
This is a repository copy of Dynamic simulation of large-scale power systems using a
parallel schur-complement-based decomposition method.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105990/

Version: Accepted Version

Article:

Aristidou, P orcid.org/0000-0003-4429-0225, Fabozzi, D and Van Cutsem, T (2014)
Dynamic simulation of large-scale power systems using a parallel
schur-complement-based decomposition method. IEEE Transactions on Parallel and
Distributed Systems, 25 (10). pp. 2561-2570. ISSN 1045-9219

https://doi.org/10.1109/TPDS.2013.252

© 2013 IEEE. This is an author produced version of a paper published in IEEE
Transactions on Parallel and Distributed Systems. Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Uploaded in accordance
with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Supplemental Material for “Dynamic Simulation
of Large-scale Power Systems Using a Parallel

Schur-complement-based Decomposition
Method”

Petros Aristidou, Student Member, IEEE, Davide Fabozzi, and Thierry Van Cutsem, Fellow Member, IEEE

F

APPENDIX A
DOMAIN DECOMPOSITION METHODS

DDMs were originally used due to the lack of memory
in computing systems: data needed for smaller portions
of a problem could fit entirely to the memory while
for the whole problem they could not. They lost their
appeal as larger and cheaper memory became available,
only to resurface in the era of parallel computing. These
methods are inherently suited for execution on parallel
architectures and many parallel implementations have
been presented on multi-core computers, clusters and
lately Graphics Processing Units (GPUs) [1], [2].

They are mainly distinguished by three features: sub-
domain partitioning, problem solution over sub-domains
and sub-domain interface variable processing [3].

A.1 Sub-domain Partitioning

Sub-domain partitioning has to be chosen based on the
desired sub-domain characteristics for the given prob-
lem. This includes choosing the number of sub-domains,
the type of partitioning, and the level of overlap between
the sub-domains. Each of these choices depend on a
variety of factors such as size, type, and geometry of
the problem domain, the number of parallel processors,
communication cost, and the actual system being solved.

When considering spatial domain problems, such as
PDEs, the decomposition is usually given by the geo-
metrical data and the order of the discretization scheme
used. Conversely, in state domain problems, such as
DAE, no a priori knowledge of the coupled variables is
available since there are no regular data dependencies.
Furthermore, each system model can be composed by

Petros Aristidou is with the Department of Electrical Engineering
and Computer Science, University of Liège, Liège, Belgium, e-mail:
p.aristidou@ieee.org.
Davide Fabozzi is with the Department of Electrical Engineering and
Computer Science, University of Liège, Liège, Belgium.
Thierry Van Cutsem is with the Fund for Scientific Research (FNRS) at the
Department of Electrical Engineering and Computer Science, University of
Liège, Liège, Belgium, e-mail: t.vancutsem@ulg.ac.be.

several sub-models which are sometimes hidden, too
complex, or used as black boxes. Hence, an automatic
decomposition of the system is not trivial [4]. In fact,
they usually have to rely on problem specific tech-
niques which require good knowledge of the underlying
system, the models composing it and the interaction
between them.

A.2 Solution and Interface Variable Processing

Each sub-domain problem is then solved exactly or
approximately before exchanging information with other
sub-domains. The frequency at which information is ex-
changed with other sub-domains leads to a compromise
between numerical convergence and data exchange rate.

Exchanging information frequently leads to faster con-
vergence, as sub-domain solution methods always use
recent values of interface variables, but higher data
exchange rate. Exchanging information infrequently or
keeping them constant during the whole solution leads
to smaller data exchange rates but might degrade the
global convergence as sub-domain solution methods use
older interface values. It is obvious that when the sub-
domains are weakly connected or disjoint, thus interface
variables do not affect strongly the sub-domain solution,
infrequent updating is better. This kind of partitioning,
though, might be very difficult or even impossible.

The choice on the processing of the interface variables
dictates the method used for solving the decomposed
problem. The two principle methods are: Schwartz al-
ternating and Schur complement.

