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Abstract Equatorial magnetosonic waves are normally observed as temporally continuous sets of
emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always
the case. Using Cluster data, this study identifies two distinct forms of these non–temporally continuous
emissions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave
activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)
are observed to occur periodically in the region ±10∘ off the geomagnetic equator. The sweep rate of these
emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also
change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency
sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal
protons in the wave field. The second form of emissions is characterized by the simultaneous onset of
activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their
occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for
electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the
electron density.

1. Introduction

Equatorial magnetosonic waves are a common occurrence over a wide range of L shells, typically 3 < L < 8,
within the equatorial region of the terrestrial magnetosphere. Occurring in the frequency range between the
proton gyrofrequency (Ωcp) and the lower hybrid resonance frequency (𝜔LH), they consist of a set of discrete,
banded emissions at harmonics of the proton gyrofrequency [Russell et al., 1969, 1970; Gurnett, 1976]. The
wave normal angle (𝜃Bk), the angle between the wave k-vector and external magnetic field direction, indicates
the almost perpendicular propagation of magnetosonic waves. Note that in this paper, the term propaga-
tion direction refers to the wave k-vector direction rather than the group velocity direction. For cases when
𝜃Bk = 90∘ these two vectors will be aligned. However, for the higher harmonics (say, N > 10) a small deviation
in 𝜃Bk of 0.4∘ away from 90∘ results in the parallel group velocity component becoming the dominant compo-
nent. Ray tracing shows that this causes the waves to oscillate back and forth in magnetic latitude about the
magnetic equator as they propagate in the azimuthal and/or radial direction in the equatorial plane [Olsen
et al., 1987; Laakso et al., 1990; Boardsen et al., 1992; Horne et al., 2000; Santolík et al., 2002; Němec et al., 2005;
Boardsen et al., 2016]. However, there are a few studies [Tsurutani et al., 2014; Zhima et al., 2015] suggesting
the existence of low-amplitude magnetosonic waves at higher latitudes. The experimentally deduced disper-
sion relation has been shown to agree with that based on cold plasma theory [Walker and Moiseenko, 2013;
Walker et al., 2015a]. Theoretical studies regarding the generation of equatorial magnetosonic waves were
based on energy sources that included high-energy (∼1 MeV) ions with power law, anisotropic distributions
inside the plasmasphere[Curtis and Wu, 1979], energetic ion populations such as those observed in the ring
current [Gulelmi et al., 1975], electron bounce resonant interactions [Roberts and Schulz, 1968], or proton ring
distributions [e.g., Perraut et al., 1982; Boardsen et al., 1992; Meredith et al., 2008; Horne et al., 2000; Chen et al.,
2010] with 𝜕f∕𝜕v⟂ > 0 for energies of a few tens of keV. Recent Cluster observations reported by Balikhin et al.
[2015] have demonstrated that the observed wave spectrum matches that predicted based on the observed
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proton ring distribution. Equatorial magnetosonic waves have also been shown to be generated via proton
shell distributions [Min and Liu, 2016] resulting in a more complex frequency/wave number growth pattern.

It is currently assumed that equatorial magnetosonic waves interact with the local electron population, effi-
ciently accelerating some particles to high energies while scattering others into the loss cone [Horne et al.,
2007; Mourenas et al., 2013]. These interactions may be successfully modeled using quasi-linear theory since
there is sufficient overlap between the emissions at adjacent harmonics of the proton gyrofrequency [Walker
et al., 2015b].

Almost all previous descriptions of the occurrence of magnetosonic waves have shown that these emissions
occur continuously over periods from a few minutes to hours. There have been only two exceptions to this.
The first was the observation of magnetosonic wave trapping inside the plasmapause [Ma et al., 2014]. Ma
et al. [2014] demonstrated that magnetosonic waves generated locally inside the plasmapause boundary may
propagate inward, eventually becoming trapped within a limited radial region of the outer plasmasphere by
large-scale density structures. Further evidence was also presented for the trapping by small-scale structures.
The second type of non–temporally continuous observations of magnetosonic waves are the recently iden-
tified observations of rising tone magnetosonic waves by Fu et al. [2014], Boardsen et al. [2014], and Němec
et al. [2015] based on observations from Time History of Events and Macroscale Interactions during Sub-
storms (THEMIS), Van Allen Probes, and Cluster, respectively. These emissions are observed as a set of rising
tone elements, much the same as rising chorus elements [Li et al., 2011] or electromagnetic ion cyclotron
waves [Nakamura et al., 2014]. However, the observations presented by these authors cannot resolve the true,
discrete-banded nature of the spectrum of magnetosonic waves. These observations show the occurrence of
individual elements whose frequency rises with time with a sweep rate of 1 Hz/s in a similar manner as has
been observed for chorus emissions. These sets appeared to be modulated with a repetition time of the order
2–3 min with the emission elements turning on and off.

