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Abstract

To predict forest response to long-term climate change with improved confidence requires 

that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem

response to short-term variations in environmental drivers, including regular seasonal 

patterns.  Here, we used an integrated dataset from four forests in the Brasil flux network, 

spanning a range of dry season intensities and lengths, to determine how well four state-

of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon 

exchanges in Amazonian tropical forests.  We found that most DGVMs poorly represented 

the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and 

of other fluxes and pools.  Models simulated consistent dry season declines in GPP in the 

equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to 

observed GPP increases.  Model simulated dry season GPP reductions were driven by an 

external environmental factor, “soil water stress” and consequently by a constant or 

decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted 

from a combination of internal biological (leaf-flush and abscission and increased Pc) and 

environmental (incoming radiation) causes.  Moreover, we found models generally 

overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at 

equatorial locations.  In contrast, a southern Amazon forest (Jarú RJA) exhibited dry 

season declines in GPP and Re consistent with most DGVMs simulations.  While water-
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limitation was represented in models and the primary driver of seasonal photosynthesis in 

southern Amazonia, changes in internal biophysical processes, light harvesting 

adaptations (e.g. variations in leaf area index (LAI) and increasing leaf-level assimilation 

rate related to leaf demography), and allocation lags between leaf and wood, dominated 

equatorial Amazon carbon flux dynamics and were deficient or absent from current model 

formulations.  Correctly simulating flux seasonality at tropical forests requires a greater 

understanding and the incorporation of internal biophysical mechanisms in future model 

developments.

1. Introduction

Dynamic global vegetation models (DGVMs) are the most widely used and appropriate 

tool for predicting large-scale responses of vegetation to future climate scenarios.  

However, to forecast the future of Amazonia under climate change remains a challenge.  

The previous generation of DGVMs produced projections for Amazonia’s ecosystems that 

diverged widely, with outcomes ranging from large-scale forest die-back to forest resilience

(Betts et al., 2004, 2004; Friedlingstein et al., 2006; Baker et al., 2008).  More recent 

DGVMs simulations showed the large-scale die-off scenario to be unlikely (Cox et al., 

2013), given (1) an improved model understanding of forest response to the negative 

effects of temperature -previously overestimated and now constrained (Cox et al., 2013); 

and (2) current models being forced with updated climate projections (temperature and 

precipitation) bounded by observations that no longer demonstrate drastic climate changes

in response to rising CO2 in the tropics (Cox et al., 2013; Huntingford et al., 2013).  Yet 

tropical forest response to climate change remains uncertain as models produce varying 

outcomes (Shao et al., 2013) even without die-off.  Some cutting-edge DGVMs projected 
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forest degradation due to future deforestation and increasing temperature, with 

catastrophic consequences for the global climate based on climate-carbon cycle 

feedbacks (Wang et al., 2013; Friend et al., 2014; Wang et al., 2014), while other DGVMs 

foresaw strong carbon sinks in these forests due to CO2 fertilization of photosynthesis 

(Rammig et al., 2010; Ahlström et al., 2012; Huntingford et al., 2013; Friend et al., 2014).  

Although the effects of temperature, water limitation and CO2 fertilization mechanisms 

remain uncertain, all DGVMs continue to agree that Amazonian forests play an important 

role in regulating the global carbon and water cycle (Eltahir & Bras, 1994; Werth & Avissar,

2002; Wang et al., 2013, Wang et al. 2014; Ahlström et al., 2015).

Key to reducing uncertainty in DGVMs is their systematic evaluation against observational 

datasets.  This exercise enables the identification of model deficiencies through 

comparison with observed patterns in ecosystem processes, as well as the mechanisms 

underpinning such processes (Baker et al., 2008; Christoffersen et al., 2014).  Recent 

model-data evaluations in tropical forests have focused on the cascade of ecosystem 

responses to long term droughts (Powell et al., 2013) and the definition of spatial patterns 

in productivity and biomass (Delbart et al., 2010; Castanho et al., 2013).  However, one 

important context for model assessment in tropical forests is in the seasonality of 

ecosystem water and carbon exchange, as observational datasets reveal axes of variation 

in productivity, biomass and/or forest function across space (da Rocha et al., 2009; 

Restrepo-Coupe et al., 2013) and/or through time  (Saleska et al., 2003; von Randow et 

al., 2004; Hutyra et al., 2007; Brando et al., 2010).  The most consistent temporal variation

in tropical forests is the seasonality of water, energy, and carbon exchange, since all 

tropical ecosystems are seasonal in terms of insolation and a majority experience 
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recurrent changes in precipitation, temperature and/or day length.  Evaluation with respect 

to seasonality has typically focused on evapotranspiration (ET) (Shuttleworth, 1988; Werth

& Avissar, 2002; Christoffersen et al., 2014) and on net carbon exchange (NEE) (Baker et 

al., 2008; von Randow et al., 2013; Melton et al., 2015).  Where models compensated 

misrepresentations of gross primary productivity (GPP) in the NEE balance, by improving 

or adjusting the efflux term represented by heterotrophic (Melton et al., 2015) or 

ecosystem respiration (Baker et al., 2008) to available moisture among other strategies.  

Only recently have the seasonal dynamics of GPP drawn the attention of different groups 

(De Weirdt et al., 2012; Kim et al., 2012) and where Kim et al. (2012) demonstrated that a 

consequence of its incorrect derivation was to overestimate the vulnerability of tropical 

forests to climate extremes.  Therefore, identifying discrepancies in observed versus 

modeled seasonality in carbon flux even when seasonal amplitudes are not large -as can 

be the case for evergreen tropical forests (see Albert et al. (in preparation) for cryptic 

phenology), can lead to important model developments with significant consequences -to 

obtain better projections of the fate of tropical ecosystems under present and future 

climate scenarios.

Analysis of eddy covariance datasets have shown that in non-water limited forests of 

Amazonia, the observed seasonality of GPP was not exclusively controlled by seasonal 

variations in light quantity (as has been demonstrated for ET) or water availability.  Instead 

GPP was driven by a combination of incoming radiation and phenological rhythms 

influencing leaf quantity (measured as leaf area index; LAI) and quality (leaf-level 

photosynthetic capacity as a function of time since leaf flush) (Restrepo-Coupe et al., 

2013; Wu et al., 2016).  The lack of a direct correlation between GPP and climate suggests
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that ecosystem models that are missing sufficient detail of canopy leaf phenology will likely

not capture seasonal productivity patterns.  Accordingly, recent studies showed model 

simulations (ED2 and ORCHIDEE) to be deficient in terms of predicted seasonality in GPP

and litter-fall, if missing leaf-demography and turnover as in Kim et al. (2012) and in De 

Weirdt et al. (2012), respectively.  Between the two studies, only two sites (eastern (K67) 

and northeastern (CAX)) were represented, both of which experience very similar 

precipitation and light regimes.  This further highlights the need for expanded evaluation of

modeled seasonality of GPP across a range of sites spanning a broader range of climates 

and phenologies.

