge, numbers of viable internalized bacteria were

determined, n = 3–5, data shown as paired vehicle and compound data for each donor, ns = non-significant,

paired t- test.

doi:10.1371/journal.pone.0163139.g004
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Fig 5. p38, PI3K or ROCK inhibition does not affect early-phase bacterial killing in alveolar macrophages. (A) Alveolar

macrophages (AM) from healthy donors or COPD patients were challenged with S. pneumoniae (Spn) at a multiplicity of infection

of 10. 2 h after challenge non-internalised bacteria were washed off, and antibiotics added. At the designated time post-

antimicrobials persisting viable bacteria were measured. (B-D) COPD AM were pre-treated with vehicle or the designated inhibitor

before being challenged with Spn at MOI of 10. At the designated time post-antimicrobials persisting viable bacteria were

measured. In all experiments, n = 4, with no significant differences between any groups at any time point, Friedman test.

doi:10.1371/journal.pone.0163139.g005
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alveolar macrophages were less efficient at phagocytosis of S. pneumoniae none of the com-
pounds studiedmodified either phagocytosis or early intracellular killing of bacteria.

COPD monocyte-derived macrophages show reduced phagocytosis of

bacteria compared to healthy macrophages, and this is not affected by

inhibition of p38, ROCK or PI3K pathways

We have previously shown that COPD phagocytic defects extend beyondAM [44] and con-
firmed this finding by showing that although the ability of MDM to phagocytose beads was simi-
lar in cells from controls and COPD patients, uptake of S. peumoniae was suppressed (Fig 6A
and 6B). Next we tested whether the kinase inhibitors studied in AM had any effect on phagocy-
tosis of S. pneumoniae by MDM.MDMwere treated with increasing concentrations of p38
inhibitors SCIO469 and VX745 (Fig 6C and 6D) the PI3K inhibitors NVS-PI3-2, NVS-PI3-3 or
NVS-PI3-5 (Fig 6E–6G) and the ROCK inhibitor PF4950834 (Fig 6H), none of which signifi-
cantly affected phagocytosis of S. pneumoniae. When phagocytosis of non-typeableH. influenzae
was examined we also confirmed reduced phagocytosis in COPDMDM but failed to detect any
reduction in phagocytosis in any group at any concentration with each of the kinase inhibitors
(Fig 7). There was no effect on cell viability as tested by MTT assay with any of these kinase
inhibitors at the range of doses used in these experiments (data not shown). Experiments with S.
pneumoniae were also performed in murine bone-marrow derivedmacrophages. Results corrob-
orated those in human cells, with no inhibition of phagocytosis seen for any compound (S1 Fig).

Inhibition of the ROCK pathway enhances defective efferocytosis in

COPD macrophages

Efferocytosis of apoptotic cells is also a critical function of macrophages, facilitating the
removal of apoptotic material and resolution of inflammation [59–61]. Defective efferocytosis
and the increased presence of apoptotic cells have been identified in the airways of subjects
with COPD [62]. In keeping with this, COPD alveolar macrophages and MDM had lower rates
of efferocytosis than healthy AM (Fig 8A and 8B). Treatment of healthy or COPD AM and
MDMwith either SCIO469 or VX745 (Fig 8C and 8D), or PI3K inhibitors NVS-PI3-2,
NVS-PI3-3 or NVS-PI3-5 (Fig 8E and 8F) did not alter rates of efferocytosis.However, in
COPD AM andMDM treatment with the ROCK inhibitor PF4950834 enhanced efferocytosis,
although no uplift was seen for healthy AM or MDM (Fig 8G and 8H).

Discussion

The central role of pulmonary inflammation in the pathogenesis of COPD is well established
[63]. Multiple factors contribute to the persistent neutrophilic inflammation in the COPD
lung, including activation of pattern recognition receptors by pathogen-associatedmolecular
patterns (PAMPS) associated with colonizing bacteria, and damage-associatedmolecular

Fig 6. COPD MDM have reduced phagocytosis of S. pneumoniae which is not modified by p38, PI3K or ROCK inhibition. (A-B) MDM from

healthy donors or patients with COPD were incubated with fluorescent beads (A) or fluorescently labelled S. pneumoniae (B) for 4h and

phagocytosis measured by fluorimetry. Data are presented as individual data points and the line represents median *p<0.05 Mann-Whitney U test.

