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The Price of Anarchy in Urban Traffic 

Networks 
 

Transportation networks and the flows of people and goods through them have naturally attracted the 

attention of mathematicians, at least as far back as Euler’s elegant representation of urban connectivity in 

Königsberg as a link-node graph. In the notorious travelling salesman problem, the graph representing the 

transport network has links with explicit lengths to capture not only the connectivity, but also the distance 

travelled . This is also the case in ‘the transportation problem’ (to minimise the total transport cost when 

supplying � factories from � coal mines) where flows arise from multiple sources and sinks. However, a 

network model that is useful for managing urban traffic requires additional attributes to be included in terms 

of demand, supply and traveller behaviour. 

 

Unlike the coal in the transportation problem, individuals are keen to arrive at their own particular desired 

destination; traffic flows are not freely interchangeable between sources and sinks. Trips are associated with 

specific origin → destination node pairs and the volumes of trips (demand flows) are collected in the origin-

destination (OD) matrix.  Regarding supply: one of the primary motivations for developing traffic network 

models is to manage congestion, and so it is essential to represent the fact that link capacities are finite. The 

relationship between traffic flow on a link and link travel time is captured by a link cost function1. Finally we 

recognise that travellers do not simply choose the shortest geometric path, they seek alternative routes to 

avoid congestion and minimise delays. Modelling the more nuanced aspects of route choice is a substantial 

area of research. Perhaps the most natural principle for assigning OD flows to possible routes was set out by 

John Wardrop (1952): 

Travellers choose routes such that they each, selfishly, minimise their individual travel time: this is the User 

Equilibrium (UE) principle. 

This feedback mechanism between congestion and route-choice leads to an equilibrium, albeit under several 

assumptions. In 1956 Beckman et al. set out a convenient minimization formulation to solve the UE model 

and determine its equilibrium link flows, and hence large traffic network equilibrium problems could be 

solved numerically, at least in principle. Once PCs became widely available, the UE model started to be used 

‘in anger’, to model traffic flows in real city networks, and to forecast the consequences of different possible 

traffic management and network investment schemes. 

 

The assumptions underlying UE are rather strong: demand and supply are both fixed, travellers are perfectly 

informed and diligently cost-minimizing, and the traffic flows attain a static equilibrium! These are not quite 

representative of typical experiences in urban traffic. Since the fifties, researchers have been busy developing 

more sophisticated representations of demand, supply and route-choice behaviour, in particular introducing 

time dependency and stochasticity into all of these elements. Despite such advances, and regardless of its 

assumptions and irksome analytic properties, the UE model became firmly established as the most practically 

useful and robust methodology for urban traffic network analysis, and continues to be used today for traffic 

management and planning all around the world.  

 

It is notable that the UE model specification ignores network efficiency, indeed it is well known that typically 

UE flows do not minimise the total network travel cost. Under UE travellers seek to minimise their own OD 

travel time, but they do not suffer the additional congestion they add to the system. Consequently, delays 

                                                             
1 Or link travel time function, link impedance function. Travel time and cost will be used synonymously. 



due to congestion might be improved by rerouting flows, without having to reduce demand or invest in 

additional network capacity. In fact Wardrop noted an alternative routing principle: 

Travellers each, unselfishly, choose routes such that the total travel time in the network when aggregated 

across all travellers is minimised: the System Optimal (SO) principle. 

 

An obvious questions arises: how much could congestion be improved by rerouting the traffic? 

 

Consider a traffic network comprising two nodes joined by 2 parallel links with link flows � = ��	, ��� . The 

single OD pair has demand flow � = 1, and the link cost functions are �	��	� = �	,  ������ = 1. 

Following Wardrop, each selfish, cost-minimizing traveller will use link 1 giving user equilibrium flows ��� =�1,0�  with total travel  cost ����� = ∑ �������� = 1� . The SO solution in this case happens to be  ��� =�1 2⁄ , 1 2⁄ � which reduces the total system cost to ����� = ∑ �������� = 3/4� .  

 

The extent of the inefficiency of selfish routing can be quantified by the Price of Anarchy: the ratio of the 

total network travel cost under UE to the total network travel cost under SO: 

! = �����
����� = ∑ ���� ��∀����#�∈%∑ ������∀����#�∈%  

Roughgarden and Tardos (2002) demonstrated an upper bound of 4 3⁄  for the PoA in traffic networks with 

affine link cost functions; as illustrated by the two-link example above. Upper bounds for the PoA have been 

derived for other (nonlinear) link cost function specifications wherein the PoA can be much higher than 4/3. 

The two link example above with the simple modification: �	��	� = �	&, ������ = 1 can be used to illustrate 

that the PoA upper bound increases with ∋. 

 

The PoA has appeal as an indicator for policy makers. Bounds on the PoA conveniently set out the maximum 

possible congestion improvement attainable by rerouting flows. However, not only are the theoretical 

bounds rarely witnessed in models of real urban networks, but the PoA depends on both the magnitude and 

configuration of OD demands. Since the OD matrix changes within the day and from day-to-day in a real 

network, which OD matrix should be used to compute a representative value for the PoA? Moreover, how 

can we ensure efforts to reroute traffic in order to attain SO flows are focussed on being effective when the 

OD travel demands offer the greatest gains? 