If the improved representation of the dynamics of leaves and other carbon pools translates

into more accurate simulations of seasonal GPP and/or the long-term carbon budget (De 

Weirdt et al., 2012; Kim et al., 2012; Melton et al., 2015), then comparisons between 

observations and model derived seasonality of carbon allocation could provide insight into 

the mechanistic response of vegetation to climate and strategies to incorporate them into 

DGVMs.  For example, critically evaluating the seasonality of net primary production of 

leaves (NPPleaf) and wood (NPPwood) in tandem with photosynthesis, will inform deficiencies

in model allocation schemes and carbon pool residence times.  Model net primary 

production (NPP) typically arises from the allocation of photosynthate to main organs, 

either as a constant fraction of GPP (Kucharik et al., 2006), or according to fixed allometric

rules (Sitch et al., 2003).  However, such a view of supply-limited growth has come into 

question recently (Würth et al., 2005; Fatichi et al., 2014).  Thus as water, temperature, 

and nutrients can all impact cell expansion, there may be a temporary imbalance between 

carbon used for tissue growth and maintenance respiration versus carbon supplied by 
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assimilation (photosynthesis) (Fatichi et al., 2014).  Patterns in seasonality of GPP, NPPleaf

and NPPwood, therefore, potentially reveal the degree of coupling (or lack thereof) of these 

two carbon sinks (NPPwood and NPPleaf) with photosynthetic activity (GPP).  Indeed, 

Doughty et al. (2014) used bottom-up estimates of the ecosystem carbon-budget at a 

forest in southwest Amazonia and showed that components of NPP varied independently 

of photosynthetic supply, which they interpreted in terms of theories of optimal allocation 

patterns.  While an alternative interpretation of such patterns could simply refer to 

biophysical limitations on growth, which vary seasonally (Fatichi et al., 2014), both studies 

suggest that modeling allocation as a function of GPP will likely fail to capture observed 

seasonality.  Ground-based bottom-up estimates of primary productivity at a temporal 

resolution greater than a year (i.e., seasonal) are difficult if not impossible, principally 

because there is no accepted method for estimating whole-tree non-structural carbon 

(NSC) and its variation with seasons (Würth et al., 2005; Richardson et al., 2015).  We 

propose coupling co-located top-down eddy flux estimates of GPP with bottom-up NPP 

estimates (NPPwood, NPPleaf and NPPlitter-fall) to circumvent this problem and to obtain a 

better informed view of the mechanisms (e.g. allocation schemes) models may incorporate

or test against, to improve seasonal simulations of carbon fluxes and pools.

The focus of this study was to evaluate, for the first time, modeled seasonal cycles of 

different carbon pools and fluxes, including leaf area index (LAI), GPP, leaf fall, leaf flush, 

and wood production, with high resolution eddy flux estimates of GPP and ground-based 

surveys.  We centered our study on a comparison between forests located in the 

equatorial Amazon (radiation- and phenology-driven) to a southern forest (driven by water 

availability) and explored the different model strategies to incorporate and simulate 
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physical and ecological drivers.  Here, we assessed four state-of-the art DGVMs in active 

development for use in coupled climate-carbon cycle simulations in terms of whether they 

could simultaneously determine patterns of growth and photosynthesis, thereby getting the

‘right answer for the right reason’.  We conclude by proposing several approaches for 

improving model formulations and highlight the need for model-informed field campaigns 

and future experimental designs.

2. Methods

2.1. Site descriptions

We analyzed data from the Brazil flux network for four tropical forests represented by the 

southern site of Reserva Jarú (RJA), and three central Amazonia forests (~3ºS) from west 

to east: the Reserva Cuieiras near Manaus (K34), the Tapajós National forest, near 

Santarém (K67) , and the Caxiuanã National forest near Belém (CAX) (Fig. 1).  For 

detailed site information see previous works by Restrepo-Coupe et al. (2013), and de 

Goncalves et al. (2009; 2013) and individual site publications (Araújo et al., 2002; Carswell

et al., 2002; Malhi et al., 2002; Saleska et al., 2003; Kruijt et al., 2004; von Randow et al., 

2004; Hutyra et al., 2007; da Costa et al., 2010; Baker et al., 2013).

All study sites had mean annual precipitation (MAP) above 2000 mm year-1 (Fig. S1 and 

Table 1 ), based on the 1998-2014 satellite-derived precipitation from the Tropical Rainfall 

Measuring Mission (TRMM 3B43-v7 at a resolution of 0.25 deg) (Huffman et al., 2007; 

NASA, 2014) (Fig. S10 for a comparison between observations and TRMM data).  CAX 

and K34 have MAP over 2500 mm year-1, 2572 and 2673 mm year-1, respectively (Fig. 

S11).  By contrast, at the southern forest of RJA and the equatorial forest of K67 MAP was

8

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

8



~2030 mm year-1.  Moreover, RJA has a 5-month dry season length (DSL) analogous to 

two of the central Amazon sites of CAX and K67 (4 to 5-months); however, longer than 

K34 site (1 to 2-months).  Where the dry season was based on the 16-year TRMM series 

and defined as those periods where precipitation was less than ~100 mm month-1 

(Sombroek, 2001; da Rocha et al., 2004; Restrepo-Coupe et al., 2013).  The 100 mm 

month-1 threshold corresponds to ~90% of the observed annual maximum ET averaged 

across years (115±12 mm month-1) and close to the mean seasonal ET (92±1.5 mm 

month-1) at the four tropical forests here reported (Restrepo-Coupe et al., 2013).  RJA and 

K67 showed similar mean dry-season precipitation (46 mm month-1 at RJA and 64 mm 

month-1 at K67).  However, the annual minimum averaged across the years 1998-2014 

(MiAP) at RJA was 15 mm month-1 compared to a more benign dry season minimum of 36 

mm month-1 at K67 (Fig. 1 and Table 1).  Despite being located at a latitude further from 

the equator (10˚S) incoming photosynthetic active radiation (PAR) at the southern forest of

Jarú, was less seasonal (low amplitude) if compared to the central Amazon forests 

(latitude ~3˚S) (Fig. 2).  At RJA, peak top of the atmosphere radiation (TOA) was 

synchronous with the wet season –where we expected higher reflectance by clouds 

decreasing the surface available PAR (Fig. 2).  All equatorial sites sat on highly weathered 

deep clay soils (>= 10 m), whereas RJA sat on a lower water storage capacity loamy 

sandy soil and a more shallow and variable profile, with depth to bedrock as shallow as 2-

3 m (Hodnett et al., 1996; Christoffersen et al., 2014).