The present paper investigates the occurrence of non–temporally continuous observations of magnetosonic
waves. Section 2 outlines the sources of data used in this study. Sections 3 and 4 present Cluster observations
of rising tone emissions and trapped emissions, respectively. Section 5 compares these observations with
those from THEMIS and the Van Allen probes results, showing that the nature of the waves changes with dis-
tance from the magnetic equator. Potential modulation mechanisms for the rising tone emissions are briefly
mentioned. It is shown that one particular mechanism, namely, the sideband instability that results from the
nonlinear trapping of particles and has been used to explain the frequency drift in chorus emissions, may
probably be ruled out as a possible mechanism. The results and discussion are then summarized in section 6.

2. Data Source

The data presented here were collected by the fluxgate magnetometer (FGM) [Balogh et al., 1997], the STAFF
(Spatio-Temporal Analysis of Field Fluctuations) search coil magnetometer [Cornilleau-Wehrlin et al., 1997], and
the Electric Fields and Waves (EFW) [Gustafsson et al., 1997] instruments, on board the multispacecraft Cluster
mission [Escoubet et al., 1997]. Synchronization of the STAFF and EFW sampling is achieved via the centralized
Wave Experiment Consortium Digital Wave Processor instrument [Woolliscroft et al., 1997]. Launched in the
year 2000, the four Cluster spacecraft follow a polar orbit, with an apogee of ∼20 RE , initial perigee ∼4RE and
period of 57 h. This initial orbit has evolved over time as the line of apsides has rotated southward before rising
again in 2010 and its perigee falling to a minimum of 200 km in the same time period. These changes have
allowed Cluster to sample plasma and wave activity at the magnetic equator over a range of different radial
distances. The observations presented here were made during periods when the satellites were operated in
burst science mode (BM1). This operational mode allows FGM and STAFF to collect magnetic field waveform
measurements with sampling rates of 67 Hz and 450 Hz, respectively. In this paper the spacecraft potential
from the EFW instrument is used as a proxy for the election density [Pedersen et al., 2001].

3. Observations of Rising Tone Emissions

The first event discussed in this paper occurred on 18 August 2005 and was observed by Cluster 1 between
13:50 and 14:00 UT and Cluster 2 between 13:00 and13:30 UT (BM1 operations were scheduled for the period
13:00–14:00 UT on all four spacecraft). Table 1 gives the locations of Cluster 1 and 2. The Cluster satellites were
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Table 1. Locations of the Cluster Satellites During the Events Discusseda

Date Time (UT) Satellite MLT (h) MLAT (deg) Distance (RE )

2005-08-18 13:50–14:00 1 13.42–13.46 −8.0–−3.4 5.01–4.93

13:00–13:30 2 13.03–13.21 −7.4–8.5 4.87–4.69

2005-09-16 03:35–04:00 1 11.89–11.82 −5.7–4.2 4.72–4.64

02:50–03:00 2 11.55–11.52 −3.2–4.2 4.62–4.58

2005-09-13 17:55–18:05 1 12.18–12.13 −4.7–1.6 5.03–4.89

2006-09-17 14:15–14:45 3 11.77–11.83 −18.4–4.46 4.67–4.08
aMLT: magnetic local time; MLAT: magnetic latitude.

traveling in a south to north direction, crossing the magnetic equator at 14:06:00 UT (C1) and 13:14:16 UT
(C2). Examination of the electric field spectrogram recorded by the WHISPER instrument (not shown) shows
that the electron plasma frequency maximizes around 13:40 UT at a value of ∼ 42 kHz, which would imply an
electron density of the order 21 cm−3 indicating that C2 came close to the plasmapause but never actually
crossed into the plasmasphere itself. These observations occurred during a period of low to medium geomag-
netic activity for which the maximum (negative) value of Dst in the proceeding 24 h was −16 nT, while the AE
index over the preceding 36 h maximized at 531 nT (mean 284 nT). Using these values within the O’Brien and
Moldwin [2003] plasmapause model shows that C2 was very close to the expected location of the equatorial
plasmapause.

Figure 1 shows an overview of measurements from the Cluster 2 spacecraft. Figure 1a shows a spectrogram of
the magnetic field oscillations recorded in the BZ component (geocentric solar ecliptic) by the STAFF search
coil magnetometer. The white horizontal lines show harmonics of the local proton gyrofrequency in the range
7 to 30, with labels toward the left side of the spectrogram. The solid vertical black line indicates the time
at which the magnetic equator was crossed; the dotted vertical black lines indicate the times of the spectra
shown in Figure 2. Figure 1b shows the ellipticity (ratio of the intermediate (eint) and maximum (emax) eigen-
values of the spectral matrix) of the oscillations. For the periods when the banded emissions are observed, the
ellipticity is low eint∕emax < 0.2, indicating highly elliptical polarization. Figure 1c shows the angle between
the wave vector direction and the external magnetic field. These emissions show a strong preference for prop-
agating in a direction almost perpendicular to the external magnetic field. Finally, Figure 1d shows the angle
between the maximum variance direction (which corresponds to the plane in which the wave magnetic field
oscillates) to the external magnetic field. For the oscillations discussed in this paper, the wave magnetic field is
aligned with the external magnetic field. These properties are all consistent with previous observations [e.g.,
Boardsen et al., 2016].

