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Abstract 

Tribologically modified surface layer results from the energy dissipated in the frictional contact 

area. This layer usually has a different elastic modulus and hardness from the substrate, and its 

structure corresponds to the intermediate stage between a material of the first-body and debris 

of the third-body. Even though, the existence of the tribologically transformed structure in the 

fretting contact has been well proven, the formation and mechanical transformation 

mechanisms are still not clear. Hence, in this paper, evolution of mechanical properties of four 

metallic materials (titanium alloy, stainless steel, carbon steel, copper alloy) induced by fretting 

was investigated using nano-indentation mapping of the fretting wear scars. It was shown that 

the tribologically transformed structure formed very quickly within the initial fretting cycles, 

and its mechanical properties remained almost constant during the entire test duration for tested 

materials. However, it was observed that all materials responded differently to the frictional 

energy, exhibiting particular rate of change of the H/E ratio before and after the fretting 

experiment. Modified XRD technique was used to probe the friction induced changes within 

the small spots of the fretting scars, and revealed distinctive structural modifications within the 

transformed layers. The approach proposed in this study can be used to inform the predictive 
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wear models, by providing information about the evolution of the mechanical properties of the 

tribo-system with time. 

 

1. Introduction 

During the wear process, the crystallographic structure, physical and chemical properties of the 

surface layer within the tribological contact area are subjected to dynamic changes. It was 

proposed that degradation of the surface layer is rather associated with the quantity of debris 

ejected outside the contact area, than with the total wear volume [1]. Debris remaining in the 

contact participate in the process of load transmission and protect indirectly the first-bodies 

against degradation. In this case, the following statement can be quoted: ‘a good anti-wear 

material combination is one that sacrifices its surface to save its volume’ [2]. The third-body 

can be introduced to the interface voluntary (e.g. solid lubricant, grease, oil), or can result from 

the wear process of the first-bodies, leading to debris screen being maintained within the 

contact area.  

By a successive observation of the friction interface [3], five different sites (Si) and four 

interaction modes (M j) have been defined in the contact area (Figure 1). The five sites are two 

rubbing solids, a “bulk” third-body and two screens separating the first-bodies from the bulk 

third-body; while the four interaction modes are the elastic, rupture, shear and rolling modes. 

The accommodation mechanism was then defined as the SiM j couple, and 20 different 

combinations can be identified.  

Fretting wear is a specific surface damage process, where the reciprocating sliding motion 

with a relatively small amplitude is responsible for the debris formation and loss of material 

as a result of the interfacial shear work. Prediction of fretting wear rates and its mechanism is 

challenging, due to a number of specific factors including [4-6]: (i) high-frequency 
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modification of the interface and contact geometry during the wear process, (ii) occurrence of 

the third-body within the contact area, (iii) flow of debris, and (iv) mechanisms of material 

transport between mated bodies. Nevertheless, it was observed [7], that third-body screens S2 

and S4 are also activated during fretting wear process. 

Further studies of the third-body layers shown that metallic materials subjected to alternating 

sliding, tend to generate a specific transformed layer on the top surface [8,9]. This layer, 

called Tribologically Transformed Structure (TTS), has a particular nanocrystalline structure, 

corresponding to the chemical composition of the primary material. 

Tribologically Transformed Structure results from plastics deformations induced by a relative 

motion of solid bodies under load, and usually has a different elastic modulus and hardness 

from the original metallic structure. The transformed layer corresponds to the intermediate 

stage between a material of the first-body and debris of the third-body. E. Sauger studied 

various titanium tribo-systems and the following two-stage wear mechanism was proposed 

[10]: (i) accumulation of plastic deformation (without wear and TTS formation), and (ii) 

rapid formation of TTS leading to generation of wear debris. It was shown by the same 

author that the thickness of the TTS layer remains constant afterwards, while total wear 

volume increases following the TTS to wear debris transformation process. 

Even though, the existence of the TTS layer in the fretting contact has been well proven, the 

formation and transformation mechanisms are still not clear. Further understanding of this 

process will have a significant consequences for the reliability of wear models, and overall 

prediction of the tribological performance of components under fretting regime. However, the 

TTS formation process, and mechanical properties of the transformed structure will be unique 

for different materials. Hence, in this paper, evolution of mechanical properties of four 

metallic materials induced by fretting is investigated using nano-indentation mapping of the 
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fretting wear scars. The process is related to the dynamics of the TTS formation and 

successive surface damage. 