2.2. Eddy covariance methods

At the above-mentioned forests, climate, carbon, energy, water and momentum fluxes 

were measured by the eddy covariance (EC) method.  Meteorological measurements 
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included vapor pressure (VPD), air temperature (Tair), PAR, and incoming and outgoing 

short and long wave radiation, among others.  We estimated the cloudiness index (CI) -a 

proxy for light quality, based on the observed PAR and the theoretical PAR (PARtheo).  The 

PARtheo  was computed following Goudriaan (1986) top of the atmosphere radiation and 

scaled to fit monthly maximum observed PAR for the hour across years.  The CI ranges 

from 0 to 1, from diffuse to direct irradiance dominating incoming PAR value, respectively:

Equation 1

Starting with half-hourly CO2-flux data provided from each site's operator, we calculated 

net ecosystem exchange (NEE in µmol CO2 m-2 s-1), with fluxes to the atmosphere defined 

as positive.  NEE was then filtered for low turbulence periods (u* thresh).  For a detailed 

description of instrumentation, applied corrections, quality control procedures, the effect of 

u* thresh on NEE calculations, and for data processing refer to Restrepo-Coupe et al. (2013).

Gross ecosystem exchange (GEE) was derived from tower measurements of daytime 

NEE by subtracting estimates of ecosystem respiration (Re), which in turn we derived from 

the nighttime NEE.  We assumed daytime Re was the same as nighttime Re, as we did not 

observed a statistically significant within-month correlation between nighttime hourly NEE 

and nighttime Tair (Restrepo-Coupe et al., 2013).  GEE is a negative value (GEE = NEE - 

Re) as generally NEE is negative in the daytime, and Re is positive (meteorological 

convention).  We expressed ecosystem-scale photosynthesis, or gross ecosystem 

productivity (GEP), as negative GEE and assumed negligible re-assimilation of metabolic 

respiration CO2 within the leaf and insignificant CO2 recirculation below the EC system 

(Stoy et al., 2006).  For comparison with model output, we used GEP interchangeably with 
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gross primary productivity (GPP).

We defined ecosystem photosynthetic capacity (Pc, gC m-2 d-1) as the 16-day GPP 

averaged over a fixed narrow range of reference climatic conditions following some of the 

modifications introduced by Wu et al. (2016) to Pc used in Restrepo-Coupe et al. (2013).  

For our analysis, Pc was estimated as the rate of carbon fixation under reference 

conditions defined by fixed narrow bins in:  site specific day-time annual mean PAR ± 150 

μmol m-2 s-1, VPD, Tair, and CI ± 1.5 standard deviation from their respective means (see 

Table S1).  Thus, Pc, by definition, removed the effect of day-to-day changes in available 

light, diffuse/direct radiation, photoperiod, temperature, and atmospheric demand from 

photosynthesis.  The Pc has been shown to be a robust representation of the emergent 

photosynthetic infrastructure of the whole forest canopy (Wu et al., 2016).

We looked at evapotranspiration (ET, mm d-1) calculated as the latent heat flux (LE, W m-2)

measured at the tower multiplied by the latent heat of vaporization (λ, kJ kg-1).  We 

developed a Type II linear model between surface incident short wave radiation (SWdown, W

m-2) and the dependent variable, ET.

From the standard suite of climatic variables available for periods between 1999 and 2006 

measured at each EC tower, meteorological drivers for the models were generated.  

According to Rosolem et al. (2008) the selected periods represent the mean climatological 

condition and exclude anomalous climatic events (e.g. 2010 El Niño-Southern Oscillation 

(ENSO) or 2005 drought as experienced at the southern Amazon).  Variables included:  

SWdown; air temperature (Tair, °K); near surface specific humidity (Qair, g kg-1); rainfall 
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(Precip, mm month-1); magnitude of near surface wind (WS, m s-1), surface atmospheric 

pressure (Pa, hPa); surface incident longwave radiation (LWdown, W m-2); and CO2 

concentration (CO2 air) was fixed at 375 ppm (de Goncalves et al., 2009) (Fig. 2).  Drivers 

were created for consecutive years where gaps were no greater than two months.  All time

series were subject to quality control and filled using other tower measurements (e.g. from 

a temperature profile), nearby sites and the variable's mean monthly diurnal cycle.  We 

analyzed data for 2000-2005 for K34, 2002-2004 for K67, 2000-2002 for RJA and 1999-

2003 for CAX.  We restricted flux and meteorological observations and the calculation of 

seasonality to the above-mentioned dates in order to match model drivers and output.

Hourly fluxes (GPP, NEE, Re, and ET) and meteorology were aggregated to 16-day time 

periods, assuming that at least 4 days were available with at least 21 hours of 

observations each.  Gaps were not filled further and mean annual cycles were then 

calculated.

2.3. Field measurements 

Although field measurements can be translated into carbon storage values (e.g. wood 

carbon pool from DBH inventories via allometric equations), we focus on departures from a

base level because they reflect the seasonality of allocation.  The following vegetation 

infrastructure descriptors and carbon pools were included in the analysis:

Leaf Area Index (LAI): model output was compared to LAI observations for Caxiuanã, CAX

as reported by Metcalfe et al. (2007)), and for Santarem, K67 as by Brando et al. (2010).  

LAI was normalized from 0 to 1 (LAInormalized) for purposes of presentation.  Thus, in order to
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enhance and visualize any seasonal changes in LAI, independent of the observed or 

modeled absolute value, using Equation 2, where at time i, LAIi was adjusted by LAImin and

LAImax that corresponded to the minimum and maximum seasonal LAI, respectively:

LAInormalized (i)=
LAI i−LAImin

LAI max−LAImin

Equation 2

Leaf litter-fall or net primary productivity allocated to litter-fall (NPPlitter-fall, gC m-2 d-1):  

values corresponded to monthly litter-bed measurements at Manaus, K34 (here presented 

for the first time), and to those reported by Rice et al. (2004) for K67 and by Fisher et al. 

(2007) for CAX.

Modeled NPPleaf followed a basic leaf balance model proposed by Restrepo-Coupe et al. 

(2013).  Assuming the change in ecosystem Pc (dPc/dt) to be driven by 1) the loss or gain 

of leaves, NPPlitter-fall and NPPleaf, respectively (quantity); and 2) the changes in leaf-level 

carbon assimilation at saturating light (SLA x Amax) related to age (quality).  Therefore, 

solving for leaf production we obtained:

NPPleaf =NPPlitter−fall+
1

Amax x SLA
x
dPc

dt
Equation 3

where specific leaf area (SLA) values were set to 0.0140 for K67 and CAX (Domingues et 

al., 2005), 0.0164 m2/gC for K34 (Carswell et al., 2002).  The Amax was reduced to reach 

40% of the mean value at the time when leaf-fall reached its maximum (2-month linear 

gradient).  Maximum Amax was set to 8.66 gC m-2 d-1 at K67 (Domingues et al., 2005), and 
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to 7.36 gC m-2 d-1 at K34 (Carswell et al., 2000) and CAX.

Wood net primary productivity (NPPwood) was based on stem wood increment 

measurements (diameter at breast height, DBH) as reported by Rice et al. (2004) at K67, 

Chambers et al. (2013) at K34, and da Costa et al. (2010) at CAX.  No data was available 

for RJA.