 

Figure 1 illustrates how the PoA changes as travel demand is increased, for three different networks each of 

which are discussed in more detail below.  

A B C 

Figure 1 – Price of Anarchy against Demand for three networks 

The 5-parallel links network (A) is an extract from Figure 2; the 5-link network (B) is shown in Figure 3; and 

the Sioux Falls network (C) is shown in Figure 5. In each plot, it is notable that the PoA is well below the 



theoretical bound2, plus there are some complex and interesting fluctuations in the PoA as a function of 

demand.Price of anarchy versus demand plots, for network models based on areas of Boston, New York and 

London, can be found in Youn et al. [4] and they display these same characteristics.  

The influence of network topology (in terms of both connectivity and link capacities) on network efficiency 

and the PoA is an area of ongoing research not only in transport but more widely in network science. Here 

we focus on some specific features of these PoA plots. For each network, there is an initial region in which 

the PoA is unity; an intermediate region of fluctuations; and a final region of decay. It is also appears that 

PoA is non-smooth as a function of demand. What gives rise to these features? 

As demand increases the set of active routes expands 
Consider a traffic network of � parallel links, serving a single OD pair with demand � > 0, and with link cost 

functions of the form ������ = )� + +���, where )� , +� > 0 and )� < )�−	 ∀/ = 1, … , �. The “free flow” travel 

time (given by link length in this case) is )� and we label the links in order of increasing length. At sufficiently 

low levels of demand �, the UE solution has flow only on the quickest/shortest route, link 1. Under the UE 

routing principle the cost on link 1 is not greater than on any other link. 

�	��	�� = �� ≤ ������� = 0�  ⟺  )	 + +	� ≤ )�  ⟺ � ≤ �)� − )	�
+	  

As demand increases and � > �)� − )	� +	⁄ , link 2 activates and, following UE, �	��	��� = ������� �. Both 

links carry flow and the set of minimum cost routes, 45�6, comprises links 1 and 2. As demand increases, 

OD travel cost increases and further links activate in turn. This process continues until, at a sufficiently large 

level of demand, the set of minimum cost routes includes all links.  

 

Under SO a similar pattern occurs: increasing demand causes a sequence of links to be added to the set of 

used routes. As an aside, it is helpful to know the general result that for a network with link costs ��, SO flows 

would arise if UE-like travellers were to selfishly minimize their travel costs according to the modified link 

costs: �̃� = �� + �� 8�� 8��⁄ . For the above parallel link network the cost transformation �̃�  yields 

 �̃� = �� + 8��8�� �� = �)� + +���� + �+���� = )� + 2+��� (1)   

The pattern of changes in the set of minimum marginal total cost routes under SO, 495�6, can therefore be 

obtained by redefining +�: = 2+� from the UE case. As demand increases, the order in which routes activate 

is the same under UE and SO.  

Consider a sequence of networks with number of links � = 2,3, … ,10 and coefficients )� = /, +� = 1 for / = 1, … ,10. Figure 2 shows the Price of Anarchy !; for each of these nine networks. Vertical lines mark 

the link activations under UE (green) and SO (red). 

                                                             
2 A and B have linear cost functions so the theoretical upper bound for PoA is 4/3. Network C has 4th power costs 

hence the theoretical upper bound is 2.15 (see Roughgarden 2003) 



 
Figure 2 - The Variation of the Price of Anarchy against Demand in < = =, … , >? Parallel Link Network 

For levels of demand � up to the first route transition point under SO, the Price of Anarchy is 1. Beyond this 

for each �, levels of demand at which 45�6 expands coincide with levels of demand at which the PoA is non-

differentiable. There is a decrease in the gradient of the PoA at each of these points. In contrast the PoA is 

differentiable at all levels of demand at which there is an expansion in the SO active route set, 495�6. For each � = 2, … ,10, the graphs of !;≅	 and !; depart from one another at each of these points. 

Expansions in the UE active route set lead to decreases in the PoA whereas expansions in the SO active route 

set lead to increases in the PoA. As demand increases beyond the last route transition point, the PoA begins 

to decay back towards unity as Α�1 ��⁄ �.  

Under increasing demand the active route-set can contract  
It is perhaps less intuitive that routes and links may also deactivate under increasing demand. The following 

is the simplest illustration we came across. Consider the traffic network shown in Fig. 3, which serves two OD 

pairs O → D1 and O → D2 with link cost functions: �	 = 2 + �	, �� = 3 + ��, �Β = 9 + �Β, �D = 1 + �D and �Ε = 1 + �Ε. There are two routes for each OD pair: for O → D1, the routes are link {1} and links {2, 4}; for O 

→ D2, the routes are links {2, 5} and link {3}. 