 

2. Methods 

2.1. Materials 

Four commonly used engineering materials were selected for this study: titanium alloy 

(Ti6Al4V), stainless steel (316L), carbon steel (C50) and copper alloy (UNS C17000). Test 

coupons were machined to 10x10x20 mm samples and tested against 225 mm diameter alumina 

ball. The mechanical properties of materials used in this study are presented in Table 1.  

 

2.2. Fretting experiments 

A dedicated, electro-dynamic shaker powered fretting setup built in School of Mechanical 

Engineering at the University of Leeds was used in this study [11]. All experiments were 

carried out in dry conditions, at 5 Hz frequency, under 20-80 N normal load, in ambient 

laboratory conditions at the temperature of 22°C and relative humidity between 40% and 55%. 

The experiments were performed under gross-slip fretting conditions with ±100たm 

displacement amplitude. After fretting experiments, the wear volume was characterised using 

optical profiler (NPFLEX 3D, Bruker). 

 

2.3. Nano-indentation 

Hardness and elastic modulus maps were produced using pendulum-based nano-indention 

platform (NanoTest, Micro Materials Limited) [12]. For each map, 10x10 indentation matrix 

was generated. The spacing between individual indents was designed in such a way, so that the 

whole fretting wear scar was within the measurement area. The peak load used in the nano-



5 
 

indentation tests was 50mN. The Oliver and Pharr method was used to analyse the nano-

indentation data [13]. The graphical representation of hardness and elastic modulus was then 

generated by the NanoTest platform software.  

 

2.4. XRD analysis 

XRD technique was used in this study to compare the crystal structure of the original material 

with worn surfaces. The main motivation to carry out these experiments was to investigate the 

modification to surface structure induced by wear. The equipment used was P’Analytical 

X’Pert MPD, with Cu K1/2 radiation. In order to investigate a limited area of the sample 

surface with the wear scar, the tube was set up in point focus and cup collimators were used, 

providing an approximate beam size of 2x2 mm at 2 = 40°. Note this changes with incident 

angle, and is far smaller for high 2, ca. 1x2 mm. This method resulted in slightly worse 

statistics than in conventional line focus mode as the flux was far lower, requiring longer scan 

times. A fluorescent disk was used to find the X-ray beam on the sample surface – a fine red 

laser spot was used to align the sample to irradiated zone. Scans were performed in both, the 

worn region, and in perimeter away from damage. 

 

3. Results 

3.1. Wear behaviour 

Figure 2 shows fretting wear volume of four tested materials as a function of cumulated 

dissipated energy, rather than the number of fretting cycles. This approach allows to quantify 

the normal load, displacement amplitude, fretting test duration, and evolution of the coefficient 

of friction by a single function and correlate all those parameters to the extent of wear [14-16]. 

It is also possible to determine the energy wear coefficient (tangent of the line function), and 
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compare fretting wear resistance of tested materials. The titanium alloy showed low wear 

resistance comparing to the other three materials under applied fretting conditions. 

 

3.2. Hardness and Elastic Modulus maps 

A selection of hardness and elastic modulus nano-indentation maps is presented here. The 

results are split into three sections illustrating the impact of (i) four materials tested, (ii) test 

duration, and (iii) applied normal load. The 10x10 nano-indentation matrix was arranged in 

such a way, so that the entire wear scar with the surrounding virgin surface was characterised. 

It required adjustment of the matrix size between the samples, as the fretting wear scar size 

varied between the tests depending on the test duration and loads applied. 

 

3.2.1. Impact of materials 

A clear drop of both, hardness and elastic modulus was observed for the titanium alloy within 

the fretting wear scar when compared with the surrounding, unmodified by friction surface 

(Figure 3). A very different behaviour was shown by the copper sample, where significant 

increase of hardness was observed, accompanied by a moderate drop of the elastic modulus. 

The stainless steel and carbon steel samples showed an intermediate behaviour with varied 

hardness, and a drop of elastic modulus – more apparent for the stainless steel sample.  

 

3.2.2. Impact of test duration 

Figure 4 shows hardness and elastic modulus of the titanium alloy sample after 10000 cycles 

fretting test. When compared with Figure 3a-b (2000 cycles fretting test on titanium alloy), 

impact of the test duration can be observed. The elastic modulus map morphology is very 
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similar in both cases, however the hardness map shows more distinct crater-like shape. The 

wear scar areas became slightly larger, as illustrated by longer Y and Z stage scanning lengths: 

2100µm (Fig. 4) vs. 1600µm (Fig. 3). 