2.4. Dynamic global vegetation models (DGVMs)

We presented output from four state-of-the-art dynamic global vegetation models.  All 

DGVMs were process based (e.g. photosynthesis, respiration, and evapotranspiration) 

and able to simulate the fluxes of carbon, water, and energy between the atmosphere and 

the land surface (see Table S2 and S3).  The model simulations were run as part of the 

Interactions between Climate, Forests, and Land Use in the Amazon Basin: Modeling and 

Mitigating Large Scale Savannization project (Powell et al., 2013).

To standardize all physical parameters within the models so as to focus on agreements 

and discrepancies among the different biomass schemes, all four DGVMs used the same 

soil hydrology properties (including free drainage conditions), and soil physical parameters

and depths.  The spin-up protocol consisted in running each model from near-bare-ground 

until variations in soil moisture, slow soil carbon, and above ground biomass were less 

than 0.5% (defined as average change for the last cycle of meteorological forcing as 

compared to the previous cycle).  Atmospheric CO2 concentrations were set to pre-

industrial values (278 ppm) and later increased to present day starting in 1715 (considered

as the first year after stabilization).  Radiation was split between direct and diffuse 
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following Goudriaan (1977).  We summarized each DGVM's carbon flux, and vegetation 

dynamics formulation in Table S2 and S3, and briefly describe the four models in this 

section:

Ecosystem Demography model version 2 (ED2):  The model explicitly tracked the 

dynamics of fine-scale ecosystem structure and function, including net ecosystem 

productivity (NEP), carbon partitioning, and growth and mortality dynamics (Medvigy et al.,

2009).  It used four PFTs for the tropics, a 10-minute time step for the ecosystem model, 

and LAI was defined on a daily basis.  The dynamics of individual plant cohorts 

(photosynthesis, mortality, transpiration, carbon allocation, etc.) were tracked 

independently.  Canopy structure was dynamic in the model and depended on the number 

and size of the cohorts (canopy layers were not prescribed).  ED2 tracked three different 

soil carbon pools for each layer (fast, slow and structural), water extraction depth varies 

according to plant functional types (PFTs).  The model did not include hydraulic 

redistribution.  The ED2 model photosynthesis parameterization was adjusted to improve 

the model's representation of diurnal, daily average, and seasonal GPP and NPP using 

data from a single site (K34).

Integrated Biosphere Simulator (IBIS): The tropical rainforest vegetation in IBIS is a 

composite of four plant functional types -”tropical evergreen tree”, “tropical deciduous 

tree”, “C3 grass”, and “C4 grass”, that compete for water and light.  The model simulated 

hourly carbon fluxes using the Ball-Berry-Farquhar equations (Farquhar et al., 1980).  LAI 

was calculated annually using fixed allocation coefficient to the leaves (0.3) and fixed 

residence times (12 months), although a water stress function could seasonally drop 
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leaves in the case of the tropical deciduous trees.  Biomass was integrated over the year 

using a similar procedure (Foley et al., 1996).  The IBIS used here, simulated six soil 

layers with a total depth of 8 m; water extraction by the roots varied by layer, and was 

controlled by a root distribution parameter.  IBIS required 76 parameters to be specified, of

those 14 were related to soil, 12 were specific to each of the nine PFTs, and 50 were 

related to morphological and biophysical characteristics of vegetation. 

Community Land Model-Dynamic Global Vegetation Model version 3.5 (CLM3.5):  The 

predecessor to the current CLM4-CNDV model (Gotangco Castillo et al., 2012), which is 

the land component of the Community Earth System Model (CESM).  CLM3.5 runs were 

set using a prognostic phenology, which incorporated recent improvements to its canopy 

interception scheme, new parameterizations for canopy integration, a TOPMODEL-based 

model for runoff, canopy interception, soil water availability, soil evaporation, water table 

depth determination by the inclusion of a groundwater model, and nitrogen constraints on 

plant productivity (without explicit nitrogen cycling) (Oleson et al., 2008).  The model 

treated the canopy as a weighted average (by their respective LAIs) of sunlit and shaded 

leaves.  The leaf phenology subroutine of this model for tropical forests applied only to the 

Broadleaf Deciduous Tree (BDT) PFT fraction (“raingreen” PFT), but all CLM3.5 

simulations reported here were >95% tropical Broadleaf Evergreen Tree (BET) fractional 

PFT cover.  The allocation scheme for this model dictated that leaf turnover for the tropical 

BET (at a rate of 0.5 yr-1) be replaced instantaneously with new leaf production to maintain 

fixed allometric relationships (Sitch et al., 2003); therefore, seasonality of LAI was not 

possible for these simulations.
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Joint UK Land Environment Simulator (JULES):  The UK community land surface model as

described in Best et al., (2011) and Clark et al., (2011).  Simulations for this study were 

conducted using JULES v2.1 which did not simulate drought deciduous vegetation.  The 

model represents five PFTs globally, of which the “evergreen broad-leaved tree” PFT 

dominates over Amazonia.  Gross leaf-level photosynthesis was based on Collatz et al. 

(1991, 1992) and was calculated as the smoothed minimum of three potentially limiting 

rates: a rubisco-limited, a light-limited, and the rate of transport of photosynthetic 

assimilates.  Plant respiration was simulated as a function of tissue temperature and 

nitrogen concentrations.  Soil moisture stress effects were incorporated by scaling 

potential net photosynthesis rate with a simple β factor (Cox et al., 1999; Powell et al., 

2013).  Leaf-level photosynthesis was coupled to stomatal conductance using the 

formulation by Jacobs (1994).  Photosynthesis was scaled from leaf to canopy using a 10-

layer canopy model which adopts the 2-stream approximation of radiation interception 

from Sellers (1985).  NEP was partitioned into a fraction used for growth and a fraction 

used for the ‘spreading’ of vegetation.  Carbon for growth was allocated to three vegetation

pools (wood, roots, leaves) following specific allometric relationships between pools (Clark 

et al., 2011).

DGVMs output followed the LBA-Data Model Intercomparison Project (LBA-DMIP) protocol

(de Goncalves et al., 2009); however, it includes some additional variables related to water

limitation (e.g. soil water availability factor or soil water “stress”), land use change (e.g. 

additional carbon pools), and disturbance (e.g. mortality) (Powell et al., 2013).  Here, we 

present soil water “stress” (FSW) values, calculated following Ju et al. (2006).  By 

definition FSW ranging from 0 to 1 is a measure of the water available to roots, where 
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FSW=1, is no stress.

Models were compared to observations based on the timing and amplitude metrics of their 

annual cycle.  Statistical descriptors as correlation coefficient (R), root-mean-square 

difference, and the ratio of model-observations standard deviations were calculated for the

16-day time series for multiple years and summarized using the Taylor diagrams (Taylor, 

2001).