(C-D) MDM from healthy donors or patients with COPD were pre-incubated with p38 inhibitors VX745 (C) or SCIO469 (B) for 1h prior to challenge

with fluorescently labelled S. pneumoniae for 4h. Data are presented as mean ± SEM for n = 10 healthy donors and n = 6 COPD. (E-G) MDM from

healthy donors or patients with COPD were pre-incubated with the PI3K inhibitors NVS-PI3-2 (E), NVS-PI3-3 (F) or NVS-PI3-5 (G) for 2h prior to

challenge with fluorescently labelled S. pneumoniae for 4h. Data presented as mean ± SEM for n = 3 healthy and n = 3 COPD. (H) MDM from

healthy donors or patients with COPD were pre-incubated for 2h with the ROCK inhibitor, PF4950834 prior to challenge with fluorescently labelled

S. pneumoniae for 4h. Data are presented as mean ± SEM for n = 3 healthy and n = 3 COPD. In all experiments, no significant differences were

observed in internalization.

doi:10.1371/journal.pone.0163139.g006
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patterns (DAMPS) generated by host cell death during infections and tissue remodelling.Oxi-
dant stress contributes to the initiation and persistence of the pro-inflammatory state and
genetic susceptibility and epigenetic reprogramming further amplifies inflammation [64, 65].
On-going inflammation is further accentuated by impaired clearance of bacteria and apoptotic
cells from the lung [44, 62]. Strategies to alter pulmonary inflammation are therefore attractive,
but must ensure that reduction of inflammation is not achieved at the cost of inhibiting anti-
bacterial host defence or efferocytosis.

The quest for anti-inflammatory or diseasemodifying therapies for the treatment of COPD
has led to investigation of a number of putative kinome targets. The most advanced target in
drug development for the treatment of COPD is p38 MAPK with several clinical trials report-
ing modest effects of oral inhibitors on inflammatory readouts [66, 67]. Studies have shown
efficacyof p38 inhibitors in COPD with improvement in lung function and dyspnoea scores
over placebo [18]. We and others have, however, demonstrated that innate immune functions
are attenuated in macrophages from COPD patients [44, 68]. Since the p38 pathway is active in
monocytes and macrophages [69, 70] it was important to establish whether bacterial clearance
or efferocytosis by macrophages was altered by p38 MAPK inhibition in order to establish if
the therapeutic approach had unforeseen risks.

The present study clearly shows that inhibition of the p38MAPK pathway, using two struc-
turally distinct chemotypes, does not alter phagocytosis of bacteria, early bacterial killing of bacte-
ria or efferocytosis by macrophages. These results corroborate other studies which show bacterial
phagocytosis by neutrophils activates p38α but administration of a p38MAPK inhibitor fails to
attenuate phagocytosis [71] and that p38 MAPK inhibition failed to blockmurine bonemarrow
derivedmacrophage uptake of beads [72]. Conversely, TLR-mediated p38 activation has been
shown to increase bacterial phagocytosis in murine and human macrophages through upregula-
tion of scavenger receptors [73]. Similarly, the adenosine analogue 5-aminoimidazole-4-carboxa-
mide-1-β-D-ribofuranoside(AICAR) has been shown to augment phagocytic pathways at least
in part by a p38MAPKmediatedmechanism that could be suppressed by both small molecule
inhibitors or targeted siRNA [74]. The discrepancy in these results is unlikely to reflect different
kinase utilisation between human and murinemodels, as p38 inhibition did not impair phagocy-
tosis in murine BMDM in our model (S1 Fig). Rather, the discrepancy likely reflects the complex-
ity of phagocytosis and efferocytosis signalling pathways, the involvement of which is often
dependent on cell type and stimuli used. It is therefore possible that additional stimuli are
required to engage the previously describedp38MAPK pathways and that these are less impor-
tant in the COPD lung. It also reflects the fact that our bacterial incubation periodwas relatively
short so less likely to alter the TLR signalling, our read out of non-opsonic bacterial uptake was
less likely to be influencedby TLR signalling and that COPDmacrophages may be less able to
alter their activation status to a more classical activation state [75].

Other kinases have also been implicated in COPD pathology including PI3K and inhibition
of this protein has been shown to restore corticosteroid insensitivity [21], resulting in a high-

Fig 7. COPD MDM have reduced phagocytosis of H. influenzae, which is not modified by p38, PI3K or ROCK inhibition. (A) MDM from

healthy donors or COPD patients were challenged with fluorescently labelled H. influenzae for 4h and phagocytosis measured by fluorimetry.

Data are presented as individual data points and the line represents median where **p<0.01 Mann-Whitney U test. (B-C) MDM from healthy

donors or patients with COPD were pre-incubated with p38 inhibitors VX745 (B) or SCIO469 (C) for 2h prior to challenge with fluorescently

labelled S.pneumoniae for 4h. Data are presented as mean ± SEM for n = 10 healthy donors and n = 6 COPD. (D-F) MDM from healthy donors

or patients with COPD were pre-incubated with the PI3K inhibitors NVS-PI3-2 (D), NVS-PI3-3 (E) or NVS-PI3-5 (F) for 2h prior to challenge with

fluorescently labelled S.pneumoniae for 4h. Data presented as mean ± SEM for n = 3 healthy and n = 3 COPD. (G) MDM from healthy donors or

patients with COPD were pre-incubated for 2h with the ROCK inhibitor, PF4950834 prior to challenge with fluorescently labelled H. influenzae

for 4h. Data are presented as mean ± SEM for n = 3 healthy and n = 3 COPD. In all experiments, no significant differences were observed in

internalisation between vehicle and any concentration of compound for either healthy or COPD MDM.