 

3.2.3. Impact of applied normal load 

Figure 5 shows hardness and elastic modulus of the titanium alloy sample after fretting test 

under 80N normal load. When compared with Figure 3a-b (20N normal load fretting test on 

titanium alloy), impact of the loading condition can be observed. The absolute hardness and 

modulus values are very similar in both cases, however the crater-like shapes representing the 

fretting wear scars are much more distinct for the test under higher load. The wear scar areas 

became also much larger, as illustrated by longer Y and Z stage scanning lengths: 3100µm 

(Fig. 5) vs. 1600µm (Fig. 3). 

 

3.3. XRD analysis 

All four materials were studied using XRD to investigate the modification to surface structures 

induced by wear.  

No change in peaks position, breadth, shape or relative intensity was observed for Ti6Al4V 

alloy between the wear region and virgin sample surface. However, the intensity of peaks was 

reduced uniformly (Figure 6). Relatively large increase in background signal was observed at 

all angles, and particularly centred on 2 = 40º, which may be interpreted by amorphous layer 

formed at surface, obscuring the crystalline sub-layer structure. The penetration depth normal 

to the sample surface vs. diffraction angle can be calculated using mass absorption coefficients, 

with the knowledge of angle, material and density [17]. By doing so, it has been revealed that 
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at 40°, near strong Bragg peaks, 99% of diffraction occurs at a depth <8.9 m from the surface 

(value based on 99% absorbed and 1% transmitted signal). 

A slight increase in peak intensity and background signal was observed at low angles for carbon 

steel sample, when comparing the worn region to the virgin sample surface. Additionally, an 

increase in Bragg peak breadth was observed, which was attributed to an increase in micro-

strain. The micro-strain in the surface layer was calculated from the maximum breadth of peaks 

at different angles (lowest penetration depth at low angles). Increased strain was observed at 

the low penetration depths of the worn sample, comparing to the higher penetration depths, 

indicating micro-strain induced by friction (Table 2), resulting in plastic deformation. 

No particular change in the background signal was observed for 316L steel samples when 

comparing the wear region to the virgin sample surface, however non-uniform change in the 

peaks height was observed (Figure 8). To investigate it further, the samples were rotated, such 

that the impinging X-rays were parallel or perpendicular to the wear scars. This resulted in 

large change in peak position, and intensity, suggesting a presence of a layer with residual 

stress and preferred crystallographic orientation. Additionally, a peak at 44.7° was observed in 

some samples, which might result from austenitic/martensitic phase transformation. 

When using a small X-ray spot size, away from the wear regions on copper, only tiny Bragg 

peaks were recorded (Figure 9). In comparison, very distinct but limited Bragg peaks could be 

seen in the wear region: (111) at ca. 43° and (222) at ca. 94°. This suggests, that highly 

modified, amorphous (polished) surface, was present in the top layer of copper sample before 

the tribological test, which was removed by wear resulting in the structure with highly preferred 

crystallographic orientation. 

 

4. Discussion 
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Progressive wear volume measurement is a typical way of characterising the material 

durability under given tribological conditions. Figure 2 shows the wear volume as a function 

of cumulated dissipated energy for four tested materials in this study. The titanium alloy 

showed the poorest performance comparing to the other three materials, however, the main 

objective of this study was to explore the link between the progressive wear process and 

development of the third-body screen within the fretting contact area. As highlighted in the 

introduction section, metallic materials subjected to alternating sliding tend to generate 

tribologically transformed structure, with a particular structure corresponding to the chemical 

composition of the primary material. Under successive fretting cycles TTS is fragmented and 

the wear scar becomes saturated with debris. Wear debris is then subjected to the progressive 

oxidation process and, as a result, sliding surfaces are separated by a fully oxidized particles 

film [18]. Hence, the aim of this study was to investigate tribological implications of friction-

induced surface modification of metallic materials induced by fretting by characterising the 

mechanical properties of the TTS structures using nano-indentation mapping concept. 

Very different mechanical response to the tribological load can be seen in Figure 3 for the 

four tested materials. The TTS layer was not always characterised by increased hardness due 

to energy dissipated in the contact area and work hardening. The surface of copper was 

clearly work hardened, however the titanium alloy was softened. Moreover, the extent of 

change of the elastic modulus varied between the materials, with the stainless steel showing 

the largest drop, and copper the smallest.  