3. Results

3.1. Gross primary productivity (GPP) and ecosystem photosynthetic capacity

(Pc)

The observed annual cycle of ecosystem-scale GPP showed two divergent patterns:  (1) 

increasing levels of photosynthetic activity (GPP) as the dry season progresses in the 

equatorial Amazon (K34, K67 and CAX) where MiAP was 103, 60 and 37 mm month-1, 

respectively, and maximum radiation was synchronous with low precipitation; and (2) 

declining productivity as the dry-season advanced in the southern forest (RJA) where 

radiation was somewhat aseasonal and MiAP was less than half its central Amazon 

counterparts (14 mm month-1) (Fig. 3).  By contrast, at all sites, model simulations showed 

peak GPP seasonality at the end of wet season with declining GPP during the dry season 

(Fig. 3).  The reduced dry season GPP observed at the southern Amazon forest of Jarú 

(RJA) was consistent with increasing degrees of water limitation.  At the sites in the 

equatorial Amazon (K34, K67 and CAX), modeled soil water “stress” (FSW; Fig. 2) (where 

FSW=1, no stress) acted to reduce model GPP during the dry season, even as observed 

Pc increased following higher levels of incoming solar radiation (PAR; Fig. 2 and Pc; Fig.
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4).  Similar to GPP, models tended to achieve good Pc representation at RJA (Fig. S7).  

However, simulated Pc at the equatorial Amazon forest sites remained unchanged (IBIS 

and JULES) or decreasing gradually from the middle of the wet season to the end of the 

dry period at K67 (ED2 and CLM3.5) (Fig. 4).

FSW reached an all-site minimum at RJA by the end of the dry season (Fig. 2) and 

corresponded with a decrease in model ET not seen on the EC measurements (Fig. 3).  

With the exception of CAX, seasonal observations of ET at all of the sites showed very 

little seasonality and remained close to 92 mm month-1 (3 mm d-1).  In general, DGVMs 

were able to capture the seasonality of ET; however, they overestimated the dry-period 

reduction in water exchange at RJA and in the case of K34 and CAX overestimated ET 

absolute values (Fig. S9).  By contrast, a very simple linear regression driven by SWdown 

was able to represent ~83% of the seasonality of ET (Fig. 3).

3.2Carbon allocation

We explored different DGVMs approaches to simulate the phenology of carbon allocation, 

in particular measures of plant metabolism (ecosystem photosynthetic capacity, Pc as 

proxy), standing biomass (wood increment, leaf-production and the balance of gain and 

loss of leaves), and additions to soil organic matter (leaf-fall), in an attempt understand the

model-data discrepancies on the estimates of GPP, Re, and NEE (Fig. S7 and S8).

Our results indicated that none of the models was able to capture or replicate the observed

dry-season LAI changes at the equatorial Amazon forests EC locations (Fig. 4).  In 

addition, with the exception of ED2, the annual mean LAI values were unrealistically high 
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(Baldocchi et al., 1988; Gower et al., 1999; Asner et al., 2003; Sakaguchi et al., 2011).  In 

contrast, with some model phenology schemes that assumed LAI and Tair to be positively 

correlated, we observed non-statistically significant positive and negative regressions at 

CAX and K67, respectively (R2<0.1; p-value >0.1) (Fig. S6).

In the field, leaf litter-fall plays an important role in determining the seasonality of LAI, Pc 

(as per Equation 3), heterotrophic respiration and soil carbon pools.  Data for the central 

Amazon forests show a highly seasonal leaf-fall cycle (Chave et al., 2010), with maximum 

leaf mortality at the beginning of the dry season at CAX and in the middle of the dry period 

at K67 (Fig. 4).  At equatorial sites, peak litter-fall corresponded to a maximum in SWdown, 

where we observed a statistically significant linear regression between SWdown and NPPlitter-

fall with a coefficient of determination, R2 equal to 0.34 at K34, 0.21 at K67, and 0.6 at CAX 

(p<0.01) (Fig. S2).  With the exception of ED2, which included a drought-deciduous 

phenology and consequentially seasonal variations in leaf abscission, seasonality in 

NPPlitter-fall was not resolved in most DGVMs (Fig. 4).

Estimates of leaf-production (increase in the amount of young-high photosynthetic capacity

leaves) from the observations at K67 forest showed peak NPPleaf  in the dry season in 

contrast to most simulations.  In general, NPPleaf was: (1) constant in most models; (2) 

allocated at the end of the year, similar to NPPliter-fall; or (3) declining, in particular during the

strong K67 dry season (Fig. 4).  Even if counterintuitive, at some of the equatorial Amazon 

sites key leaf-demography processes (e.g. leaf-fall and leaf-flush) and/or LAI, increased in 

tandem during the dry season.
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In contrast to NPPleaf, NPP allocation to wood growth was aseasonal at K34; however at 

K67 NPPwood peaked during the wet season, displaying opposite seasonality and being out-

of-phase with NPPleaf.  This pattern seemed to be different at CAX, with maximum NPPleaf 

at the beginning of the dry season, ahead of NPPwood which steadily increased as the dry 

season progressed and was maintained at high levels for the first half of the wet season.  

At this site precipitation was significantly seasonal (wet season was the rainiest of all 

equatorial sites) and the amplitude of the seasonal cycle of SWdown was the largest of all 

Brasil flux central Amazon locations.  By contrast, models simulated a peak in NPPwood at 

CAX and K67 that corresponded to the beginning of the dry season.  The seasonality of 

model NPPwood was absent at the three equatorial forests and only significant differences 

between the wet and dry periods were reported at RJA, where all simulations showed 

minimum NPPwood at the end of the dry season.

Our analysis shows a statistically significant negative linear regression between SWdown 

and NPPwood with a coefficient of determination, R2 equal to 0.58 at K67 and 0.63 at CAX 

(p<0.01) (Fig. S3).  Non-significant correlation was found between SWdown and NPPwood or 

precipitation and NPPwood at K34 -the wettest and least seasonal of the four studied forests.

Seasonal observations of the different NPP components and GPP showed a lack of 

temporal synchrony between them.  Nor was a shared allocation pattern among forests –

each exhibited different phenologies (Fig. 5).  At some sites (CAX and K67), there was a 

statistically significant correlation (~1 to 2-month lag, NPPleaf ahead) between GPP and 

NPPleaf (Fig. S5).  However, there was no temporal correspondence between GPP and 

NPPwood.  By comparison, model allocation (NPPleaf, NPPlitter-fall and NPPwood) and GPP was 
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coupled at most models (Fig. 5).

3.3. Ecosystem respiration (Re) and net ecosystem exchange (NEE)

Similar to GPP, the timing and amplitude of ecosystem respiration (Re) seasonality at RJA 

was well captured by most DGVMs (Fig. S7); however, at equatorial Amazon sites all 

simulations overestimated Re (Fig. 3).  In particular, during the months for which Re 

reached a minimum -the wet season at CAX and the dry season at K67, model Re showed 

opposite seasonality to observations.  The imbalance between predicted Re and GPP 

translated into an underestimation of the observed net ecosystem uptake (negative NEE), 

with the models predicting a positive NEE (strong carbon source), in particular, at K34 and 

CAX.  More importantly, the seasonality of NEE in the equatorial forests (K34, K67 and 

CAX) was missed, with the DGVMs foreseeing a greater carbon loss during the dry 

season, as opposed to those observed during the September-December period (Fig. 3).