doi:10.1371/journal.pone.0163139.g007
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level of interest in targeting this pathway. PI3K is known to be important in macrophage
migration, for example towards the chemoattractant CCL2 [52], while PI3Kγ-/- mice showed
reduced neutrophil and macrophage chemotaxis to inflammatory stimuli [23]. The PI3K path-
way is involved in the control of pseudopod formation [76], and is required for Fc gamma
receptor (FcγR)-mediated phagocytosis in macrophages [56]. However, utilisation of PI3K
pathways downstream of other phagocytic receptors is more multifaceted. Inhibition of PI3K
prevents phagocytosis of zymosan [77] and in peritoneal macrophages suppresses phagocytosis
ofHelicobacter pylori through modification of actin polymerisation at sites of uptake [78].
However, inhibition of PI3K does not inhibit the phagocytosis of Salmonella typhimurium
[79], Legionella pneumophila [80], or Escherichia coli [81], indicating that only a subset of
phagocytic responses are regulated by PI3K. The present study shows that inhibition of indi-
vidual subunits of PI3K, using three different inhibitors, does not alter phagocytosis or intracel-
lular killing of S. pneumoniae orH. influenzae by human macrophages, again suggesting
differential pathway regulation in these cells.

The ROCK pathway has been implicated in modulation of phagocytosis in macrophages
[82], while inhibition of the pathway is anti-inflammatory in the airways [29]. Inhibition of
ROCK reverses the reduction in efferocytosis induced by oxidant stress or alcohol exposure in
AM [83] another setting associated with altered oxidative stress [84], indicating that ROCK
inhibition could enhance efferocytosis under conditions similar to those in COPD. The present
study shows that inhibition of ROCK, while not altering phagocytosis or intracellular killing of
bacteria by human macrophages, causes an increase in efferocytosis of apoptotic neutrophils
by alveolar macrophages from COPD patients, but not in healthy controls. This supports the
hypothesis that inhibition of ROCK reverses the defect in efferocytosis specifically seen in the
environment of the COPD lung and highlights that specific differences exist in the pathways
that regulate phagocytosis of bacteria and efferocytosis in COPD, despite the fact that both pro-
cesses are perturbed in the COPD lung.

Overall these results illustrate that inhibition of several distinct kinase pathways with the
potential to adversely influence bacterial phagocytosis or efferocytosis have no such adverse
effects on AM or MDM isolated from individuals with COPD. These findings are reassuring
and suggest that inhibition of these pathways will not impact on these aspects of the suppressed
innate immune responses of COPDmacrophages. The ability to study AM isolated directly
from the COPD lung increases the strength of these conclusions. Moreover, we found that a
ROCK inhibitor partially corrects the COPD associated defect in AM efferocytosiswith no
adverse effect on bacterial phagocytosis. The strategy of targeting these pathways, as potential
novel anti-inflammatory treatments, remains a potential therapeutic approach. These data add
confidence that this approach will not have a negative consequence on bacterial clearance or
removal of apoptotic bodies.

Supporting Information

S1 Fig. Inhibition of p38, PI3K or Rho kinases in murine bone-marrowderivedmacro-
phages (BMDM) does not affect phagocytosisof S. pneumoniae. BMDMwere treated with

Fig 8. Inhibition of ROCK, but not p38 or PI3K pathways, increases efferocytosis in COPD alveolar and monocyte-

derived macrophages. Alveolar (AM) or monocyte-derived macrophages (MDM) were incubated with PKH-26 stained

apoptotic neutrophils for 90 min, before efferocytosis was assessed by flow cytometry. (A-B) Pooled vehicle data for AM, (A)

n = 4–9, *** = p<0.001, Mann-Whitney and MDM (B), n = 7–12, ** = p<0.01, Student t-test. (C-H) Healthy or COPD AM (C,

E and G) were pre-treated with vehicle (-) or 1μM SCIO469, 1μM VX745 (C), 100nM NVS-PI3K-2/3/5 (E), or 200nM

PF4950834 (G) (+). MDM (D, F and H) were treated with vehicle (-) or compounds at the designated dose (+), ns = non

significant, * = p<0.05, Wilcoxon matched pairs test.

doi:10.1371/journal.pone.0163139.g008
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vehicle (V) or the designated doses of SCIO469, VX745 (B), NVS-PI3K-2/3/5, (C) or
PF4950834 (D) before challenge with Spn at MOI 10. 4 h post challenge, numbers of viable
internalized bacteria were determined, n = 3, no significant differences between vehicle and
any dose of compound.
(TIFF)

S2 Fig. Full lengthWestern blots from Fig 2.
(TIFF)
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