In Figure 1a two types of equatorial magnetosonic waves with different frequency and temporal character-
istics can be distinguished. At frequencies above 40 Hz, the emissions are observed to occur as a number of
rising tone elements. A series of∼11 rising tone emission elements are observed between 13:05 and 13:13 UT.
Each individual element consists of a set of emissions at harmonics of the local proton gyrofrequency that
are observed first at lower frequencies (∼15ΩP), gradually rising to ∼30ΩP in the space of 35–40 s for most
elements with some taking as long as 90 s. These elements also show evidence for a temporal structure
with a periodic cycle of around 110–130 s, a value similar to that reported by Boardsen et al. [2014] and
Fu et al. [2014].

It is noticeable that the characteristic properties of the harmonic emissions changes from one element to the
next. The wave power of these emissions in individual elements is largest for the three elements observed
around 13:15 UT, the time at which Cluster 2 crossed the geomagnetic equator. On either side the power
reduces significantly with the distance of Cluster 2 from the equator. These three “central” elements also
appear to possess a greater ellipticity, and their propagation direction appears to be closer to perpendicular
than the elements that are observed a few degrees north or south of the equator.

At frequencies less than 40 Hz there is a set of continuous, banded emissions in the period 13:05–13:27 UT.
Their amplitude is typically greater than 3 pT, varying throughout the period but less than that typically
reported [e.g., Mourenas et al., 2013; Zhima et al., 2015]. Between 13:10 and 13:12 UT the strongest emissions
appear to be centered at the proton gyroharmonic frequencies in the range 7–10 inclusive. It is also noticeable
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Figure 1. Wave properties of the oscillations recorded in the Bz component by the STAFF search coil magnetometer
during the period 13:00–13:30 UT on 18 August 2005. (a) A spectrogram of the magnetic measurements. The white lines
represent harmonics of the local proton gyrofrequency in the range 7 to 30. (b) The ellipticity of the oscillations, (c) the
angle between the wave propagation vector and the external magnetic field, and (d) the angle between the maximum
variance direction and the external magnetic field. The vertical black line indicates the equatorial crossing time.
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Figure 2. Frequency structure of the oscillations in the Bz component by the STAFF search coil magnetometer during
the period 13:00–13:30 UT on 18 August 2005. The vertical red lines indicate every second harmonic of the local proton
gyrofrequency in the range 2–30. The power spectral density was calculated using a 1024 point fast Fourier transform.
(a) An average of 26 spectra resulting from the analysis of the waveform, recorded between 13:13:30.8 and 13:14:28.9 UT
with a 1024 point fast Fourier transform. (b and c) Similar results for the periods 13:16:25.0–13:18:00.4 UT (average of 42
spectra) and 13:26:34.7–13:28:39.1 UT (54 spectra), respectively.

that there are other bands that appear roughly in the center between two consecutive proton gyrofrequen-
cies. After 13:15 UT, and particularly around 13:20 UT, the frequency of the bands begins to decrease in
contrast to the proton gyrofrequency harmonics (white lines).

Figure 2 shows average power spectra of emissions observed in the time periods 13:13:30.8–13:14:28.9 UT
(Figure 2a), 13:16:25.0–13:18:00.4 UT (Figure 2b), and 13:26:34.7–13:28:39.1 UT (Figure 2c), as indicated by
the vertical dotted lines in Figure 1, computed using a 1024 point fast Fourier transform during which three
individual periodic elements were observed. The red vertical lines mark the even harmonics of the proton
gyrofrequency in the range 2–30. The discrete harmonic nature of the waves is clearly seen with emissions
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Figure 3. Wave properties of the oscillations recorded in the Bz component by the STAFF search coil magnetometer
during the period 03:30–04:00 UT on 16 September 2005. The format is the same as that in Figure 1.
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occurring at or very close to harmonics of the proton gyrofrequency. Most of the spectral peaks are narrow,
typically 2.5 Hz wide. However, some peaks, especially those below 40 Hz, considerably wider. For the emis-
sions observed in the period 13:13:30.8–13:14:28.9 UT (Figure 2a) there are peaks observed at frequencies of
(approximately) 25.4, 26.8, 28.5, 30.5, 32.5, 36.5, 38.5, 40.6, and 44.3 Hz with the frequency spacings between
peaks of either ∼4 or 2 Hz. These frequencies correspond to the local proton and alpha particle gyrofre-
quencies, respectively. Thus, these emissions may be observed at their point of generation. Similar frequency
spacings are also evident in the spectra shown in Figures 2b and 2c.