A.2.1 Schwarz Alternating Method

Among the simplest and oldest techniques are the
Schwarz alternating procedures. These methods work by
freezing the interface variables during the solution of
each sub-domain, hence the sub-domain problems are
totally decoupled and no exchange of information is
needed. This formulation is very attractive for parallel

2

implementations since the data exchange rate is mini-
mum. On the contrary, if the sub-domains are not weakly
coupled the algorithm can suffer from degraded conver-
gence or even divergence [5], [6], [7], [8]. Other variants
of this method can be found in literature depending on
how often and in which order the interface variables
are updated, for instance the additive or multiplicative
Schwartz procedures [3].

A.2.2 Schur Complement Method

When applying the Schur complement DDM, also called
iterative sub-structuring, non-overlapping sub-domain
partitioning is employed. The sub-domain problems usu-
ally involve interior (coupled only through local equa-
tions), local interface (coupled through both local and
non-local equations) and external interface (belong to
other sub-domains) variables. Next, a numerical method
(e.g. Newton’s) is used to solve the sub-problems.

The Schur complement technique is a procedure to
eliminate the interior variables in each sub-domain and
derive a global, reduced in size, linear system involving
only the interface variables. This reduced system is then
solved to obtain the interface variables before each sub-
domain iterative solution.

Once the interface variables are computed, the sub-
problems are decoupled and the remaining, interior to
each sub-domain, variables can be computed indepen-
dently. In many cases, building and solving the reduced
system involves high computational cost. Many methods
are used to speed up the procedure, such as approxi-
mately solving the system [9], assembling the matrix in
parallel using the “local” Schur complements [3], using
Krylov solvers [4] or, exploiting the structure of the
decomposition to simplify the problem [4], [3].

The formulation and update of the sub-domain solu-
tion systems, the elimination of the interior variables,
the formulation of the reduced system and the solution
of the sub-domain systems can be done in parallel.
Unfortunately, this method introduces a bottleneck to
the solution algorithm: the sequential computation of the
global reduced system to update the interface values.
The ratio between the sequential and the parallel part of
the algorithm dictates the scalability of the algorithm.
However, due to the continuous update of interface
variables, the numerical convergence of the algorithm
is significantly better than that of Schwarz methods.

APPENDIX B
DYNAMIC SIMULATION ALGORITHMS

B.1 VDHN Algorithm

One of the most common sequential algorithms used in
simulation software [10] is the Very DisHonest Newton
(VDHN) which belongs to the quasi-Newton family [11].
The algorithm solves directly the integrated DAE system
with the use of a Newton method over discretized
time. At each discrete time instant the non-linear DAE
equations are discretized and algebraized to acquire a

system of linear equations J△y = b, where J is the
Jacobian matrix, y is the vector of unknowns (x and V)
and b is the vector of mismatch values of the non-linear,
algebraized equations. The linear system is then solved
using a sparse linear solver and the values of y and b are
updated. Using the updated values, a new linear system
is formulated and solved until the procedure converges.

Usually, due to the high computational cost of up-
dating the Jacobian matrix J after each solution, the
latter is kept constant for many consecutive iterations or
even time-steps. If correctly implemented, these methods
do not affect the accuracy but only the trajectory of
the iterative solution. The convergence of the method
can be checked on the computed correction ∆y, on the
mismatch values b or a combination of both. When the
method has converged, the solution algorithm proceeds
to the next time instant, formulates and solves the new
DAE system.

This algorithm is employed by many industrial and
academic software and its capabilities and performance
are well known. For this reason, it is usually used as the
benchmark for proposed algorithms [10].

B.2 Fine-grained Parallel Methods

In order to accelerate the simulation, researchers tried
to employ fine-grained parallelization with the use of
customized parallel linear solvers. Some methods, like
parallel VDHN [12], Newton W-matrix [13] and parallel
LU [14], divide the independent vector and matrix op-
erations involved in the linear system solution over the
available computing units. Other methods, like parallel
successive over relaxed Newton [15] and Maclaurin-
Newton [12], use an approximate (relaxed) Jacobian ma-
trix with more convenient structure for parallelization.