4. Discussion

In this study, we found that dynamic global vegetation models poorly represented the 

annual cycle of carbon flux dynamics for the Amazon evergreen tropical forest sites with 

eddy covariance towers.  In particular, at equatorial Amazonia, observations showed an 

increase in GPP, Pc, and/or LAI during the dry season.  In contrast, DGVMs simulated 

constant or declining GPP and Pc, and in general, assumed no seasonal cycling in LAI 

(Fig. 4).  The disparity between model and in situ measurements of GPP indicated that 

there is a bias in the modeled ecosystem response to climate and a lack of understanding 

of which drivers, meteorological (e.g. light or water) or phenological (e.g. leaf demography)

or a combination thereof, control ecosystem carbon flux.  Moreover, a mismatch between 
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seasonal observations of carbon pools and allocation strategies (NPPleaf, NPPwood, NPPlitter-

fall) and model results highlights the importance of phenology as an essential tool for 

understanding productivity within the tropical forest of the Amazon (see Delpierre et al.

(2015) for a compleate description of model allocation schemes).

4.1 Seasonality of gross primary productivity (GPP), and other carbon fluxes

We observed the greatest discrepancies between measured and model predicted GPP, 

Re, and NEE at central Amazon sites, where productivity is hypothesized to be primarily 

controlled by a combination of light availability and phenology (Restrepo-Coupe et al., 

2013; Wu et al., 2016).  By contrast, models were able to capture the “correct” seasonality 

at the southern forest of RJA, a site that shows significant signs of water limitation.  

However, at RJA the amplitude of the annual cycle were overestimated by most DGVMs, 

which assume lower than expected GPP during the dry season.  Our results suggest that, 

while models have improved their ability to simulate water stress, their ability to simulate 

light-based growth strategies is still an issue.

Satellite phenology studies have shown annual precipitation values and the length of the 

dry season to be important factors when determining ecosystem response (Guan et al., 

2015).  Nevertheless, K67 and RJA share similar rainfall values, with MAP of 2030 mm 

year-1, dry season precipitation (DSP) of 50 mm month-1, and a 4 to 5 month dry period, 

only the minimum annual precipitation differs, having RJA MiAP of 14 compared to 37 mm 

month-1 measured at K67.  Moreover, increasing levels of incoming light at K67 and other 

equatorial sites during the dry season provided an opportunity for vegetation to increase 

productivity under the existent precipitation regime, as rainfall delivered more than 60% of 
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ecosystem water needs assuming a monthly ~100 mm  requirement (DSP >64 mm month-

1).  For central Amazon tropical forests, observed increases in GPP, Pc, and allocation 

patterns, linked to light harvesting strategies, were concurrent with the reported maxima in 

incoming in solar radiation (Malhado et al., 2009; Restrepo-Coupe et al., 2013) or/and 

increasing insolation and photoperiod (including flushing and flowering as in Wright & van 

Schaik (1994) and Borchert et al. (2015)).  Our results show that the observed NPPleaf and 

Pc annual cycle is consistent with canopy ‘greenness’ seasonality detected by remote 

sensing.  Although controversial (Samanta et al., 2010; Morton et al., 2014), many satellite 

derived vegetation indices analysis (Huete et al., 2006; Saleska et al., 2007, 2016; Guan 

et al., 2015) show evidence of similar leaf phenology, as well as phenocam (Wu et al., 

2016), and ground-based studies (Chavana-Bryant et al., 2016; Girardin et al., 2016).  By 

comparison, at RJA, there was no tradeoff between light, precipitation and atmospheric 

demand, as solar radiation was somewhat aseasonal (with a maximum at the beginning of 

the wet season) and dry season rainfall values (MiAP) reached less than 10% of mean 

tropical forest ET.

Although our study focuses solely on the rainforest biome, we report how small differences

on the timing and amplitude of the precipitation and radiation cycle and their relationship 

(light versus water availability) resulted in different paterns in the allocation and carbon 

uptake seasonallity among the four sites (e.g. photosynthetic capacity versus leaf flush).  

Scaling from site to basin, across gradients in cloudiness and precipitation and 

correspondent variations in seasonality found within the greater Amazonia, will require a 

rigorous exercise in understanding climate and vegetation controls to carbon flux across a 

continuum of light and water driven seasonalities (leaf, wood, flower, fruit, and root 
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allocation among other plant growth strategies), thus, beyond the scope of this analysis.  

Moreover, the fluxes discussed here represent the ecosystem responses to climatology 

and the community dominant allocation strategies, we acknoledge the different 

phenological responses by “light-adapted” tree species at RJA or “water-adapted” species 

at equatorial sites (e.g. individual leaf phenology and traits as reported in Chavana-Bryant 

et al. (2016) and Lopes et al. (2016)).  Future work should explore the ability of DGVMs to 

capture forest biological controls to productivity during anomalous meteorological 

conditions (e.g. dry versus wet years) and interannual variability.

4.2 Carbon allocation strategies

Models include LAI in the vegetation dynamics module using a variety of strategies: (1) 

prescribed LAI values from remote sensing sources; (2) dynamic calculation of daily LAI 

(e.g. ED2); and (3) LAI is fixed annually and the DGVMs allocates any changes in leaf 

quantity at the end of the year, when next year's carbon balance and LAI values will be 

calculated (e.g. CLM3.5) (Table S3).  This last approach may need to be re-evaluated 

given the importance of phenology as an ecosystem productivity driver.  Models that 

dynamically calculate LAI generally rely on defining a range of values for each PFT (Clark 

et al., 2011), where the actual index will depend mostly on the phenological status of the 

vegetation type –a function of temperature.  Although some evergreen ecosystems do 

respond to temperature thresholds (e.g. positive correlation between Tair and LAI, and a 

threshold at Tair>0 or “heat sum” has been identified for conifer and deciduous forests at 

temperate areas (Khomik et al., 2010; Delpierre et al., 2015)), LAI and Pc at the tropical 

ecosystems studied here, did not exhibit a statistically significant correlation with Tair.  

Moreover, model LAI values were unreasonably 2+ units above observed values 
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(Baldocchi et al., 1988; Gower et al., 1999; Asner et al., 2003; Sakaguchi et al., 2011).  

Some models assumed LAI value above six (IBIS, CLM3.5 and JULES), the theoretical 

limit of LAI (assuming no clumping and planar leaf angle distribution) according to Beer’s 

law.  Similar to previous findings by Christoffersen et al. (2014) regarding DGVMs 

performance when simulating water fluxes, some of the model deficiencies could be 

resolved by changing the parameterization of each PFT, such as the case of maximum 

and minimum LAI values.  However, a true improvement will only come if we increase the 

frequency and coverage of our measurements, and a better understanding of the carbon 

allocation, mechanisms that control the change in LAI, and the balance between loss due 

to abscission, leaf production, and other ecosystem processes.