A second set of similar emissions was observed on 16 September 2005 between 03:40 and 04:00 UT by C1. The
locations of the Cluster 1 and 2 satellites during this period are given in Table 1, and they crossed the magnetic
equator at around 03:51:32 and 02:56:33 UT, respectively. Figure 3 shows the occurrence of the emissions
and their properties using the same format as Figure 1. Figure 3a clearly shows two sets of emissions, one
continuous and the other periodic. Figures 3b–3d show the ellipticity (eint∕emax < 0.2), a wave vector direction
almost perpendicular to that of the external magnetic field, and the direction of the maximum variance of
the wave oscillations aligned with the magnetic field, all features consistent with observations of equatorial
magnetosonic waves.

In this particular case, a set of continuous emissions occurs at higher frequencies (between 28ΩP < 𝜔 < 31ΩP)
than the periodic discrete rising tone emissions (21ΩP < 𝜔 < 27ΩP). This is similar to the observations pre-
sented by Boardsen et al. [2014] and Fu et al. [2014]. The continuous tone emissions appear to be centered on
the local proton harmonic frequencies, except at times when the sets of rising tones intersect these frequen-
cies in which case the emission is observed slightly above the gyroharmonic. Thus, it appears that once again,
the satellite is passing through the source region of these emissions. Below these continuous emissions, there
are a number of sets of periodic emissions, occurring with a period of around 80–90 s. The discrete frequency
of emission increases with time at a rate of ≈0.5–0.8 Hz/s. The amplitude of these emissions varies by 2–3
orders of magnitude, the strongest being observed as the satellite crosses the magnetic equator.

On 16 September 2005, C2 crossed the magnetic equator around 02:56:33 UT, almost an hour before C1. A
similar set of emissions was observed (not shown). Continuous emissions were observed in the frequency
range (between 26ΩP < 𝜔 < 32ΩP), mirroring changes observed in the local proton gyrofrequency. Below
this frequency range there are two or three bands at the 22, 23, and 24 harmonics in which emissions occur
periodically with the higher amplitudes occurring around the time at which the satellite crossed the magnetic
equator. These periodic waves show fleeting evidence for the rising tone structure seen so prominently by C1.

4. Observations of Trapped Emissions

Cluster 1 observed a second type of non–time continuous equatorial magnetosonic emissions on 13 Septem-
ber 2005, as shown in Figure 4. Table 1 gives the location of Cluster 1 at this time. The horizontal white lines
indicate harmonics of the proton gyrofrequency in the range 15 to 35, numbered toward the left of the panel
and the black vertical line indicates the time at which the geomagnetic equator was crossed. The red line
shows the spacecraft potential (with a scale on the right hand Y axis) measured by the EFW instrument. This
data set is used as a proxy for the electron density. The more positive the spacecraft potential, the higher the
electron density [Pedersen et al., 2001]. The wave spectrogram shows that there are sets of strong emissions
observed at 17:56:24, 17:58:57, 18:00:29, 18:01:53, 18:03:37, 18:05:32, and 18:07:30 UT. These sets do not occur
periodically, the time difference between them varying between 1.5 and 3 min. It is noticeable that the onset
times of the emissions at different harmonic frequencies are simultaneous, in contrast to the rising tone emis-
sions shown in Figures 1 and 3. Analysis of the properties for these waves (not shown) reveals that they are
highly elliptical, propagate almost perpendicularly to the background magnetic field, and that their magnetic
component is directed parallel to the background magnetic field. These properties clearly demonstrate that
the observed emissions are equatorial magnetosonic waves.

At lower frequencies, below 80 Hz, the emissions occur at harmonics of the local proton gyrofrequency and are
also seen to track the changes of these frequencies. For example, in the set of emissions observed at around
18:05:30 UT emissions are observed at the 19–27 harmonics and the frequency of the emission is observed to
increase in response to that observed in the local proton gyrofrequency. The first set, observed at 17:56:24 UT,
shows three clear bands at frequencies of 92.9, 96.1, and 99.2 Hz. The frequency spacing of these emissions
(∼3.1 Hz) is slightly different to the local proton gyrofrequency (∼3 Hz), and they are observed between the
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Figure 4. A comparison of the wave spectrogram with measurements of the spacecraft potential by Cluster 1 for the
period 17:55 to 18:10 UT on 13 September 2005. The red line denotes the spacecraft potential, while the horizontal
white lines indicate harmonics of the proton gyrofrequency.

local gyroharmonics. Therefore, it appears as if these emissions originate elsewhere and have propagated to
the point of observation. The sets of emissions observed at 17:58:57 UT and 18:00:29 UT are all characterized
by waves occurring at the gyroharmonics in the ranges 26–32 and 21–29, respectively. At frequencies above
80 kHz, the structure of emissions is much more complex. The emissions appear not to be tied closely to the
local harmonics of the proton gyrofrequency anymore. These banded emissions exhibit both rising and falling
tones. However, a more detailed analysis of these emissions is left for future work.