While the fine-grained parallelization methods pro-
vide some speedup, they are don’t exploit the full poten-
tial of parallel architectures. A more coarse-grained way
of exploiting parallelization was sought, and for that,
researchers redirected their attention to DDMs.

B.3 Coarse-grained Parallel Methods

As described in App. A, the main idea of DDMs is to
partition the original system, into smaller interconnected
sub-systems and employ some form of parallel algorithm
to solve them. The first to envisage this application
on power system was probably Kron [16] with the
diakoptics method, where the domain is “teared” into
sub-problems, solved independently and joined back
together. At the time, parallel computing was not an
option and the target was to address memory issues,
but, this method provided the ignition for many of the
parallel methods to follow.

Later methods, like waveform relaxation [17] and
parallel-in-time [18], introduced the idea of exploiting
parallelization in time to increase the granularity of the

3

parallel tasks. Following, several methods were pro-
posed inspired by different hardware platforms, mem-
ory models and partitioning schemes [2], [19], [20],
[21]. Some recently proposed methods make use of
both coarse-grained and fine-grained parallelization in a
nested way [1] to increase performance. Several charac-
teristics differentiate these methods. The most important
being the partitioning scheme, the interface variables
processing method and the relaxation of interface vari-
ables.

As discussed in App. A, automatic partitioning of
DAE systems, such as power systems, is not trivial. Some
methods, like coherency analysis [22], epsilon decompo-
sition [23] and graph partitioning [7] have been proposed
in literature, each with its own benefits and problems.
The choice of the decomposition plays big role in the
speed of convergence, the load balancing among parallel
tasks and the overall performance of the method.

A common characteristic of the already proposed
decomposition schemes is the partitioning of the net-
work to interconnected sub-networks and the applica-
tion of Schwartz-based methods for the full paralleliza-
tion of the solution avoiding the sequentiality of Schur-
complement-based methods. This comes at the cost of
computing the partition of a network, which can change
according to the topology of the system or even the
disturbance to be simulated. Moreover, the Schwartz-
based treatment of interface variables can initiate several
new iterations, especially if partitioned sub-networks are
closely coupled [7].

APPENDIX C
PARALLEL COMPUTING

C.1 Selecting a Parallel Programming Model

Several options are available when developing a parallel
implementation. The main candidates considered for our
application were:

• distributed memory model, mainly using Message
Passing Interface (MPI)

• General Purpose computing on GPUs (GPGPU)
• partitioned global address space, mainly using For-

tran Co-array
• shared-memory model, mainly using OpenMP.

The main factors considered to select the appropriate
model were: synchronization cost, data exchange rate,
hardware cost and easiness to program.

MPI was rejected because its high cost of communi-
cation makes it more suitable for coarse-grained parallel
algorithms. Algorithms with high rate of data exchange
among parallel tasks, as the one proposed, are not likely
to be efficient on distributed memory architectures.

GPUs are really good at crunching numbers and can
deliver huge peak performance, but they are not as
good in handling the irregular computation patterns
(unpredictable branches, looping conditions, irregular
memory access patterns, etc.) that most engineering soft-
ware deal with. Moreover, the CPU to GPU data transfer

link has relatively high latency introducing a significant
bottleneck in the execution of the program. Additionally,
there is a high effort needed to develop and maintain
GPGPU code and low portability as no default standard
exists among GPU vendors. Thus, it was rejected.

Co-array was recently introduced in the Fortran stan-
dard as an integrated parallel programming model. It
was rejected as the existing support by compilers is min-
imal and the available user experience and supporting
material almost non-existing.

OpenMP, the selected model, is an shared-memory
API aiming to facilitate shared-memory parallel pro-
gramming. OpenMP is not an official standard but it
is supported by most hardware and software vendors
and it provides a portable, user-friendly, and efficient
approach to shared-memory parallel programming. It is
intended to be suitable for a broad range of symmetric
multiprocessing architectures.

