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2 Side wall Buckling of Equal-Width RHS Truss X-Joints12

3 Jurgen Becque1 and Shanshan Cheng2

4 Abstract: This paper presents a new design methodology for equal-width rectangular hollow section (RHS) X-joints failing by sidewall

5 buckling. In the new approach, a slenderness parameter is defined based on the elastic local buckling stress of the sidewall, idealized as an

6 infinitely long plate under patch loading. A Rayleigh-Ritz approximation is thereby used to obtain a closed-form solution. The proposed

7 design equation is verified against experimental results over a wide range of wall slenderness values obtained from the literature and

8 complemented by a brief experimental program carried out by the authors. It is demonstrated that the new design equation yields excellent

9 results against the experimental data. Finally, a reliability analysis is performed within the framework of both the Eurocode and the

10 AISI standards to ensure that the proposed design equation possesses the required level of safety. The newly proposed equation strongly

11 outperforms the current Comité International pour le Développement et l’Etude de la Construction Tubulaire (CIDECT) design rule for

12 sidewall buckling and also further extends the range of applicability to a wall slenderness ratio of up to 50. DOI: 10.1061/(ASCE)ST

13 .1943-541X.0001677. © 2016 American Society of Civil Engineers.

14 Author keywords: Hollow sections; Connections; Joints; Sidewall buckling; Rectangular hollow section (RHS); SHS; Design; Metal and

15 composite structures.

16 Introduction

17 Steel3 hollow sections are widely used in engineering structures.

18 Historically, circular hollow sections (CHS) were the first hollow

19 sections to be used in structural applications and were valued by

20 engineers because of their favorable properties such as high struc-

21 tural efficiency in compression and bending, high strength and stiff-

22 ness in torsion, aesthetic appeal, reduced exposed area, and reduced

23 drag coefficient in fluid flow (Wardenier et al. 2010). However,

24 the difficulties associated with establishing CHS connections (in

25 particular, the need to profile-cut the ends of the members) initially

26 hampered their wider application. While modern computer-aided

27 manufacturing techniques have alleviated much of this problem,

28 this technology is not always available to smaller manufacturers or

29 in less developed areas of the world. Therefore, rectangular hollow

30 sections (RHS) are often preferred in practice, owing to the fact that

31 the use of RHS significantly simplifies the connections by enabling

32 straight end cuts while maintaining nearly the same favorable struc-

33 tural properties as CHS.

34 Truss structures form an important application of RHS members

35 and welded RHS trusses are often found in large roof spans, pedes-

36 trian bridges, walkways, and offshore structures. In the design

37 of these trusses, the joints require particular attention as they are

38 susceptible to a number of particular failure modes. Research on

39 welded hollow section joints has been carried out for many deca-

40 des, and Comité International pour le Développement et l’Etude de

41 la Construction Tubulaire (CIDECT) has been very instrumental in

42 this, while also issuing regularly upgraded versions of the design

43rules for hollow section joints. The most recent version of the
44design rules can be found in (Packer et al. 2009).
45This paper focuses on right-angle X-joints between equal-width

46RHS truss members (Fig. 1). For these types of joints, sidewall

47buckling of the chord member is the critical failure mode in
48compression.
49In the current CIDECT design rules, sidewall buckling is ac-

50counted for by isolating a vertical strip in the chord sidewall

51and designing it as a column (Packer 1984). While defendable
52because of its simplicity, this approach obviously ignores the two-

53dimensional character of the sidewall buckling as a plate. More-

54over, it has been known for some time that the current CIDECT
55design rules for chord sidewall failure are quite conservative, and
56more so as the chord wall slenderness h0=t0 increases (Becque and
57Wilkinson 2011). This paper follows the established CIDECT
58nomenclature, where h0 and h1 are the chord height and the brace
59height, respectively; b0 and b1 represent the chord width and the

60brace width, respectively; and t0 and t1 refer to the thicknesses of

61the chord wall and the brace wall, respectively (Fig. 2).
62The aim of this paper is to present an alternative design equation
63for chord sidewall buckling, equally simple in its application, but

64founded on a rational plate buckling model and verified against

65experimental data.
66In previous research, Brodka and Szlendak (1980) carried out
67over 400 tests on RHS X-joints. However, these RHS were fabri-

68cated by welding two cold-formed channel sections together at the

69toes. A semiempirical equation was developed for the ultimate
70strength of the X-joints as a function of the ratio of the brace width

71to the chord width. Since this particular manufacturing technique

72is rather different from the way RHS are currently produced, no
73further consideration was given to the experimental data in this

74paper. Brodka and Szlendak (1980) also presented an equation

75based on the chord slenderness (h0=t0), which formed a lower
76bound to the experimental results. Wardenier (1980, 1982) carried

77out further experimental studies on RHS T- and X-joints, with the

78brace members loaded either in tension or compression. Both
79hot-finished and cold-finished hollow sections with nominal yield
80stresses of 240 and 275 MPa were used. It was observed that for

81equal-width X-joints, the strength of the joint in compression is
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82 limited by either a bearing or a buckling failure mode in the chord

83 sidewalls. A unified equation for both failure modes was provided,

84 in which the buckling stress was derived based on the model of a

85 pin-ended strut with an effective length of (h0 − 2t0). This research

86 formed the basis of the current CIDECT design rule.

87A total of 31 tests on equal-width X-joints, with either RHS

88brace members or simple plates welded to the RHS chord members,

89were carried out by Packer (1984). Both hot-formed and cold-

90formed RHS tubes were considered, with chord depths h0 ranging

91from 77.6 to 304.4 mm, and wall slenderness values (h0=t0) rang-

92ing from 15.3 to 42.2. The effects of the brace member angle θ

93(Fig. 2) and the presence of a compressive chord preload were

94investigated. A unified equation to calculate the ultimate strength

95in sidewall failure of both T- and X-joints was provided. However,

96neither the chord depth (h0) nor the axial chord preload was in-

97cluded in the equation, as they were believed to have little effect

98on the ultimate strength of the joints. At a later stage, the former

99conclusion was refuted by Davies and Packer (1987), who instead

100postulated that the joint strength depends on the chord slenderness

101(h0=t0) and the nondimensional bearing length (h1=h0).

102Zhang et al. (1990), Shen and Zhang (1990), and Fang (2004)

103also carried out experimental and numerical studies on the strength

104of RHS X-joints using RHS commercially available in China, in-

105cluding a number of equal-width joints. Shen and Zhang (1990)

106proposed a simplified design equation based on a rudimentary

107plastic collapse mechanism to predict the ultimate strength of

108equal-width X-joints. However, guided by the research in (Packer

1091984), the effects of the chord depth (h0) and the axial compressive

110chord preload were again excluded.