Figure 5 shows a second period during which sporadic occurrences of magnetosonic waves were observed
by Cluster 3 on 17 September 2006. The format of the figure is the same as Figure 4. At this time Cluster 3
was located inside the plasmapause (having crossed the boundary at around 13:30 UT). Cluster 3 crossed
the magnetic equator at around 14:42:30 UT on the dayside, at a location (4.2, −0.2, 0.0) RE (solar magnetic
coordinates, SM).

The background spectrogram in Figure 5 shows the emissions recorded by the STAFF search coil magne-
tometer. The strongest emissions are observed at lower frequencies (<40 Hz) between around 14:30 and
14:50 UT. The frequency structure of these emissions shows bands that occur roughly at harmonics of the
proton gyrofrequency. It is also noticeable that there are other bands occurring between these harmonics,
possibly indicating resonance with heavier ions such as He+, or He2+. Just before 14:30 UT there is a set of
emissions whose peak amplitudes lie at frequencies up to the 20 harmonic of the proton gyrofrequency.

In addition to these long-lived emissions, there are several examples of banded emissions that are observed
for less than a minute. Table 2 lists the periods when these emissions were observed, together with their mean
frequency spacing (𝛿f ) and the local gyrofrequency (ΩP). From these results it can be seen that the frequency
spacing of the bands is either less than or greater than the local gyrofrequency and so it appears as if these
emissions have propagated from their source region to the point of observation. It is also noticeable that at
the beginning of the period the frequency spacing is less than the local gyrofrequency which would imply
generation at a greater radial distance, while at the end of the period the frequency spacing is greater than
the gyrofrequency, indicating generation at smaller radial distances.

Superimposed on top of the spectrogram in Figure 5 is the spacecraft potential as measured by EFW. A com-
parison of the occurrence of the sporadic magnetosonic emissions discussed above with changes observed
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Figure 5. A comparison of the wave spectrogram with measurements of the spacecraft potential by Cluster 3 for the
period 14:00 to 15:00 UT on 17 September 2006. The format is the same as that used in Figure 4.

in the satellite potential shows that in general, most of the sets of wave emissions are coincident with local

increases in the spacecraft potential and, hence, with increases in the local electron density. This is probably

best illustrated by the sets of emissions occurring at 14:20:19–14:21:18 UT. In this particular period, there are

two local peaks in the spacecraft potential. While the wave emissions occur throughout this period, it can be

seen that the maximum amplitudes are coincident with the peaks in spacecraft potential. At other times it

appears that the waves tend to occur at times of steep gradients in the spacecraft potential. For this particu-

lar set of observations this seems to be the most common correlation. For instance, the emissions observed

between 14:12:09 and 14:12:47 UT begin when the value of the spacecraft potential is at a maximum and

continue until the following minima in the potential. Between 14:22:03 and 14:22:44 UT there is another large

peak in the potential. Again, the intensity of the wave emissions is largest during the periods in which the

change in potential is greatest. Thus, it appears that the magnetosonic waves are spatially confined within

localized regions of increased spacecraft potential and hence electron density.

Table 2. Frequency Spacings of the Sporadic Harmonic Emissions Observed on 17 September 2006 by Cluster 1

Start Times (UT) Stop Times (UT) 𝛿f (Hz) ΩP (Hz) L Shell (RE ) 𝜆 (deg)

14:12:09 14:12:47 4.2 4.7 4.1 −1.2

14:15:09 14:15:29 4.3 4.8 4.1 0.6

14:20:19 14:21:18 4.5 5.0 4.0 4.3

14:22:03 14:22:44 4.8 5.1 4.0 5.4

14:23:32 14:23:54 5.5 5.1 4.0 10.5

14:35:14 14:35:47 5.7 5.6 4.2 14.6

14:36:22 14:36:43 5.9 5.6 4.2 15.4

14:38:46 14:39:04 6.5 5.7 4.2 17.1

14:39:37 14:40:00 6.6 5.8 4.3 17.8

WALKER ET AL. NONCONTINUOUS MAGNETOSONIC WAVES 9
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5. Discussion

In the previous sections observations of non–time continuous magnetosonic waves by the Cluster satellites
were presented. The observations show two different types of non–time continuous magnetosonic waves.

5.1. Rising Tone Emissions
In section 3 examples of rising tone emissions were presented. Similar emissions have been reported by
Boardsen et al. [2014], Fu et al. [2014], and Němec et al. [2015] based on Van Allen Probes, THEMIS, and Cluster
measurements, respectively. However, while these previous reports first showed the existence of these peri-
odic structures, they were unable to show the frequency structure of the emissions. The observations reported
by Boardsen et al. [2014] and Fu et al. [2014] show a large number of elements, whereas only a small number
of emission elements are seen by Cluster. This difference can be understood in terms of the mission orbits.
Due to its polar orbit, Cluster typically observed around 10 elements of emissions in contrast to the long trains
observed by the equatorial spacecraft Van Allen and THEMIS. During the first 12 years of operations, the four
Cluster spacecraft were only able to make five observations of such waves while operating in science Burst
Mode 1. However, all five observations were situated on the dayside, within 1.5 h of local noon (SM) and in
the vicinity of the model [O’Brien and Moldwin, 2003] plasmapause. The Cluster observations were restricted
to within 10∘ of the magnetic equator, a result in-line with the theory of propagation of magnetosonic waves.
In all cases the most intense emissions were observed close to the equatorial crossing.