It consists of a set of compiler directives, library rou-
tines, and environment variables that influence run-time
behavior. A set of predefined directives are inserted in
Fortran, C or C++ programs to describe how the work is
to be shared among threads that will execute on different
processors or cores and to order accesses to shared data.

C.2 OpenMP Parallel Work Scheduling

OpenMP offers some mechanisms for the assignment of
loop iterations to threads through the schedule clause.
Very often, the best load balancing strategy depends on
the target architecture, the actual data input, and other
factors not known at programming time. In the worst
case, the best strategy may change during the execution
time due to dynamic changes in the behavior of the
loop or changes in the resources available in the system.
Even for advanced programmers, selecting the best load
balancing strategy is not an easy task and can potentially
take a large amount of time.

Three default strategies to assign loop iterations
(where each iteration treats a sub-domain) to threads.
With the static strategy, the scheduling is predefined
and one or more successive iterations are assigned to
each thread rotationally prior to the parallel execution.
This decreases the overhead needed for scheduling but
can introduce load imbalance if the work inside each
iteration is not the same. With the dynamic strategy, the
scheduling is dynamic during the execution. This intro-
duces a high overhead cost for managing the threads
but provides the best possible load balancing. Finally,
with the guided strategy, the scheduling is again dynamic
but the number of successive iterations assigned to
each thread are progressively reduced in size. This way,
scheduling overheads are reduced at the beginning of the
loop and good load balancing is achieved at the end. Of
course, many other, non-standard, scheduling strategies
have been proposed in literature [24].

4

�����������	��
��

�������������	
�
��

���	�
�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����

�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!�����

������

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����∀

�����∀

�����������
�	
�
��

���	�
�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����

�����#

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!�����

�����∃

���	�������

�
�	
����

 �!�����

�����
�

�
�	
����

 �!����∀

�����

Figure 1. cc-Numa architecture used in our tests

C.3 NUMA Architecture Computers

The proposed implementation targets small and
medium, shared-memory parallel computers. Small
shared-memory machines (e.g. multi-core laptops and
office desktops) have UMA architecture, thus each
individual processor can access any memory location
with the same speed. On the other hand, larger shared-
memory machines usually have NUMA architecture,
hence some memory may be “closer to” one or more of
the processors and accessed faster by them [24].

The main benefit of NUMA computers over UMA
is scalability, as it is extremely difficult to scale UMA
computers beyond 8-12 cores. At that number of cores,
the memory bus is under heavy contention. NUMA is
one way of reducing the number of CPUs competing
for access to a shared memory bus by having several
memory buses and only having a small number of cores
on each of those buses.

The cache coherent NUMA (cc-NUMA) nodes pre-
sented in Fig. 1 are part of a 24-core NUMA parallel com-
puter, based on 6238 AMD Opteron Interlagos, used in
our tests (see Section 5.2, machine (4)). The computer has
two identical sockets, each hosting two NUMA nodes
with six cores. So, even though the system physically
has two CPU sockets with 12 cores each, they are in fact
four NUMA nodes with six cores each.

Resources within each node are tightly coupled with
a high speed crossbar switch and access to them inside a
NUMA node is fast. Moreover, each core has dedicated
L1 cache, every two cores have shared L2 cache and the
L3 cache is shared between all six cores. These nodes are
connected to each other with HyperTransport 3.0 links.
The bandwidth is limited to 12GB/s between the two
nodes in the same socket and 6GB/s to other nodes.

Parallel applications executing on NUMA computers
need special consideration to avoid high overhead costs.
First, given the large remote memory access latency,
obtaining a program with a high level of data locality is
of the utmost importance. Hence, in addition to choosing
the appropriate scheduling strategy, some features of the
architecture and the OS affect the application’s perfor-
mance (binding threads to particular CPUs, arranging
the placement and dynamic migration of memory pages,
etc.) [24].