The TTS formation process involves complex competition between surface strain hardening, 

and wear debris generation and oxidation. The former leads to harder surface, while the latter 

leads to wear particles generation. Fragmented wear particles will result in a porous structure, 

which may affect the hardness and elastic modulus nano-indentation measurements. TiǦ6AlǦ
4V alloy and steels are found to have moderate strain hardening behaviour, comparing to 
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copper, which can be easily strengthened via work hardening [19, 20]. It is also worth 

mentioning the link between stacking-fault energy (SFE) and strain hardening, as metals and 

alloys with wider stacking faults (low SFE) like stainless steels, strain harden more rapidly 

[21, 22].  

Individual peaks diverging from the average neighbouring measurement values can be 

observed within the wear scars in Figure 3. These anomalies relate to the single indents 

resulting from increased roughness and porous nature of the modified material within the 

wear scars [23]. In fact, high porosity of the TTS layer may lead to low elastic modulus of the 

fretted samples due to the size effect of the nano-indentation test. Figures 4 and 5 show that 

the method can be used to measure the progressive wear with increasing test duration or 

increased normal load. In both cases, the extent of change of hardness and elastic modulus is 

becoming more distinctive as compared to the shorter test or test carried out under lower 

normal load (Figure 3a-b).  

Small-scale fretting on Ti alloys and on copper was investigated by T. Hanlon and A. Singh 

at MIT [24, 25]. The authors performed nano-indentation tests at the base of the sliding tracks 

to assess local gradients in mechanical properties. Their results on copper indicated that local 

mechanical response within wear scars, was more strongly influenced by local structure 

evolution during repeated sliding than by the initial structure. It was also observed that both, 

friction and damage evolution, were dominated by material strength, when different 

nanocrystalline materials were compared. The authors concluded, that those strengthening 

mechanisms, rather than grain refinement, could provide a more economically viable means 

of improving tribological resistance. 

The specific XRD setup used in this study allowed performing structural analysis, by 

comparing the friction-modified surfaces within the fretting wear scars, with those unchanged 

by friction. It is evident that more detailed study is required to improve quantitative 
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correlation of the tribological conditions with the rate and nature of crystallographic changes 

measured. However, it has been showed that the method is capable of probing the friction 

induced changes within the small spots of the fretting scars. It was observed that the titanium 

alloy showed amorphous layer formed at the surface, carbon steel showed an increase in 

micro-strain (with actual strain value calculated as a function of TTS layer thickness – Table 

2), stainless steel showed a presence of a layer with residual stress and preferred 

crystallographic orientation, and copper sample showed evidence of structure with modified 

crystallographic morphology. 

In summary, it has to be highlighted, that within a few initial fretting cycles, the mechanical 

properties of the materials are dramatically changed. The hardness and elastic modulus values 

become very different to the ones in the original material specification. The process can be 

related to as “in-situ local friction-induced surface modification”. Figures 10 and 11 illustrate 

that fact in a clear graphical way. Figure 10 shows the extent of change of hardness, while 

Figure 11 shows the extent of change of elastic modulus of the four tested materials. In both 

cases, value zero on the vertical axis represents the initial hardness and elastic modulus 

values before the tests. The further away the data points from the initial zero value, the more 

dramatic change of the mechanical properties resulting from friction induced surface 

modification took place. It is interesting to observe, that after initial change, the values 

remain relatively constant. It suggests, that the energy dissipated with the initial fretting 

cycles, promotes the TTS structure, and as a result, the tribological system is modified very 

quickly. This supports the observation, that the thickness of the TTS layer remains constant 

after formation, while total wear volume increases following the continuous process of TTS 

transformation to wear debris [10]. 

The observed phenomenon of friction-induced surface modification of metallic materials 

under fretting, will have implications for predictive wear models and numerical calculations 
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of tribo-contacts durability. These are typically based on initial mechanical properties of 

materials measured prior to service, and do not take into account the adjusted values of 

hardness and elastic modulus. This will also change the H/E and H3/E2 parameters [26,27], 

which are considered to be useful in prediction of tribological performance of materials. 