The rising tone emissions observed by Cluster occurred in conjunction with observations of time continuous
magnetosonic waves, although this is not always the case [Němec et al., 2015]. These continuous emissions
were observed at either higher or lower frequencies than the rising tone emissions. The frequency of the dis-
crete components that make up each element of the rising tone emissions appears to mirror the changes
observed in the local proton gyrofrequency harmonics, indicating local generation. However, in the case of the
continuous emissions the relationship between the emissions and the harmonics of the local proton gyrofre-
quency was less clear. Sometimes their frequency followed changes in the local gyrofrequency, indicating
local generation while at other times it appeared to change independently, indicative of remote generation
and propagation to the point of observation.

To investigate the sweep rate, i.e., how the occurrence of the individual tones within an element varies with
time, the time and frequency for the maximum amplitude of each tone occurred was determined. Figure 6a
shows how the observation time varies as a function of frequency for six of the rising tone elements observed
by Cluster 2 on 18 August 2005 in the vicinity of the geomagnetic equator. Figure 6b shows the magnetic
latitude of Cluster 2 with the red line representing the equator. The black vertical line on both panels marks
the time at which Cluster 2 crossed the magnetic equator. For each element, a least squares fit was performed
to determine the frequency sweep rate. For these emission elements the frequency sweep rate varies in the
range 𝛿f∕𝛿t ≈ 0.3–0.9 Hz s−1. The legend in Figure 6 indicates the sweep rate determined for each element.
It is noticeable that when the satellite is closest to the equator, the sweep rate is higher. For instance, from
Figure 6 it is seen that for the element observed closest to the equator (element 3) the sweep rate is≈1 Hz s−1,
a value similar to that reported by Fu et al. [2014]. However, as the observation point moves farther away from
the equator the sweep rate becomes smaller.

Due to their differing orbits, the four Cluster spacecraft cross the magnetic equator at different times. As
mentioned above, for the first example of rising tone emissions observed on 18 August 2005, C2 crossed at
∼13:14:16 UT, while Cluster 1, 3, and 4 crossed at 14:06:00, 16:04:57, and 16:16:09 UT, respectively. Since these
crossings occurred outside the window for burst mode operations, high-resolution waveforms are unavail-
able at these times. However, C1 did begin to observe rising tone magnetosonic waves from around 13:49 UT
until the end of burst mode operations at 14:00 UT, about 45 min after they were observed by C2. The loca-
tion at which each spacecraft crossed the equator differed by∼3000 km, almost entirely in the Y-SM direction
with C1 slightly further duskward than C2 and at a slightly greater radial distance (see Table 1). In the case of
the second rising tone event presented above, the Cluster 1 and 2 satellites crossed the equator at locations
spatially separated by around 2400 km, mainly in the SM-Y direction (2300 km) and almost an hour tempo-
rally. However, it is not certain whether the emissions observed by the pairs of Cluster satellites in each period
correspond to the same or different source regions and no firm conclusions regarding the size, lifetime, or
motion of the source region can be made.
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Figure 6. A comparison of the frequency sweep rates of the rising tone elements observed by Cluster 2 on 18 August
2005. (a) The frequency sweep rate of the individual elements observed in the vicinity of the geomagnetic equator. The
gradients of the individual elements are shown in the legend. (b) The magnetic latitude of Cluster 2 for comparison.

The generation mechanism for these rising tone emissions is unclear. The proposed mechanisms include the

following:

1. The appearance of these waves may be due to either their propagation from their source region to the

point of observation, especially if the propagation path includes multiple reflections within the plasma-

pause wave guide. However, this would only explain the upper range of observed harmonics [Boardsen

et al., 2014].

2. The modulation and frequency characteristics could result from a sawtooth ULF wave, which would modify

the local Alfvén velocity accordingly, turning the instability gradually on and off [Boardsen et al., 2014].

3. Processes such as quasi-linear particle diffusion, analogous to that proposed for pulsating aurorae

[Demekhov and Trakhtengerts, 1994].

4. Mechanisms similar to those proposed for the generation of rising tones in chorus emissions, e.g., electron

cyclotron maser [Trakhtengerts, 1995] or the sideband instability [Trakhtengerts, 1999], that result from the

trapping of particles by a quasi-monochromatic wave.

In the following discussion, the sideband instability is considered in depth and it is shown that this mechanism

may probably be ruled out as a possible source for the generation of rising tone equatorial magnetosonic

waves.