111Design Philosophy

112The design process of an RHS truss typically starts with a structural

113analysis under various load combinations in order to determine the

114governing internal forces. These internal forces consist mainly of

115tensile or compressive forces, accompanied by secondary moments

F1:1 Fig. 1. CIDECT design model

F2:1 Fig. 2. Connection geometry

© ASCE 2 J. Struct. Eng.
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116 which can typically be considered negligible as long as the joint

117 eccentricities are within the CIDECT prescribed values (Packer

118 et al. 2009) and the brace members are sufficiently slender. The

119 actual design procedure then follows two steps:
120 1. sizing of the brace and chord members of the truss as tension or
121 compression members; and
122 2. a separate check of the connection capacities accounting for all
123 possible failure modes using the CIDECT rules.

124 The design of compressive truss members under (1) requires the

125 determination of an effective length. As an example, we consider

126 the truss in Fig. 3 under the loading shown, with particular focus on

127 the top chord. Given the arrangement of the top bracing, the top

128 chord needs to be designed as a column spanning between points

129 A and C with out-of-plane flexural buckling being the governing

130 failure mode (the common practice is thereby to neglect the

131 beneficial restraint exerted by the brace member at B for design

132 purposes). The implicit assumption in carrying out this check,

133 however, is that the X-joint at B remains sound. Indeed, if local

134 buckling were to occur in the chord sidewall at B, this would in-

135 troduce a weak link in the column A-C, which would greatly reduce

136 its out-of-plane flexural buckling capacity. It is well known that

137 when local buckling occurs, the loss in compressive stiffness of

138 a plate is immediate and severe [e.g., (Marguerre 1937); (Hemp

139 1945)]. The system could then be likened to a Shanley column

140(Shanley 1947), albeit one where localized geometric nonlinearity

141rather than localized material nonlinearity (or possibly a combina-

142tion of both) would be the cause of the central weak link. However,

143the design philosophy outlined in the two steps above has no way of

144accounting for this type of local-global interactive buckling, since

145the checks for flexural buckling of the member and local buckling

146of the connection are carried out independently and both modes are

147assumed to be uncoupled. The most straightforward solution to this

148problem (and the one adhered to in this paper) is to limit the design

149capacity of an X-joint to its sidewall buckling load (which may be

150elastic or inelastic) and neglect any postbuckling capacity, thereby

151eliminating the potential for nonlinear mode interaction altogether.

152This philosophy is, in a sense, consistent with the current CIDECT

153rule for sidewall failure based on flexural buckling of a column

154strip. However, it does not condone the widespread practice of de-

155termining the capacity of an X-joint as the minimum of either the

156peak load or the load corresponding to the 0.03b0 deformation limit

157(Lu et al. 1994) from a test on an isolated connection. Any argu-

158ment that buckling of the sidewall will lead to a rapid increase in

159sidewall deformations and that, therefore, the load corresponding to

160a deformation of 0.03b0 will be representative of the buckling load

161is quickly invalidated by experimental evidence. Out of the five

162tests X1–X5 conducted at the University of Sheffield and described

163in the next section, four of them reached the full peak load before

164even reaching the 0.03b0 sidewall deformation and in no case was

165the 0.03b0 limit load representative of the buckling load.

166Experimental Program

167Although an abundance of experimental results on equal-width

168RHS X-joints is available in the literature, the recorded data

169typically include the peak load and (in most cases) the load corre-

170sponding to the 3% b0 deformation limit (Fang 2004; Packer 1984;

171Wardenier 1980, 1982), while the load at which buckling of the

172sidewall is first observed routinely remains unreported. A limited

173experimental program was therefore conceived at the University of

174Sheffield encompassing five tests on equal-width SHS 490° X-joints

175with varying chord wall slenderness h0=t0.

176Test Specimen Properties

177All specimens (labeled X1–X5) were made of hot-finished

178100 × 100 SHS, while the wall thicknesses of the chord and the

179brace members were varied from 3 to 8 mm. The measured

180cross-sectional dimensions of all specimens are reported in Table 1

181and the overall dimensions of a typical test specimen are shown

182in Fig. 4.

F3:1 Fig. 3. Sample RHS truss

Table 1. Measured Dimensions

T1:1 Label Nominal chord size Nominal brace size

h0
(mm)

b0
(mm)

t0
(mm)

r
ð1Þ
0

(mm)

b1
(mm)

h1
(mm)

t1
(mm)

ra
1

(mm)

Δ (left)

(mm)

Δ (right)

(mm)

fy
(MPa)

fu
(MPa)

T1:2 X1 100 × ×100 × ×3 100 × ×100 × ×3 100.27 100.52 2.92 6.20 100.22 100.33 2.73 6.20 −0.05 −0.05 330 388

T1:3 X2 100 × ×100 × ×4 100 × ×100 × ×4 100.14 100.36 3.84 11.5 100.37 100.19 3.69 11.5 −0.05 −0.30 330 404

T1:4 X3 100 × ×100 × ×5 100 × ×100 × ×5 99.80 100.25 4.89 12.7 100.08 99.90 4.70 12.7 −0.20 −0.10 400 437

T1:5 X4 100 × ×100 × ×6 100 × ×100 × ×6 99.61 99.63 5.80 12.1 99.76 99.66 5.46 12.1 −0.05 −0.20 370 425

T1:6 X5 100 × ×100 × ×8 100 × ×100 × ×8 99.70 99.89 7.92 15.1 100.12 99.64 7.68 15.1 −0.15 −0.15 345 392

T1:7 X6 250 × ×150 × ×5 150 × ×150 × ×5 250.00 149.77 5.00 17.7 150.10 150.10 4.76 11.4 3.0 2.0 463 513

T1:8 X7 150 × ×150 × ×6 150 × ×150 × ×6 150.18 150.23 5.86 14.1 150.48 150.35 5.86 14.7 −1.0 −1.0 451 502

T1:9 X8 350 × ×250 × ×10 250 × ×250 × ×10 350.40 250.70 9.94 27.0 248.50 249.00 9.94 26.6 0.0 0.0 468 534

T1:10 X9 400 × ×300 × ×8 300 × ×300 × ×8 400.00 300.00 7.92 22.7 300.30 300.30 7.97 22.3 2.0 2.0 481 546

r = outside corner radius.