 
Figure 3 - Five Link Network with Two OD Pairs 

Demand ��→Φ� = 1 is fixed while ��→Φ	 increases from zero. Figure 4 shows the active routes under SO via 

the variation of marginal total route costs. For �� → Φ	  <  11.5, route {2, 5} is active (part of the minimum 

marginal total cost route set for O → D2) but not for demand �� → Φ	 >  11.5. For this network the pattern 

of expansions and contractions under UE is the same, although at different levels of demand. 



 

 
Figure 4 - Route Costs under SO against increasing demand on O->D1  

As demand increases on the single OD, the PoA gradient decreases at expansions and increases at 

contractions in the UE route-set, 45�6Ι . Under SO, points of expansion/contraction in the SO route-set, 495�6Ι  

correspond to an increase/decrease in the PoA gradient. 

The PoA in Larger Networks  
How do these simple examples inform patterns seen in general networks with many links, nodes and multiple 

OD movements? Overall, as demand increases new routes will activate. However, establishing proofs for 

what happens at every route-set transition point involves dealing with possibly complex scenarios; an 

expansion in the minimum cost route set for one OD movement could coincide with a contraction in the 

minimum cost route set for a different OD movement. It is also exactly at changes to the active route-set that 

the problem of existence/non-existence of (directional) derivatives arises. This is a thorny issue in the 

sensitivity analysis of UE and makes the analysis rather arduous. 

In O’Hare et al (2016) we identify and describe the effects of four mechanisms that govern the variation of 

the PoA. When the SO route-set expands/contracts, the PoA ‘kicks’ up/down (that is to say the PoA gradient 

increases/decreases when compared with no route-set expansion/contraction being allowed). When the UE 

route-set expands/contracts the PoA ‘kicks’ down/up. 

In the special case of traffic networks with cost functions of the form �� = )� + +���ϑ, for which )� , +� , Κ > 0, 

it turns out to be surprisingly simple to derive a systematic relationship between the UE and SO link flows, ���� �Λ� and �����Λ�, as functions of the OD demand Λ.  

 ���� Μ Λ
ΝΚ + 1Ο Π = 1

ΝΚ + 1Ο ���� �Λ� (2)   



A similar relationship between the UE and SO route-set transition points follows from this. For networks with 

this simple form of cost functions we observed the leading order behaviour of the PoA as it decays back to 

unity is Α∀1 Θ�ϑ⁄ #, where Θ is a global demand multiplier applied to the demand matrix3. 

A Network with Multiple ODs 
The canonical test network of Sioux Falls4 comprises 24 nodes and 76 links. The cost of travel ��  on each link 

has cost function of the form �� = )� + +���D ()� , +� > 0�. Demand is increased simultaneously on five of the 

OD pairs, via the same demand multiplier, ΘΡ , for each OD movement.  Figure 5 shows how the PoA fluctuates 

with demand, active route set changes are labelled as before.  

 
Figure 5 – The Variation of the Price of Anarchy against the Demand Multiplier 

The PoA profile comprises many changes to the set of active routes, both expansions and contractions, whose 

details follow the descriptions in O’Hare et al (2016). Despite capturing these details, we still do not have an 

efficient practical method for estimating the maximum PoA for a given network across a range of OD 

demands. PoA bounds are provided by Roughgarden (2003) for different classes of link cost functions, but 

consider what is the worst possible network giving the maximum PoA, and show this is attained in simple 

networks. Consequently, in a large network a deliberately minimal OD matrix might be used to effectively 

limit all link flows to a two-link subnetwork in order to maximise PoA, but this does not satisfactorily address 

the practical issue of interest: when is PoA maximised within a plausible ensemble of OD matrices? 

The influence of topology on the PoA (and hence on network efficiency) for urban road transport remains a 

substantial area for further research, needing understanding of both the supply-side network infrastructure 

and the demand configuration, and their interaction. One possible conclusion is that the PoA is rather 

problematic as an indicator in practical terms; the magnitude and configuration of demand can change 

                                                             
3 See arXiv:1605.03081 on asymptotics of PoA 
4 This small city in North Dakota appeared as an example in a 1973 paper on network design. Subsequent papers used 

this precedent for comparison, and Sioux Falls became established as a standard test network. For test details see 

O’Hare at al 2016. 



rapidly, both within the day but also structurally from year to year. Any policy intended to improve network 

efficiency by rerouting traffic needs to take account of these fluctuations and ensure its impact coincides 

with the demand configurations that offer the greatest gains. 

However, we can also allow ourselves the pleasure of finding something interesting, regardless of whether 

or not it has any obvious practical use. Understanding that links (and routes) can switch ‘off’ as well as ‘on’ is 

perhaps not surprising after a few moments’ thought. In subsequent tests we came across networks with 

more complex link switching: a link that started ‘off’, switched ‘on’, switched ‘off’ and switched ‘on’ again, all 

due to increasing demand on a single OD. Figure 3 shows the simplest network we could find to illustrate 

contraction of the active route set and a link switching ‘off’. Perhaps is it interesting to imagine how to 

construct the simplest network that would give an arbitrarily long sequence of on/off switches for some link? 
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