If a wave packet is quasi-monochromatic, then it can trap charged particles [e.g.. Karpman and Shklyar, 1972,

and references therein] in a finite range of velocities near the resonance. The trapped particle distribution

function is flattened in this range, and either a plateau or a valley forms in this region, depending on the initial

distribution and other factors such as the inhomogeneity of the medium. The distribution function attains

larger velocity space gradients on the boundaries of the trapping region, which gives rise to upper and lower

sidebands shifted in frequency with respect to the original wave. The frequency shift is of the order of the

nonlinear oscillation frequency Ωtr of charged particles trapped in the wave field (trapping frequency) [e.g.,

Karpman et al., 1974].

This phenomenon known as the sideband instability can become recursive if the initial wave is strong enough.

In this case, each sideband can give rise to other sidebands, and a rising or falling tone can be formed

from the sequence of sidebands. Such a mechanism was proposed to explain the frequency drift in VLF

chorus emissions [Trakhtengerts, 1999; Trakhtengerts et al., 2004] and hydromagnetic chorus [Trakhtengerts

et al., 2007].
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Since the distribution function of trapped particles flattens in about one trapping period, 𝛿t ∼ 2𝜋∕Ωtr, and
every sideband is shifted by 𝛿𝜔 ∼ Ωtr from the previous one, the corresponding estimate for the frequency
drift is

𝜕𝜔∕𝜕t ≃ Ω2
tr∕(2𝜋) , (1)

where Ωtr is the frequency of charged particle oscillations in the wave field (trapping frequency) [Karpman
et al., 1974]. For example, for parallel propagating waves

Ω2
tr = ekv⟂Bw∕(mc) , (2)

where Bw is the wave magnetic field amplitude, k is the wave number, v⟂ is the particle velocity transverse to
the external magnetic field, e> 0 and m are the elementary charge and particle mass, and c is the speed of
light in free space.

A similar result for the chorus frequency drift rate have been obtained by Omura et al. [2008] who calculated
the nonlinear growth rate of a whistler mode wave with frequency drift under the assumption of a flat dis-
tribution function of trapped electrons and found the frequency drift rate corresponding to the maximum
growth rate. Note that while equation (1) was obtained as an order of magnitude estimate, more rigorous
calculations by Omura et al. [2008] yielded a correction coefficient to it which is close to unity.

Equation (1) has been used to estimate the possible role of nonlinear trapping effects in the observed
frequency drift of magnetosonic waves.

The appropriate methodology for calculating the trapping frequency can be found, for example, in the review
paper by Shklyar and Matsumoto [2009]. In what follows we adopt a similar formulation to that used in
Artemyev et al. [2015].

After expansion over small wave amplitude the normalized Hamiltonian takes the form

 = 0 − bw

∑
n

Wn cos(𝜙 + n𝜑) , (3)

where

0 = 𝛾 =
√

1 + u2‖ + u2
⟂ (4)

is the unperturbed Hamiltonian, u‖,⟂ = p‖,⟂∕(mc) are the normalized momentum components parallel and
perpendicular to the magnetic field,

bw =
eBw

mc2k
(5)

is the normalized value of the wave magnetic field Bw , and 𝜑 is the particle gyrophase. The perpendicular
momentum is related to the first adiabatic invariant as u2

⟂ = 2𝜒 I⟂b, where 𝜒 = ΩeqR0∕c, b = B(z)∕Beq is
the dimensionless external magnetic field, Iperp is the first adiabatic invariant, 𝜁 = z∕R0 is the normalized
spatial coordinate along the magnetic field, Ωeq = eBeq∕(mc) is the equatorial gyrofrequency, and R0 is the
spatial scale chosen for normalization (e.g., R0 = RE L, where RE is the Earth radius). The wave phase is 𝜙 =
𝜒(kz cos 𝜃 − 𝜔t), where 𝜃 is the wave normal angle.

The summation in the wave-particle interaction term in equation (3) is performed over the gyroresonance
harmonics, and the interaction coefficient for the nth resonance can be expressed in the form

Wn =
u⟂

𝛾
J′n(𝜉) + aN−1

(
1 −

nΩeq

𝛾𝜔 sin 𝜃

)
Jn(𝜉). (6)

Here a ≃ −N2𝜔𝜔Be∕Ω2
e is the coefficient determined by the wave polarization (the subscript e denotes the

electron values), for which we use an approximate formula valid for the magnetosonic waves with frequencies
𝜔 ≲ 𝜔LH (𝜔LH is the lower hybrid resonance frequency), N = kc∕𝜔 is the wave refractive index, Jn is a Bessel
function of the first kind of the order n, and 𝜉 = N sin 𝜃 u⟂𝜔∕Ωeq.