© ASCE 3 J. Struct. Eng.
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183 A MIG5 welding procedure was used with W46_2_3Si1 wire

184 (fy ¼ 460 MPa, fu ¼ 600 MPa). A simple 5-mm (X1), 8-mm

185 (X2–X4), or 10-mm (X5) fillet weld was used to connect the top

186 and bottom faces of the chord to the brace members, while the side-

187 walls were connected to the brace members using a butt weld with a

188 30° bevel on the brace ends (Fig. 4).

189 The material grade was S355H [to EN10210-1: 2006 (CEN

190 2006)] for all SHS. Tensile coupons were cut from leftover pieces

191 of the SHS segments used to fabricate the chord members and one

192 coupon specimen was taken from each chord size. All coupons

193 were tested using a displacement rate of 2 mm=min, which approx-

194 imately corresponded to a strain rate of 5.85 × 10−4 s−1. The tests

195 were repeatedly paused for 2 min to allow the load to settle and to

196 eliminate strain rate–dependent effects. All coupons were instru-

197 mented with an extensometer with a 50-mm base and two 5-mm

198 strain gauges on both sides of the coupon at midheight to allow

199 for a more accurate determination of the initial elastic modulus.

200 The yield stress fy (defined as the 0.2% proof stress) and the

201 tensile strength fu obtained for each chord size are listed in Table 1.

202 The average 0.2% proof stress was found to be fy ¼ 355 MPa,

203 while the average tensile strength was fu ¼ 409 MPa. The reported

204 values are lower-bound static stresses, obtained by pausing the test

205 for 2 min at three strain levels (0.5, 5, and 10%) and allowing the

206 load to settle in order to eliminate strain rate–dependent effects.

207 The imperfection of the chord sidewall at the connection with

208 the brace members (i.e., the bulge Δ of the sidewall relative to the

209 corners) was measured with a feeler gauge and is also reported

210 in Table 1. A negative value indicates an imperfection toward the

211 inside of the tube.

212 Test Setup

213 A 2,000-kN test machine was used to apply a compressive load to

214 the connection between fixed end conditions. A uniform introduc-

215 tion of the load into the brace members was ensured by the presence

216 of a plate mounted on a spherical hinge underneath the ram, which

217 made an even contact with the specimen before locking into place

218 when the load was applied. All specimens were instrumented with

219 two linear voltage differential transducers (LVDTs) positioned on

220 the underside of the above-mentioned plate to measure the axial

221 shortening of the specimen, and another two LVDTs were placed

222 at the centers of the chord sidewalls on either side of the connection

223 to measure the sidewall displacements (Fig. 5).

224Test Results

225Sidewall buckling was observed in all specimens X1–X5 (Fig. 6).
226Fig. 7(a) shows the load versus axial shortening diagrams of all
227specimens, while Fig. 7(b) shows the sidewall displacements as
228a function of the load. The test results are summarized in Table 2,
229which lists the ultimate load Pult, as well as the sidewall buckling
230load Pb;test.
231The more slender X-joints (X1 and X2) displayed buckling in
232the elastic range. In this case, the buckling load could accurately
233be determined from the sudden change in axial stiffness of the

234specimens and the simultaneous increase in sidewall deflections
235[Figs. 8(a and b)]. In Fig. 8, the red line indicates the initial (elastic)
236stiffness of the connection, while the orange dashed line indicates
237the buckling load, determined on the basis of the change in slope in
238Fig. 8(a). However, the more stocky joints (X4 and X5) buckled in
239the inelastic range, where buckling was interwoven with the loss of
240stiffness resulting from gradual material yielding, making the onset
241of buckling more difficult to pinpoint (Fig. 9). For these joints, a
242sudden increase in sidewall deflections [Fig. 9(b)] provided the
243only indication of buckling. The help of finite-element simulations,
244described in the next section, was enlisted to more accurately de-
245termine the buckling load.

246Weld Investigation

247A macro etch test was carried out to investigate the weld penetra-
248tion at the junction between the chord sidewall and the brace
249members. All five test specimens X1–X5 were cut in half along
250the vertical plane of symmetry through the sidewall. In order to
251achieve the necessary finish, the weld areas in the cross section
252were polished in four steps using progressively finer grit sizes: a

253120-grit sand disc as the primary polishing tool, followed by
254coarse, medium, and very fine aluminum oxide discs. The weld

F4:1 Fig. 4. Specimen dimensions and weld configuration

F5:1Fig. 5. Test setup

© ASCE 4 J. Struct. Eng.
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255 areas were then etched with an acid solution consisting of 10%

256 nitric acid and 90% water. As an example, Fig. 10 shows the

257 results for X3 and X5. Inspection of the welds revealed that full

258 penetration was achieved in the joints with a chord thickness

259 up to (and including) 5 mm (X1–X3), where the weld was very

260 well fused with the parent material over the full wall thickness.

261 However for the thickest specimens, X4 and X5, with wall thick-

262 nesses of 6 and 8 mm, respectively, full penetration turned out to

263 be difficult to achieve. The weld was incompletely fused at the

264 root with a small gap being clearly visible. This conclusion is

265consistent with previous findings (Becque and Wilkinson 2011;
266Wardenier et al. 2009).

267Additional Test Data

268The limited database of five tests X1–X5 was augmented with an-
269other four experiments reported by Becque and Wilkinson (2011)

F6:1 Fig. 6. Failed specimens: (a) X5; (b) X1–X5

F7:1 Fig. 7. Load-displacement relationship of all tests: (a) load versus axial shortening; (b) load versus lateral shortening

Table 2. Test Results

T2:1 Test Nominal chord size Nominal brace size h0=t0

Pult

(kN)

Pb;test

(kN)

T2:2 X1 100 × ×100 × ×3 100 × ×100 × ×3 34.3 176 124

T2:3 X2 100 × ×100 × ×4 100 × ×100 × ×4 26.1 302 216

T2:4 X3 100 × ×100 × ×5 100 × ×100 × ×5 20.5 373 325

T2:5 X4 100 × 100 × 6 100 × 100 × 6 17.2 560 393

T2:6 X5 100 × 100 × 8 100 × 100 × 8 12.6 783 565

T2:7 X6 250 × 150 × 5 150 × 150 × 5 50 409 260

T2:8 X7 150 × 150 × 6 150 × 150 × 6 25.6 828 628

T2:9 X8 350 × 250 × 10 250 × 250 × 10 35.3 — 1,270

T2:10 X9 400 × 300 × 8 300 × 300 × 8 50.5 1,289 670

F8:1Fig. 8. Determination of buckling load Pb;test for X1: (a) load versus

F8:2axial shortening; (b) load versus sidewall displacement

© ASCE 5 J. Struct. Eng.
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270 on equal-width X-joints. The additional data pertain to connections

271 made of grade C450 cold-formed tube and include rectangular

272 as well as square chord members. The tests, which will be labeled

273 X6–X9 in this paper, generally exhibit larger h0=t0 ratios (some

274 even outside the range of applicability of the current CIDECT

275 rules) and include much larger section sizes (up to RHS 400×

276 300 × 8) than those included in X1–X5. Consequently, the result-

277 ing database X1–X9 contains a more balanced mix of geometries

278 and material properties. The measured dimensions, as well as the

279 material properties of X6–X9, are listed in Table 1, while the test

280 results are listed in Table 2.