Data accessed more frequently by a specific thread
should be allocated “close” to that thread. First Touch
memory allocation policy, which is used by many OS,
dictates that the thread initializing an object gets the
page associated with that item in the memory local to the
processor it is currently executing on. This policy works
surprisingly well for programs where the updates to a
given data element are typically performed by the same
thread throughout the computation. Thus, if the data
access pattern is the same throughout the application,
the initialization of the data should be done inside a
parallel segment using the same pattern so as to have
a good data placement in memory. This data initializing
procedure is followed in our parallel implementation,
with each thread initializing the data of the sub-domains
statically assigned to it.

Some further consideration is needed when large
amount of data are read from files to avoid page mi-
gration during the initialization. This problem usually
affects NUMA machines with low link speed and appli-
cations with intensive i/o procedures. In power system
dynamic simulations the data reading is usually done
once and then used numerous times to asses several
different contingencies on the same system, thus this
feature is not critical to their overall performance.

The second challenge on a cc-NUMA platform is
the placement of threads onto the computing nodes.
If during the execution of the program a thread is
migrated from one node to another, all data locality
achieved by proper data placement is destroyed. To
avoid this we need some method of binding a thread to
the processor it was executing during the initialization.
In the proposed implementation, the OpenMP environ-
ment variable OMP_PROC_BIND is used to prevent the
execution environment from migrating threads. Several
other vendor specific solutions are also available, like
kmp_affinity in Intel OpenMP implementation, taskset and
numactl under Linux, pbind under Solaris, bindprocessor
under IBM AIX, etc.

APPENDIX D
DYNAMIC RESPONSE AND ACCURACY

D.1 Test-case A

Figure 2 shows the voltage evolution on a transmission
bus close to the disturbance for test-case A1. It can be
seen that the system is stable in the short-term and long-
term. This is a marginally stable simulation. That is, after

5

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 40 80 120 160 200 240

V
ol

ta
ge

 (
pu

)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 0.968

 0.969

 0.97

 0.971

 0.972

 102 104 106 108 110 112 114
 0.968

 0.969

 0.97

 0.971

 0.972

 102 104 106 108 110 112 114

Figure 2. Case A1: Transmission bus voltage

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 40 80 120 160 200 240

V
ol

ta
ge

 (
pu

)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 0.885

 0.89

 0.895

 80 82 84 86 88 90 92 94 96

 0.885

 0.89

 0.895

 80 82 84 86 88 90 92 94 96

Figure 3. Case A2: Transmission bus voltage

the short-term dynamics the system starts collapsing but
is stabilized in the long-term by the actions of the ASCS
devices. Such test-cases are the most computationally
demanding as they need to be simulated for the whole
time horizon to decide whether the disturbance is criti-
cal. Moreover, the actual trajectory of the system states is
very important, hence static simulations cannot conclude
for their stability.

Figure 3 shows the voltage evolution on the same
transmission bus for test-case A2. This time, the system is
stable in the short-term but long-term voltage unstable.
In test-case A1 the voltage collapse is averted by the
actions of the ASCS devices deactivated in A2. All
three algorithms provide the same results concerning the
stability and response of the test-cases.

Figures 2 and 3 show the same responses simulated
with all three algorithms. (P) offers exactly the same
response as (I) as they are numerically equivalent. On
the other hand, algorithm (EP) shows some small de-
viations from the other two (see Figs. 2 and 3, zoom).
As explained in Section 3.5, (EP) allows converged sub-
domains to stop being computed but keeps checking
that they satisfy the convergence criteria throughout
the remaining solution. Therefore, its response is almost

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 0 40 80 120 160 200 240

V
ol

ta
ge

 (
pu

)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 1.0205

 1.0211

 1.0217

 20 22 24 26 28 30
 1.0205

 1.0211

 1.0217

 20 22 24 26 28 30

Figure 4. Case B: Transmission bus voltage

 0.9996

 0.9997

 0.9998

 0.9999

 1

 1.0001

 1.0002

 1.0003

 0 40 80 120 160 200 240

M
ac

hi
ne

 s
pe

ed
 (

pu
)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 0.9999

 1

 1.0001

 20 22 24 26 28 30
 0.9999

 1

 1.0001

 20 22 24 26 28 30

Figure 5. Case B: Generator speed

indistinguishable from the other two and any small de-
viations at each discrete time computation are bounded
by the convergence tolerance.