 

5. Conclusions 

The tribological significance of friction-induced surface modification of metallic materials 

under fretting regime was investigated in this study. The nano-indentation mapping approach 

was used to measure the hardness and elastic modulus values within the fretting wear scars 

on titanium alloy (Ti6Al4V), stainless steel (316L), carbon steel (C50) and copper alloy 

(UNS C17000) samples. The following conclusions can be drawn from this study: 

 Nano-indentation mapping proved to be a powerful technique allowing to quantitatively 

resolve the mechanical properties of Tribologically Transformed Structure within the 

fretting scars, and compare with the original material. 

 It was shown that the Tribologically Transformed Structure formed very quickly within 

the initial fretting cycles, and its mechanical properties remained almost constant during 

entire test duration for all four tested materials.  

 Materials investigated in this study reacted differently to the energy dissipated with the 

contact area, exhibiting particular rate of change of hardness and elastic modulus. This 

resulted in different H/E ratio values for the same material before and after the fretting 

experiment. 

 Modified XRD technique used in this study allowed probing the friction induced changes 

within the small spots of fretting scars. It revealed distinctive structural changes within the 
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TTS layers, and allowed calculation of the micro-strain as a function of TTS layer thickness 

for carbon steel. 

 The study quantified the in-situ local friction-induced surface modification process taking 

place during fretting wear. This approach can be used to inform the predictive wear models, 

by understanding the evolution of the mechanical properties of the tribosystem. 
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Table 1. Mechanical properties of tested materials. 

Material Hardness (GPa) Elastic Modulus (GPa) Residual depth/ 

Max depth 

Titanium alloy (Ti6Al4V) 4.7 ±0.2 156.4 ±8.8 0.91 ±0.01 

Stainless steel (316L) 2.9 ±0.1 221.9 ±6.3 0.96 ±0.01 

Carbon steel (C50) 3.4 ±0.4 249.3 ±7.8 0.96 ±0.01 

Copper alloy (UNS C17000) 1.3 ±0.1 135.3 ±6.0 0.97 ±0.01 

 

 

Table 2. Micro-strain calculations in the surface layer of worn carbon steel sample. 

Test position 
FWHM* / º FWHM* (Si) / º Peak pos. / º Micro-strain / % 

Micro-strain 
change 

Virgin 0.287 0.230 44.700 0.182 
+0.078 

Wear scar 0.336 0.230 44.700 0.260 

Virgin 0.460 0.240 65.070 0.268 
+0.055 

Wear scar 0.530 0.240 65.070 0.323 

Virgin 0.510 0.250 82.390 0.222 
+0.016 

Wear scar 0.539 0.250 82.390 0.238 

Virgin 0.513 0.250 98.870 0.167 
-0.009 

Wear scar 0.491 0.250 98.870 0.158 

* FWHM - full width at half maximum 
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Fig. 1. Frictional energy accommodation mechanisms in the fretting contact (Own diagram 

after [3]). 

Fig. 2. Fretting wear volume of four tested materials as a function of cumulated dissipated 

energy. 

Fig. 3. Hardness and elastic modulus maps for four tested materials; Test conditions: ±100たm 

displacement amplitude, 5HZ frequency, 20N normal load, 2000 fretting cycles; a-b) titanium 

alloy (Ti6Al4V), c-d) stainless steel (316L), e-f) carbon steel (C50), and g-h) copper alloy 

(UNS C17000). 

Fig. 4. Hardness and elastic modulus maps for titanium alloy (Ti6Al4V); Test conditions: 

±100たm displacement amplitude, 5HZ frequency, 20N normal load, 10000 fretting cycles. 

Fig. 5. Hardness and elastic modulus maps for titanium alloy (Ti6Al4V); Test conditions: 

±100たm displacement amplitude, 5HZ frequency, 80N normal load, 2000 fretting cycles. 

Fig. 6. XRD spectrum for Ti6Al4V; dark line – virgin region of the sample;  

light line – worn surface. 

Fig. 7. XRD Bragg peaks for carbon steel; dark line – virgin region of the sample;  

light line – worn surface. 

Fig. 8. XRD Bragg peaks for 316L steel; dark line – virgin region of the sample;  

light lines – worn surface, parallel and perpendicular X-ray scans. 

Fig. 9. XRD spectrum for copper; top line – virgin region of the sample;  

bottom line – worn surface. 

Fig. 10. Variation of hardness for four tested materials as a function of cumulated dissipated 

energy. 
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Fig. 11. Variation of Elastic Modulus for four tested materials as a function of cumulated 

dissipated energy. 

  



19 
 

Figure 1 

 

  



20 
 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 8 
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Figure 9 
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Figure 11 

 