281 Finite-Element Modeling

282 A finite-element (FE) model was developed using ABAQUS and

283 benchmarked against the nine experiments X1–X9 in Tables 1

284 and 2 (Becque and Wilkinson 2011, 2015).

285 The model was based on the measured dimensions, geometric

286 imperfections, and weld sizes, which can be found in Table 1 and in

287 (Becque et al. 2011; Guo 2014). Material properties obtained from

288 the coupon test results were included in the model. For the weld

289 material, an elastic-perfect plastic stress-strain relationship was

290 used, based on the nominal material properties (fy ¼ 460 MPa,

291 fu ¼ 600 MPa), as shown in Fig. 11. Fig. 11 also shows the

292stress-strain curves of S355 used to model X1–X5 and C450, used

293for X6–X9.

294Boundary conditions consistent with the experiment were ap-

295plied to the FE models. This meant that the brace ends were fixed

296(prevented from lateral displacement and overall rotation), while an

297axial displacement was imposed at one end with the other end kept

298in place. Specimens X6 and X7, which were tested between hinged

299boundary conditions (Becque and Wilkinson 2011), formed the ex-

300ceptions. In those cases, rigid body constraints were used to tie all

301nodes in the brace end sections to the centroid of the cross section

302and rotations of the centroid about both axes of the cross sec-

303tion were allowed. Symmetry boundary conditions were applied

304whenever possible with only 1/8 of the connection modeled.

305Tie constraints were used to fuse the surfaces between the welds

306and the brace and chord members together. The surfaces of weld

307were thereby used as the master surfaces.

308Three elements were used in the through-thickness direction of

309the RHS. Hexahedral elements were used throughout the model,

310except for the welds where tetrahedral elements were employed

311because of the complexity of the geometry. A global mesh size of

312twice the thickness of chord was used, while a finer mesh size

313of about 2=3 of the chord sidewall thickness was chosen for the

314region of the chord sidewall under the brace members, where side-

315wall buckling was expected to occur (Fig. 12).

316The influences of the mesh size; the element type (i.e., linear

317versus quadratic elements); and the analysis solver were investi-

318gated in a sensitivity study using test X7. A total of 10 models were

319run, covering mesh sizes ranging from 2 to 15 mm (in the most

320refined region), 8-node as well as 20-node hexahedral elements,

321and general static versus Riks analyses. The peak load Pult, the

322axial shortening d at the peak load Pult, and the initial stiffness Ki

323obtained from the models are compared in Table 3 and Fig. 13.

324It was found that the results are quite insensitive to both the mesh

325size and the number of nodes in the element, as long as the mesh

326size is smaller than the chord wall thickness in the most refined

327region. However, a 20-node quadratic hexahedral element signifi-

328cantly increased the running time and was therefore not used in the

329analysis. Quadratic tetrahedral elements were adopted in the welds

330in all cases, nevertheless, because of the occasionally high aspect

331ratios of the elements. No noticeable difference in results was ob-

332tained between a Riks or a general static analysis and Riks analyses

333were used because of their computational efficiency.

334The FE results for all nine tests X1–X9 are compared to the

335experimental data in Table 4 with respect to the peak load Pult,

336the initial axial stiffness Ki, and the axial shortening d at the peak

337load. Good agreement was generally achieved between the FE

338models and the test data. The average ratio of the FE predicted load

F9:1 Fig. 9. Determination of buckling load Pb;test for X5: (a) load versus

F9:2 axial shortening; (b) load versus sidewall displacement

F10:1 Fig. 10. Macro etching of welds: (a) X3; (b) X5

F11:1Fig. 11. Stress-strain curves

© ASCE 6 J. Struct. Eng.
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339 to the measured ultimate capacity (Pult;FEA=Pult;test) was found to be

340 1.03 with a standard deviation of 0.09. A comparison of the peak

341 load for X8 was not included because the peak load was not

342 reached in the test. To further illustrate the predictive capacity

343 of the FE models, Fig. 14 compares the predicted and the measured

344 load versus axial shortening behavior and load versus sidewall de-

345 flection behavior of specimen X1.

346The FE models were subsequently used to accurately determine

347the loads at which sidewall buckling occurs, particularly for those

348connections where sidewall buckling occurs in the inelastic range

349and the buckling load is difficult to identify from the experimental

F12:1 Fig. 12. Finite-element model of X7: (a) measured chord imperfections; (b) finite-element mesh

Table 3. Sensitivity Studies

T3:1 Label

Element

type

Analysis

solver

Mesh

size (mm)

Pult

(kN)

d

(mm)

Ki

(kN=mm)

T3:2 Test — — — 832.35 2.68 353

T3:3 S1 Hex-8 Riks 2 860.42 3.03 356

T3:4 S2 Hex-8 Riks 3 860.42 3.05 356

T3:5 S3 Hex-8 Riks 4 859.9 3.05 355

T3:6 S4 Hex-20 Riks 4 888.62 3.15 356

T3:7 S5 Hex-8 Static 4 859.3 3.02 353

T3:8 S6 Hex-8 Riks 5 858.8 3.02 355

T3:9 S7 Hex-8 Riks 6 865.82 3.07 354

T3:10 S8 Hex-8 Riks 8 888.62 3.15 353

T3:11 S9 Hex-8 Riks 10 826.89 3.22 347

T3:12 S10 Hex-8 Riks 15 998.11 4.62 351

F13:1 Fig. 13. Effect of mesh size (Hex-8 elements and Riks analysis)

Table 4. FE Model Validation

T4:1Perspectives of

comparison Label Test FEA FEA/test

T4:2Ultimate load,

Pult (kN)

X1 176 182 1.03

T4:3X2 302 270 0.89

T4:4X3 373 434 1.16

T4:5X4 560 501 0.89

T4:6X5 783 789 1.01

T4:7X6 409 448 1.10

T4:8X7 828 862 1.04

T4:9X8 — 2,045 —

T4:10X9 1,289 1,405 1.09

T4:11— — Average 1.03

T4:12— — SD 0.10

T4:13Initial stiffness,

Ki (kN=mm)