In the observations, Pc values increased during the dry season at all central Amazon sites 

(Restrepo-Coupe et al., 2013; Saleska et al., 2016).  Elevated Pc can be achieved through

leaf flush, as younger leaves have higher leaf carbon assimilation at saturating light (Amax) 

compared to old leaves (Sobrado, 1994; Wu et al., 2016), or by changes in leaf herbivory, 

epiphyllous growth, and stress, among other factors.  Alternatively, Pc can be increased 

through a surge in canopy infrastructure (quantity of leaves) measured as leaf area index 

(LAI) (Doughty & Goulden, 2008).  Our observations suggested a combination of these two

processes or Pc mostly driven by the presence of younger leaves, as we observed a small

increase in LAI at K67 during the dry season (0.7 m2/m2 ~10% of annual mean) and a 

gradual decline at CAX, respectively.  In order to address the relationship between leaf 

demography (leaf age distribution) and carbon fluxes, we presented the seasonality of in 

situ observations of NPPleaf and compared it to model estimates.  We have shown that, at 

the equatorial Amazon estimated NPPleaf was synchronous with the seasonality of SWdown 
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(Fig. S4 and S12).  Thus, increasing light may trigger new leaf production as part of a light-

based growth strategy missed by the DGVMs evaluated here (Wright & van Schaik, 1994; 

Restrepo-Coupe et al., 2013; Borchert et al., 2015).  Some vegetation schemes have 

introduced a time-dynamic carbon allocation: to leaves, generic roots, coarse and fine 

roots, etc.  However, even if models assign NPPleaf varying turnover time from 243 days to 

a maximum of 2.7 years, the timing of leaf production seems to be missed.  The 

counterintuitive mechanism observed at some central Amazon forests where all or most of 

the leaf-demography processes (leaf-fall, leaf-flush and LAI) increase during the dry 

season, constitutes an important challenge for modelers and plant physiologists.  An 

appropriate model representation and further studies are required of: (1) the leaf lifespan 

(Malhado et al., 2009), (2) the seasonality of leaf age distribution (e.g. sun and shade leaf 

cohorts: young, mature, old), (3) the effect of leaf-fall on increasing light levels at lower 

layers of the canopy, and (4) the relationship between leaf age and physiology (Albert et 

al., in preparation), to properly characterize Amazon basin leaf phenology and associated 

changes in productivity.  Thus, an homogeneous age cohort where all leaves have similar 

ability to assimilate carbon can contribute to the model simulated aseasonal Pc and GEP 

seasonality driven only by water availability.

Previous studies have linked the robustness of model predictions of the terrestrial 

ecosystem carbon response to climate change projections to the uncertainty of the 

different carbon pools within the models (Ahlström et al., 2012).  Observations show that 

the seasonality of allocation (e.g. NPPlitter-fall) and leaf-demography (e.g. NPPleaf) are closely

related to the fast and slow soil carbon pools (input) and ecosystem respiration.  

Decomposition of NPPlitter-fall initiates the transfer of carbon to the soil microbial and the 
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slow and passive pools in many models and determines heterotrophic respiration.  

Similarly, autotrophic respiration (maintenance and growth) also will be driven by live 

tissue allocation (NPPwood, NPPleaf, and NPProots).  Therefore, Re will depend on a well-

characterized phenological response of litter and woody debris, wood and leaf 

accumulation, and the soil carbon pools.  Still, in some models and according to a set of 

prescribed allometric relationships for each PFT, leaves, fine roots and stems NPP are 

allocated at the end of each simulated year.  Thus, to improve simulation-data agreement 

and to generate reliable projections for ecosystem response to climate perturbations, the 

next generation of models must include a basic mechanistic understanding of the 

environmental controls on ecosystem metabolism that goes beyond correlations (e.g. 

NPPleaf versus SWdown, NPPliter fall versus Precip) and addresses the long time adaptation to 

climate and their seasonality.  We highlight the need for extended EC measurements 

accompanied by seasonal based biophysical inventories, as both datasets complement 

and inform each other. 

The seasonal patterns in GPP and NPP (leaf and wood); show to be (1) aseasonal at K34;

(2) near-synchronous at CAX; and (3) out-of-phase at K67.  By comparison, along a wet to

dry ecosystems continuum, seasonal observations at flooded forests showed reduced 

production of new leaves and lower photosynthetic assimilation during the inundation 

period and NPPwood and NPPleaf their peak then shifted into the dry season (Parolin, 2000; 

Dezzeo et al., 2003) and no single pattern has been described for dry tropical forests other

than NPPleaf-fall increasing during the dry period (Murphy & Lugo, 1986).  The GPP, NPPleaf 

and NPPwood dry-season maxima at CAX may be interpreted in terms of a combination of 

mechanisms: (1) optimal allocation patterns (Doughty et al., 2014) -- in sync 
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photosynthetic activity and carbon allocation driven by dry-season light increases; and (2) 

reflect biophysical limitations (Fatichi et al., 2014) --wet season conditions (e.g. low 

radiation and high soil moisture content), drive both leaves and wood to be produced 

during the dry season (leaf anteceding).  By comparison, the NPPwood patterns observed at 

K67 where dry-season MiAP is ~50% of mean annual ET may reflect biophysical 

limitations on the sink tissue (e.g. cell turgor and cell division in cambial tissues) --water 

availability as a driver (Wagner et al., 2012; Rowland et al., 2013), or/and an allocation 

strategy that favors NPPleaf  to NPPwood.  At K67 and K34 forests, the timing of GPP versus 

NPPwood highlights the importance of non-structural carbon (NSC) (Fatichi et al., 2014) and 

difficulties faced by more mechanistic DGVMs.

Here we reported a contrast between seasonal ET and GPP in terms of the former being 

simply described (mostly) by variations in radiation and the latter being a more complex 

function of leaf demography and environmental drivers (Restrepo-Coupe et al., 2013; Wu 

et al., 2016).  In particular at RJA, GPP shows significant decrease during the dry season, 

yet ET is essentially invariant, indicating large seasonal variations in ecosystem water use 

efficiency (WUE~GPP/ET).  These changes in WUE could be associated with seasonal 

variations in the leaf age distribution as shown in Wu et al. (2016) for K67 and K34.  This 

hypothesis predicts that old leaves would require the same amount of water per unit 

intercepted radiation, but on average do less photosynthesis.  A different biophysical 

explanation relates to ecosystem-average stomatal conductivity (Gs), as Gs would be 

determined by either changes in LAI or in climate (e.g. low Qair or soil moisture) that may 

reach a minimum during the dry season.  Decreasing Gs reduces GPP and transpiration 

(T), but not necessarily in proportion.  Furthermore, ET includes T and surface and wet 
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leaf evaporation (E), where ET=E+T.  At RJA soil water may contribute to some of the ET 

given the shallow loamy sand profile (1.2–4.0m deep) characteristic of the site; moreover, 

water table depth is unknown and may similarly play an important role (Restrepo-Coupe et

al., 2013; Christoffersen et al., 2014).  Future work should address the acuracy of ET 

observations (energy balance closure), the partition between E and T, leaf-level seasonal 

changes in WUE, and ecosystem Gs at RJA and other forests.