Using this Hamiltonian, it is easy to obtain the trapping frequency for an isolated nth gyroresonance in the
form

Ω2
tr n = N𝜔 cos2 𝜃

eBw

mc
|Wn| . (7)
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Figure 7. The trapping frequency Ωtr for suprathermal protons in the field of MS waves: result for proton-perpendicular
energies of (a) 0.1, (b) 1, and (c) 10 keV.

Equation (7) is used to calculate the trapping frequency for the observed MS waves. From section 3, we have
the plasma density Nc ≃ 1.9 ⋅ 103 cm−3, the geomagnetic field B = 205 nT, and the wave magnetic field
Bw = 1.5 nT. The wave refractive index N can be calculated as

N2 ≃
N2

A

1 − 𝜔2∕𝜔2
LH

, (8)
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Figure 8. Resonant parallel energy of protons depending on the MS wave frequency for the same conditions as in
Figure 7. The resonance number for the given frequency is chosen according to the gyroharmonic closest to this
frequency.

where N2
A = 𝜔2

p𝛼∕𝜔
2
B𝛼 is the Alfvén refractive index, and 𝛼 is the particle species index over which, gener-

ally speaking, summation is performed (however, mainly protons of ambient plasma determine N2
A in the

magnetosphere).

If we assume a wave normal angle of 𝜃 = 89∘, then over a broad range of wave frequencies, gyroharmonic
numbers, and proton energies, we obtain Ωtr ≲ 0.1 to 1 s−1. This is illustrated in Figure 7 for different perpen-
dicular energies of suprathermal protons. The parallel energies are determined by the cyclotron resonance
condition, and the harmonic number was chosen according to the gyroresonance closest to the given fre-
quency. These resonant energies are plotted in Figure 8. The frequency dependence of Ωtr is determined by
two oscillatory factors, one being related to the change of a harmonic number, and the other one to the Bessel
function. As a result, the estimate for the frequency drift related to nonlinear trapping is

1
2𝜋

𝜕𝜔

𝜕t
≲ 0.025 Hzs−1 . (9)

Since this sweep rate is an order of magnitude smaller than that observed, it seems fairly unlikely that the
rising tone equatorial magnetosonic waves results from the sideband instability.

5.2. Trapped Emissions
Examples of the second type of non–time continuous magnetosonic emissions were shown in section 4.
These emissions were characterized by being observed at all harmonic frequencies simultaneously and being
more sporadic in their occurrence, in contrast to the rising tone emissions. These emissions occurred simul-
taneously with increases in the satellite potential, implying the existence of localized enhancements in the
electron density.

One possible explanation for this nonperiodic, time discontinuous behavior of the waves is related to the fact
that the waves may become trapped within localized density structures. It was shown by Chen and Thorne
[2012] that it is possible for magnetosonic waves to be trapped by the density changes encountered at the
inner edge of the plasmapause boundary layer, thus limiting the radial extent of their propagation. This was
investigated further by Ma et al. [2014] who showed that magnetosonic waves generated in the vicinity of the
plasmapause, becoming trapped within a small radial distance of the outer plasmasphere. These authors also
showed that the magnetosonic waves may be trapped in localized regions of enhanced density.

WALKER ET AL. NONCONTINUOUS MAGNETOSONIC WAVES 14



Journal of Geophysical Research: Space Physics 10.1002/2016JA023287

Both sets of observations presented above show that evidence for the short-lived multiharmonic magne-
tosonic wave emissions are observed simultaneously with local peaks in the measurements of the satellite
potential. Hence, it appears that the emissions are confined by the width of these “density” peaks.

6. Conclusions

Examples of non–time continuous emissions of equatorial magnetosonic waves have been presented. It was
shown that two forms of such waves can be distinguished, namely, rising tone and trapped emissions.

Rising tone emissions are characterized by the fact that higher harmonic frequencies appear slightly later
than those at lower frequencies, resulting in a stepped appearance due to their discrete nature. Cluster obser-
vations show that they occur at low magnetic latitudes, typically within 10∘ of the magnetic equator. Their
properties were observed to change as the satellites approached and then receded the geomagnetic equa-
tor. The emissions at the equator were shown to have higher amplitudes, higher ellipticity, and propagate
closer to perpendicular than similar emissions observed at higher latitudes. It was shown that the sweep rate
of these emissions is greatest in the vicinity of the geomagnetic equator. The sideband instability was con-
sidered as a possible generating mechanism for these rising tone emissions. However, calculations show that
the theoretical sweep rate is much lower than that observed, thus implying that this mechanism is unlikely to
be the cause of these emissions. Emission elements occur periodically; however, the cause of this periodicity
is uncertain.

Trapped magnetosonic emissions are characterized by the simultaneous onset of wave activity over a range
of harmonic frequencies, in contrast to the rising tone structures. The sporadic nature of these emissions cor-
relates with changes in measurements of the spacecraft potential, a parameter that is used as a proxy for the
electron density. Periods during which the sporadic emissions were observed to be coincident with increases
in the spacecraft potential (and hence electron density). Hence, the wave emissions appear to be confined to
regions of higher electron density.
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