X1 208 233 1.12

T4:14X2 229 312 1.36

T4:15X3 291 392 1.35

T4:16X4 369 458 1.24

T4:17X5 459 624 1.36

T4:18X6 271 252 0.93

T4:19X7 411 373 0.91

T4:20X8 810 737 0.91

T4:21X9 870 698 0.80

T4:22— — Average 1.11

T4:23— — SD 0.23

T4:24Axial shortening,

d (mm)

X1 0.92 0.9 0.98

T4:25X2 1.6 1.03 0.64

T4:26X3 1.75 1.68 0.96

T4:27X4 2.46 1.69 0.69

T4:28X5 4.03 3.87 0.96

T4:29X6 5.07 2.55 0.50

T4:30X7 2.65 3.02 1.14

T4:31X8 — 3.64 —

T4:32X9 2.22 3.54 1.59

T4:33— — Average 0.93

T4:34— — SD 0.34
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350 data. The buckling load was thereby determined from the diver-

351 gence point between a geometric nonlinear analysis and a linear

352 analysis (both including material nonlinearity) in the load versus

353 axial shortening diagram [Fig. 15(a)].

354 A comparison of the experimental and FE-determined buckling

355 loads is plotted in Fig. 16. The figure shows that, generally, a very

356 good agreement is obtained for specimens buckling in the elastic

357 range, in which case buckling was determined experimentally by

358 observing the change in axial stiffness. For those specimens buck-

359 ling in the inelastic range, however, it appears that determining

360 the buckling point experimentally from the increase in sidewall

361displacements leads to slightly conservative estimates, and that

362some softening of the load versus sidewall displacements curve

363as a result of gradual yielding typically precedes the actual point

364of buckling.

365Theoretical Model

366In a next step, a representative theoretical model was developed by

367representing the chord sidewall by a plate with thickness t0, which

368extends to infinity on both sides (Fig. 17). The plate was thereby

369assumed to be made of a linear elastic and homogeneous material.

370The loads and boundary conditions were idealized as follows:
3711. It was assumed that the distributed load p transferred from the
372brace sidewall into the chord sidewall is uniformly over the

F14:1 Fig. 14. Comparison of test and FEA (X1): (a) load-axial shortening curve; (b) load-sidewall deflection curve

F15:1 Fig. 15. Comparison of buckling loads: (a) axial load versus axial shortening; (b) axial load versus sidewall deflection

F16:1 Fig. 16. Comparison of buckling loads F17:1Fig. 17. Idealized model
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373 brace width h1. The total load P carried by the connection
374 (comprising two sidewalls) is then given by

P ¼ 2ph1 ¼ 2σt0h1 ð1Þ

where the stress σ ¼ p=t0.
375 2. The plate is hinged along the longitudinal edges. This is
376 obviously a conservative assumption, neglecting any restraint

377 provided by the chord top and bottom faces and by the welded
378 connection to the brace member.
379 A Rayleigh-Ritz approach was used by substituting a function
380 representative of the deformed shape into the energy potential.
381 The traditional, most straightforward approach would thereby be to
382 use a multiplicative solution consisting of a half-sine wave function
383 over the depth of the chord and a (truncated) Fourier series in the
384 longitudinal direction

w ¼ Δ cos

�

πy

h0

�

X

N

i¼1

cos

�

i
πx

L

�

x ∈

�

−
L

2
;
L

2

�

ð2Þ

385 where w = out-of-plane displacement of the plate;Δ = amplitude of
386 the displacement; N = integer determining the number of Fourier
387 terms to be included; and L determines a sufficiently large interval

388 centered on the connection. However, the drawback of this method
389 is that a large number of Fourier terms would be needed to accu-
390 rately describe the buckle. Indeed, the more localized a function is
391 in space, the wider the frequency spectrum of its Fourier transform.
392 For instance, in the limit case, the Dirac delta function (consisting
393 of a single value peak) Fourier transforms into the constant func-
394 tion, meaning that all frequencies from −∞ to þ∞, with equal
395 weight, are needed to describe it though a Fourier series. This ap-
396 proach would also preempt a closed-form solution.
397 Therefore, the exponential Gauss function is instead chosen to
398 represent the longitudinal shape of the buckle. This function is an
399 ideal candidate to capture the localized nature of the failure mode,
400 since its ordinates approach zero almost immediately when leaving
401 a localized area around the origin. When also adopting a half-sine
402 wave solution in the transverse direction (across the depth of the
403 chord wall), the proposed deformed shape is expressed by the fol-
404 lowing function:

w ¼ Δ cos

�

πy

h0

�

e−2Bx
2 ð3Þ

405 In the above equation, w is again the out-of-plane displacement
406 of the plate, while Δ and B are (presently undetermined) param-
407 eters. Δ determines the amplitude of the displacements, while B is
408 related to the length of the buckle. The Gauss function is promi-
409 nently featured in statistics and from the study of the Gaussian (nor-
410 mal) distribution it is known that only 0.27% of the points in the
411 distribution are more than three standard deviations removed from
412 the average. From a comparison between Eq. (3) and the standard
413 expression of the Gaussian distribution

fðx;μ; sÞ ¼ 1

s
ffiffiffiffiffiffi

2π
p e

−
ðx−μÞ2
2 s2 ð4Þ

414 where μ = average and s = standard deviation, an approximate
415 length of the buckle can be determined as

Lb ¼ 6 s ¼ 3
ffiffiffiffi

B
p ð5Þ

416 The elastic strain energy U contained in the deformed shape of

417 the plate is given by [e.g., (Timoshenko and Gere 1961)]

U ¼ D

2

Z

x¼∞

x¼−∞

Z

y¼h0=2

y¼−h0=2

��

∂2w

∂x2

�

2

þ
�

∂2w

∂y2

�

2

þ2ν

�

∂2w

∂x2

��

∂2w

∂y2

�

þ 2ð1 − νÞ
�

∂2w

∂x∂y

�

2
�

dx dy ð6Þ

418In the above equation, D is the flexural rigidity of the plate,

419given by

D ¼ Et3
0

12ð1 − ν2Þ ð7Þ

420where E = modulus of elasticity and ν = Poisson’s ratio. Substitu-
421tion of Eq. (3) into Eq. (6) requires computation of the following
422integrals:

Z

∞

−∞

x2e−4Bx
2

dx ¼ 1

16B

ffiffiffiffi

π

B

r

ð8Þ

Z

∞

−∞

x4e−4Bx
2

dx ¼ 3

128B2

ffiffiffiffi

π

B

r

ð9Þ

423and eventually leads to

U ¼ Δ2D

2

ffiffiffiffi

π

B

r
�

3B2h0 þ B
π2

h0
þ π4

4h3
0

�

ð10Þ

424On the other hand, the potential energy of the applied stresses is
425given by

V ¼ −
σt0
2

Z

x¼h1=2

x¼−h1=2

Z

y¼h0=2

y¼−h0=2

�

∂w

∂y

�

2

dx dy ð11Þ

426or, after substituting Eq. (3) into Eq. (11),

V ¼ −
Δ2σt0π

2

4h0

Z

x¼h1=2

x¼−h1=2

e−4Bx
2

dx ð12Þ

427The remaining integral in Eq. (12) does not have a closed-form
428solution and can only be expressed as a series

V ¼ −
Δ2σt0π

2

4h0

�

h1 −
h3
1
B

3
þ : : :

�

ð13Þ

429Only the first term in the series is retained, so that

V ¼ −
Δ2σt0π

2

2

�

h1

h0

�

ð14Þ

430Neglecting the higher order terms is acceptable, provided that

h3
1
B

3
≪ h1 or

h2
1
B

3
≪ 1 ð15Þ

431It will be shown at a later stage (once an expression for B has
432been determined) that this is indeed a reasonable assumption.

433The derivatives of the total energy U þ V with respect to B and
434Δ are set equal to zero
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∂ðU þ VÞ
∂B

¼ 0 ð16Þ

∂ðU þ VÞ
∂Δ

¼ 0 ð17Þ

435 The calculations eventually result in simple equations

B ¼
�

ffiffiffiffiffi

10
p

− 1

18

��

π

h0

�

2

¼ 1.186

h2
0

ð18Þ

436 and

σcr ¼ 1.346
π2E

12ð1 − ν2Þ
t2
0

h0h1
ð19Þ

437 For E ¼ 210 GPa and ν ¼ 0.3, Eq. (19) becomes

σcr ¼ ð255 × 103Þ t2
0

h0h1
ðMPaÞ ð20Þ

438 The critical buckling load of the connection is then given by

Pcr ¼ 2t0h1σcr ¼ 511
t3
0

h0
ðkNÞ ð21Þ

439 The condition in Eq. (15) can now be evaluated by substituting
440 Eq. (18) into Eq. (15), which yields

�

h1

h0

�

2

≪ 2.53 ð22Þ

441 Taking the square root of both sides of Eq. (22) results in

h1

h0
< 1.6 ð23Þ

442 Given that the chord is typically the larger member compared to
443 the braces (or at most of equal size), h1=h0 is usually sufficiently
444 small to satisfy Eq. (23) and, consequently, Eq. (15).

445 Using Eqs. (5) and (18), the length of the buckle is estimated
446 to be

Lb ¼
3
ffiffiffiffi

B
p ¼ 2.76 h0 ð24Þ

447Proposed Design Method

448Table 5 summarizes, for each specimen, the elastic critical buckling
449load Pcr obtained using Eq. (21), the experimental and numerical
450buckling loads Pb;test and Pb;FEA, and the yield load Py, which is
451taken as

Py ¼ 1.2 × 2fyh1t0 ¼ 2.4fyh1t0 ð25Þ

452The factor 1.2 thereby takes into account that a small part of
453the load follows an alternative load path through the chord top and
454bottom faces, followed 6by it spreading out into the chord sidewalls.
455This factor agrees well with the ultimate load observed in the
456stockiest joint (X5) and appears to be on the conservative side
457based on experimental results and equations provided in (Davies
458and Packer 1987; Packer 1984).
459Based on Eqs. (21) and (25), a nondimensional slenderness can
460be defined as

λ ¼
ffiffiffiffiffiffiffi

Py

Pcr

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fyh0h1
p

500t0
ð26Þ

461In Fig. 18 the nondimensional buckling loads Pb;FEA=Py and
462Pb;test=Py obtained from all FE models and tests, respectively, are
463plotted against the calculated slenderness values λ (the elastic criti-
464cal buckling load is also shown in the dashed line)

Pcr

Py

¼ σcr

fy
¼ 1

λ2
ð27Þ

465The figure shows that both buckling loads, Pb;test and Pb;FEA,
466show good agreement with the elastic buckling curve in the slender
467range, where Pcr is sufficiently below Py. It confirms that the pre-
468viously proposed model of an infinitely long plate under patch
469loading is able to capture the main parameters determining the side-
470wall behavior. Some conservative assumptions have been made in
471the model: the flat width of the sidewall has been slightly exagger-
472ated by neglecting the rounded corners, and any restraint along the
473longitudinal edges exerted by the chord top and bottom faces and

474the brace members has been neglected, instead assuming hinged
475boundary conditions. However, a minor portion of the load does
476not enter the sidewall directly from the brace wall above (or below),
477but instead flows through the brace walls perpendicular to the side-
478wall and through the chord top and bottom faces, thus causing addi-
479tional bending in the sidewall as a result of the load eccentricity.
480The model also assumes a perfectly flat plate, while the real chord
481wall inevitably contains imperfections. It seems that all these

Table 5. Test Results and Predicted Capacities

T5:1 Test

h0=t0
(¼ 2γ)

Pb;test

(kN)

Pb;FEA

(kN)

Pd;CIDECT

(kN)

Pult;CIDECT

(kN) Pult;CIDECT=Pb;FEA

Pcr

(kN)