4.3 Final considerations for model improvement

This study identified three main tropical forest responses to climatic drivers that if 

understood could reduce the model versus observation GPP discrepancies.  These are (1)

light harvest adaptation schemes (Graham et al., 2003); (2) response to water availability; 

and (3) allocation strategies (lags between leaf and wood) (Fig. 6).  We propose thorough 

(1) optimization patterns and (2) thresholds (limitation) to obtain the seasonality of the 

different carbon pools.  For example, models could incorporate some of the recent 

findings: (1) leaf demography as a function of light environment as in Wu et al. (2016) and 

in Mahlado et al. (2009), and (2) leaf phenology (greenness) seasonal patterns driven by 

soil moisture availability as a function of MAP threshold as in Guan et al. (2015).  However,

less has been reported about other processes and reservoirs different than NPPleaf (e.g. 

flowering, and fruit maduration).  In particular, our study lacks belowground information, as 

data that explores the seasonality of root allocation at tropical sites is scarce and difficult to

interpret (see Delpierre et al. (2015) for root phenology at boreal and temperate forests).  

Future work should address this important carbon-pool and the corresponding model 

ability to simulate the seasonality of belowground processes.
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To ensure models are obtaining the right answers for the right reasons, the robustness of a

DGVM should be determined by its ability to simulate from hours to decades. The logical 

progression of model development starts by testing at daily scales where the 

environmental variability (amplitude of the daily cycle) is greater than within a year 

(amplitude of the seasonal cycle), and then test their ability to simulate seasonality as the 

variability is greater than across years (amplitude of the annual cycle) (Richardson et al., 

2007).  If DGVMs are able to capture seasonal carbon flux observations, it would increase 

our confidence that models could perform at longer time scales (e.g. interannual 

variability), which is key to predict the future of tropical forests under a changing climate.  

Moreover, individual modeling groups could further study model variability, including 

sensitivity tests on parameter optimizations (constrained by observations), thus to reduce 

the uncertainty related to DGVM parametrization.

Climate models have come a long way, from the 1970 when the first land surface scheme 

was introduced in order to represent the atmosphere-biosphere interaction by partitioning 

ocean from dry land (Manabe & Bryan, 1969).  Simulations of water, energy and carbon 

fluxes based on the response of different plant functional types to climate drivers and 

disturbance signifies a great step forward in weather prediction and the study of future 

climates under the effect of land cover changes and atmospheric CO2 enrichment (Pitman,

2003; Niu & Zeng, 2012).  Models are constrained in their development given the high 

computational needs and the multiple processes that need to be accounted for on a three 

dimensional grid from LAI seasonality, to ground water flux, to leaf level parameterization, 

there is a tradeoff and a “priority list”.  This study highlights some of the advances in 

tropical forest simulations of carbon and water fluxes and aims to identify future 
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opportunities, as the inclusion of light harvesting and allocation strategies in an attempt to 

improve GPP and NPP predictions.
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from the Tropical Rainfall Measuring Mission (TRMM) (NASA, 2014) based on an annual 

composite for the years 1998 to 2014.

Figure 2.  From top to bottom annual cycle of daily average observed climatic variables: 

incoming photosynthetic active radiation (PAR; μmol m-2 s-1, black line right y-axis) and 

precipitation (Precip; mm month-1, dark gray bars left y-axis), top of the atmosphere 

incoming radiation (TOA; W m-2, blue line right y-axis) (not a driver).  From left to right 

study sites (from wet to dry) near Manaus  (K34), Caxiuanã (CAX), Santarém (K67), and 

Reserva Jarú southern (RJA) forests.  Gray shaded area is dry season as defined using 

satellite derived measures of precipitation (TRMM: 1998-2014).  Second row LSM drivers: 

near surface specific humidity (Q
air

; g kg-1, black line left y-axis) and temperature (T
air

; °C, 

blue line right y-axis).  Lower panel depicts model ecosystem-scale of model soil moisture 

“stress” (FSW, where 1=no stress).  Simulations from ED2 (blue), IBIS (red), CLM3.5 

(green), and JULES (purple).

Figure 3:  Annual cycle of daily average ecosystem-scale photosynthesis (GPP; gC m-2 d-

1), ecosystem respiration (Re; gC m-2 d-1), net ecosystem exchange (NEE; gC m-2 d-1), and 
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evapotranspiration (ET; mm month-1).  From left to right study sites (from wet to dry) near 

Manaus  (K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jarú southern (RJA) 

forests.  Observed (black + dark gray uncertainty) and simulated by models (colors).  

Dashed black line at ET panels corresponds to a linear model where the independent 

variable is incoming radiation (SWdown).  Gray shaded area is dry season as defined using 

satellite derived measures of precipitation (TRMM: 1998-2014).  Simulations from ED2 

(blue), IBIS (red), CLM3.5 (green), and JULES (purple).

Figure 4.  From top to bottom annual cycle of daily average ecosystem photosynthetic 

capacity (Pc; gC m-2 d-1), leaf area index (LAI; m2 m-2), normalized LAI (its value 

constrained between 0 and 1 in order to better track its changes), net primary productivity 

(NPP; m-2 d-1) allocated to leaves -leaf flush (NPPleaf; m-2 d-1), NPP allocated to litter-fall 

(NPPlitter-fall; gC m-2 d-1).  Lower row NPP allocated to wood (NPPwood; gC m-2 d-1).  Gray 

shaded area is dry season as defined using satellite derived measures of precipitation 

(TRMM: 1998-2014).  From left to right study sites (from wet to dry) near Manaus  (K34), 

Caxiuanã (CAX), Santarém (K67), and Reserva Jarú southern (RJA) forests.  Observed 

(black) versus simulated by models (colors).  Simulations from ED2 (blue), IBIS (red), 

CLM3.5 (green), and JULES (purple).  Dashed green lines (CLM3.5) at NPPlitter-fall and 

NPPleaf, indicate average values for comparison purposes (models allocated at the end of 

the year as indicated by continuous line).

Figure 5.  From top to bottom, annual cycle observed (black) and model simulations from 

JULES (purple), CLM3.5 (green), IBIS (red), and ED2 (blue).  Normalized (by its seasonal 

maximum) annual cycle of daily average ecosystem-scale photosynthesis (GPP/GPPmax) 
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(continuous line), net primary productivity (NPP) allocated to leaves -leaf flush (NPPleaf

/NPPleaf max), NPP allocated to litter-fall (NPPlitter-fall /NPPlitter-fall max), and NPP allocated to wood

(NPPwood /NPPwood max).  From left to right study sites (from wet to dry) near Manaus  (K34), 

Caxiuanã (CAX), Santarém (K67), and Reserva Jarú southern (RJA) forests.  Gray shaded

area is dry season as defined using satellite derived measures of precipitation (TRMM: 

1998-2014).

Figure 6.  Ecosystem response to climate seasonality selection of biological adaptive 

mechanisms: light harvest adaptations (green tones), allocation strategies (orange tones), 

and water limitation (blue tones).  Mechanisms classified when possible into resource 

optimization (Opt) and biophysical limitations (Lim).
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