Py

(kN) λ

Ppred

(kN) Ppred=Pb;FEA

T5:2 X1 34.3 124 162 61 76 0.45 125 232 1.36 114 0.70

T5:3 X2 26.1 216 282 122 153 0.55 285 305 1.03 228 0.81

T5:4 X3 20.5 325 386 236 295 0.80 594 469 0.89 401 1.04

T5:5 X4 17.2 393 477 319 399 0.84 995 513 0.72 475 1.00

T5:6 X5 12.6 565 672 520 649 0.97 2,465 654 0.52 632 0.94

T5:7 X6 50.0 260 270 75 104 0.39 243 834 1.85 231 0.86

T5:8 X7 25.6 628 748 285 396 0.50 652 953 1.21 573 0.77

T5:9 X8 35.3 1,270 1,550 482 669 0.43 1,364 2,778 1.43 1,254 0.81

T5:10 X9 50.5 670 682 227 315 0.46 604 2,745 2.13 579 0.85

T5:11 — — — — Average 0.60 — — Average 0.86

T5:12 — — — — SD 0.21 — — SD 0.10

T5:13 — — — — COV 0.35 — — COV 0.11
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482 effects, beneficial or detrimental, largely oppose and balance each
483 other, turning our simplified model into a perfectly usable model as
484 the basis for design.
485 Fig. 18 shows that, not unexpectedly, the experimental and
486 numerical data start to deviate from the elastic curve at lower
487 slenderness values as a result of gradual yielding. In what follows,
488 the FE determined buckling loads (rather than the test results) will
489 be taken as a benchmark in the inelastic range, since they were
490 obtained through an accurate rational procedure [Fig. 15(a)], rather
491 than through visual inspection of the experimental load versus
492 sidewall displacement curves.
493 To extend the design model into the inelastic range we draw on
494 the work by Bleich (1952), who proposed the following differential
495 equation to describe buckling of a simply supported inelastic plate
496 under uniaxial compression:

Et

∂4w

∂x4
þ 2

ffiffiffiffiffiffiffiffi

EtE
p ∂4w

∂x2∂y2
þ E

∂4w

∂y4
¼ −σx

12ð1 − ν2Þ
t2
0

∂2w

∂x2
ð28Þ

497 In the above equation Et7 is the tangent modulus and E is the
498 elastic modulus. Although Bleich’s equation is based on a semira-
499 tional approach and more theoretically sound models have been
500 developed (Becque 2010), it has the advantage of leading to rather
501 simple equations. Indeed, the structure of Eq. (28) dictates that the
502 inelastic buckling stress can be obtained from the corresponding
503 buckling stress of an elastic plate by multiplying the latter with a
504 plasticity reduction factor η, given by

η ¼
ffiffiffiffiffi

Et

E

r

ð29Þ

505 Using Eqs. (19) and (29), the following equation for the inelastic
506 buckling stress of the chord sidewall is obtained:

σb ¼ 1.346
π2

ffiffiffiffiffiffiffiffi

EEt

p

12ð1 − ν2Þ
t2
0

h0h1
ð30Þ

507 or, with E ¼ 210 GPa and ν ¼ 0.3,

σb ¼ 557
ffiffiffiffiffi

Et

p t2
0

h0h1
ðEt in MPaÞ ð31Þ

508 The tangent modulus Et can thereby be obtained from a

509 Ramberg-Osgood representation of the material stress-strain curve

Et ¼
fyE

fy þ 0.002nE
	

σ
fy




n−1
ð32Þ

510where n is a parameter characterizing the roundness of the stress-
511strain curve. Using the measured values, n ¼ 14, E ¼ 210 GPa,
512and fy ¼ 466 MPa for the S355 material and n ¼ 18, E ¼
513210 GPa, and fy ¼ 466 MPa for the C450 material. Eq. (31)
514can be plotted (Fig. 19) and compared to the numerical buckling
515loads Pb;FEA.
516Eq. (31) is simple in form, elegant, and considerably accurate,
517and it covers the whole slenderness range with one equation.
518However, it has the important drawback that it is iterative in nature.
519Indeed, the tangent modulus Et has to be calculated at the buckling
520stress σb. In order to eliminate this disadvantage, an alternative
521design equation is proposed, which more closely resembles the
522current CIDECT practice of referring to the equations for column
523buckling [e.g., EN1993-1-1 (CEN 2005)] in the design for sidewall
524buckling

Pb ¼ χPy ð33Þ

525with 8

χ ¼ 1

ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2 − λ2
p ≤ 1.0 ð34Þ

ϕ ¼ 1

2
½1þ αðλ − 0.2Þ þ λ2� ð35Þ

526where Py and λ are determined by Eqs. (25) and (26), respectively.
527The value of the imperfection factor α is taken as 0.08, as it pro-
528vides a conservative fit of the design curve to the data (Fig. 20).
529Fig. 20 shows good agreement between Eqs. (33)–(35) and the
530buckling loads Pb;FEA. Table 5 lists the ratios of the capacity pre-
531dicted by Eq. (33) to the numerical result Pb;FEA. An average ratio
532of 0.86 was obtained with a standard deviation of 0.10. In order to
533compare the performance of the proposed design equation with
534that of the current CIDECT rules, it should be noted first that the
535CIDECT equations provide factored design resistances; i.e., they
536already contain an implicit safety factor γM ¼ 1.25 for sidewall
537buckling (Packer et al. 2009; Wardenier 1982). This is accounted
538for by the factor of 0.8 in the CIDECT equation for the buckling
539stress fk (Packer et al. 2009). Also, the CIDECT rules impose an
540extra reduction factor of 0.9 on the capacity of C450 connections

541(applicable to X6–X9) (Packer et al. 2009). In order to allow an
542objective comparison, the CIDECT predicted design resistances

F18:1 Fig. 18. Comparison between test and elastic buckling curve
F19:1Fig. 19. Comparison between test and inelastic buckling model
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543 Pd;CIDECT in Table 5 were first transformed into nominal resistances
544 Pult;CIDECT by dividing away the safety factor of 0.8 and, where
545 applicable, the extra reduction factor of 0.9. It can then be con-
546 cluded that Eq. (33) strongly outperforms the current CIDECT
547 design rule for sidewall buckling, which over the same data set

548 features an average ratio of the predicted to the measured capacity
549 of 0.6 with a standard deviation of 0.21.
550 Importantly, Table 5 also shows that the CIDECT rule does not
551 offer a consistent margin of safety. It is more conservative for side-
552 walls with high h0=t0 values. In this respect, the applicability of the
553 current CIDECT rule is limited to an h0=t0 ratio of 40. The new
554 design rule proposed in Eqs. (33)–(35), however, has been verified
555 against data including sections with h0=t0 ratios of up to 50 in
556 Fig. 20 and Table 5.

557 Reliability Analysis

558 In order to ensure that the proposed design equations possess the
559 required level of safety, a reliability analysis was performed within
560 the framework of both the Eurocode (CEN 2002) and the AISI
561 specifications (Hsiao et al. 1988). The target reliability index β0

562 thereby needed to be taken as 3.8 according to Eurocode 0 (CEN
563 2002), and as 3.5 based on the AISI specifications (Hsiao et al.
564 1988), these being the values prescribed for connections. In the
565 Eurocodes for structural steel, capacities are divided by a partial
566 safety factor γM, while in the AISI specifications they are multi-
567 plied by a resistance factor Φ.
568 In the Eurocode, the partial safety factor γM is defined by

γM ¼ rn

rd
ð36Þ

569 where rn = nominal resistance determined by the proposed theo-
570 retical model and rd = design resistance. The method given in
571 Annex D of Eurocode 0 (CEN 2002) was adopted to calculate the
572 design resistance rd

rd ¼ b · rm · e−½kd;∞αrtQrtþkd;nαδQδþ0.5Q2� ð37Þ

573 in which b = correction factor from model uncertainty and rm =
574 resistance determined using the mean values of all relevant varia-
575 bles. Furthermore, kd;∞ ¼ αRβ0 ¼ 3.04 is the target calibration

576 level, where αR ¼ 0.8 is the sensitivity factor recommended
577 by Eurocode 0 (CEN 2002). The factor kd;n is prescribed by the

578Eurocode based on the number of tests n available to verify the
579design equation against and, in this case, amounted to kd;9 ¼ 3.25.
580The correction factor b is determined by the slope of the least-
581squares regression line in the Pb;FEA versus Ppred diagram

b ¼
P

ðPpred · Pb;FEAÞ
P

ðPpredÞ2
¼ 1.18 ð38Þ

582An error term is also defined as

δ ¼ Pb;FEA

Ppred

ð39Þ

583Let Qrt, Qδ, and Q denote the standard deviation of the resis-
584tance calculated using the design equation [Eq. (33)], the standard
585deviation of the error term δ, and the overall standard deviation
586of the resistance, respectively. Assuming lognormal distributions,
587these standard deviations are obtained as

Qrt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðV2
rt þ 1Þ

q

ð40Þ

Qδ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðV2

δ þ 1Þ
q

ð41Þ

Q ¼ Qrt þQδ ð42Þ

588where Vrt and Vδ = coefficients of variation (COVs) of the calcu-
589lated resistance and the error term δ, respectively. Vδ can be calcu-
590lated using the values of δ obtained through Eq. (39). Vδ ¼ 0.125
591was thus obtained for the available data set and, subsequently,
592through Eq. (41), Qδ ¼ 0.125. However, determining Vrt is not
593straightforward since the form of the resistance formula proposed
594in this paper is rather complex. The Eurocode (CEN 2002) recom-
595mends using a Taylor series approximation and retaining the first
596term in each basic variable Xi. Vrt is then determined by

V2
rt ¼

1

r2m

�

X

j

i¼1

∂r

∂Xi

σi

�2

¼ 1

r2m

��

∂Pb

∂h0
σho

�

2

þ
�

∂Pb

∂h1
σh1

�

2

þ
�

∂Pb

∂t
σt

�

2

þ
�

∂Pb

∂E
σE

�

2

þ
�

∂Pb

∂fy
σfy

�

2
�

ð43Þ

597where σi indicates the standard deviation of the basic variable Xi.
598The numerical values of σi were obtained from (Packer et al. 2009)
599and are shown in Table 6. The partial derivatives in Eq. (43) were
600explicitly calculated using Eqs. (33)–(35).
601The variables αrt and αδ in Eq. (37) are weighting factors forQrt

602and Qδ respectively, calculated as

αrt ¼ Qrt=Q ð44Þ

αδ ¼ Qδ=Q ð45Þ

603The reliability calculations are presented in Table 7, where the
604partial safety factors γM for all nine specimens X1–X9 are deter-
605mined. They are seen to range between 1.30 and 1.69, with an aver-
606age value of 1.45. In order to achieve safe designs, a safety factor of
6071.69 at the high end of the range was chosen. Thus, the proposed
608design equation within the framework of the Eurocode (CEN 2002)
609becomes

Pb;d ¼ 0.6χPy ð46Þ

F20:1 Fig. 20. Proposed design equation
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610 where χ and Py are calculated according to Eqs. (34) and (25),
611 respectively.
612 A reliability analysis according to Eurocode 0 (CEN 2002) was
613 also carried out for the sake of anyone preferring to use the iterative
614 Eq. (31) in design. A maximum safety factor γM of 1.55 and an
615 average γM of 1.23 were obtained.
616 According to the AISI specifications (Hsiao et al. 1988), the
617 resistance factor Φ is defined as

ϕ ¼ CϕðMmFmPmÞe−β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2

M
þV2

F
þCpV

2

P
þV2

Q

p
ð47Þ

618 in which CΦ ¼ 1.52 for LRFD. Furthermore, Mm ¼ 1.1 and Fm ¼
619 1.0 are the mean values of the material and fabrication factors, and
620 VM ¼ VF ¼ 0.1 are the corresponding CO9 versus Pm ¼ 1.0 is the

621 mean value of the professional factor and β0 ¼ 3.5 is the target
622 reliability index for connections in LRFD. VP is the COV of the
623 ratios of the test results to the design predictions (equivalent to Vδ

624 in the Eurocode) and VQ ¼ 0.21 is the COVof the loads in LRFD.
625 Cp is a correction factor to account for the number of test samples n
626 and is given by

CP ¼ nþ 1

n

n − 1

n − 3
ð48Þ

627 By substituting all of these variables into Eq. (47), a resistance
628 factor ϕ ¼ 0.65 was obtained. Thus, the proposed design equation
629 within the framework of the AISI specifications (Hsiao et al. 1988)
630 becomes

Pb;d ¼ 0.65χPy ð49Þ

631 When following both the Eurocode and the AISI procedure,
632 the safety factors turn out to be rather large. While this is mainly
633 because of the stringent reliability factors β0 (of 3.8 and 3.5, re-
634 spectively), the small sample size also plays a role. It is expected
635 that the safety factors could be further reduced by extending the
636 database of experimental and numerical results. This is planned as

637 further research.

638Conclusions

639The paper presents a new design method to account for the sidewall
640failure of equal-width RHS X-joints. The approach is based on a
641rational analysis of an infinitely long elastic plate subject to a local-
642ized distributed load. A Rayleigh-Ritz approximation is used to ob-
643tain the critical elastic buckling stress, which is subsequently used
644in combination with the yield load of the connection in the defi-
645nition of a slenderness parameter. The new design equation is com-
646pared to experimental results, which include X-joints made of SHS
647and RHS of widely varying sizes and wall slenderness values. The
648data also include the results of a limited test program carried out at
649the University of Sheffield and described in detail in the paper.
650A good agreement between the proposed equation and the data
651is observed, with an average ratio of the predicted to the measured
652capacity of 0.86 and a standard deviation of 0.13. A reliability
653analysis is also carried out, both within the framework of the Euro-
654code and the AISI specifications, and appropriate safety factors for
655design purposes are presented.
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