D.2 Test-case B

Figures 4 and 5 show the voltage evolution of a trans-
mission bus and the machine speed of a synchronous
generator, respectively. This test-case exhibits short-term
as well as long-term stability. Similarly to test-case A1,
this is a marginally stable simulation. That is, after the
electromechanical oscillations have died out, the system
evolves in the long-term under the effect of LTC de-
vices acting to restore distribution voltages. The decision
about the stability of the system can only be made after
the simulation of the whole time horizon.

The figures display the responses simulated with all
three algorithms. The same observations hold, as with
test-cases A1 and A2, concerning the accuracy of the
proposed algorithms.

6

APPENDIX E
ASSESSING THE SCALABILITY OF PARALLEL

IMPLEMENTATIONS

E.1 Performance Evaluation

To asses the performance of an existing parallel im-
plementation or the potential of a proposed algorithm,
Amdahl’s law is often used [25]. It is based on the
observation that any parallel implementation consists of
a sequentially computed portion S and a parallel portion
P that can be split and assigned to M computational
units. Furthermore, it assumes perfect load balancing
and a perfect parallel machine without any paralleliza-
tion overhead. The most well known variant is:

Runtime(M) = S +
P

M
(1)

Of course, the sum P+S has to account for the sequential
execution time of the implementation (M = 1).

Based on (1), the scalability of parallel algorithm can
be defined as:

Theoretic scalability(M) =
S + P

Runtime(M)
(2)

It is called theoretic scalability as it can never be reached
in real applications because of parallelization overhead
costs, imbalances in load scheduling, etc. Figure 6 dis-
plays the theoretic scalability for several percentage val-
ues of parallel work P . It is noticeable that even small
differences in the percentage of parallel work lead to big
differences in the scalability of the algorithm.

To accommodate for overhead cost of making the
code run in parallel (managing threads, communication,
memory latency, etc.) Amdahl’s law can be modified to:

Runtime(M) = S +
P

M
+OHC(M) (3)

where OHC is the overhead cost as a function of the
number of computational units used. The modified for-
mula can be used to provide a more realistic prediction
of scalability and can be directly linked to the formulas
presented in Section 5.1.

 1
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 4 6 8 10 12 14 16 18 20 22 24

T
he

or
et

ic
 s

ca
la

bi
lit

y

cores

P=100%

P=99%

P=95%

P=90%

P=80%
P=70%

P=40%

Figure 6. Theoretic scalability based on Amdahl’s law

Table 1

Profiling results: Test-case B / algorithm (P)

% Parallel

Time step initialization 10.02 NO
Injector sub-domain discretization

12.51 YES
Jacobian calculation and factorization
Schur complement contributions

2.84 YES
to simplified reduced system
Factorization and solution of simplified

7.12 NO
reduced system (Section 3.3, Eq. 8)
Injector sub-domain solution for interface

61.75 YES
and interior variables (Section 3.2, Eq. 4)
Sub-domain convergence check 3.15 YES
Various (bookkeeping, etc.) 2.61 NO

Total 100.00% 80.25%

E.2 Profiling Example

Equation 3 shows that scalability can be increased either
by increasing the parallel work percentage P or by re-
ducing the OHCs. Finally, it can explain situations where
increasing the number of available computational units
degrades the performance due to increased OHCs. That

is, the value of
[

P

M
−

P

M+1

]

−[OHC(M + 1)−OHC(M)]

becomes negative.
In Table 1 a sample profiling performed on the se-

quential execution of algorithm (P) for test-case B is
presented. Consequently, the theoretic scalability on 24
cores can be computed as S+P

S+ P

24

= 4.3, with P = 0.8025

the parallel and S = 0.1975 the sequential portion of
the implementation as defined in App. E.1. This means
that, if the profiled simulation is executed on a 24 core
parallel computer, without any OHC and with perfect
load balancing, a scalability of 4.3 could be expected.
This value can be compared to the actual scalability
of 3.9 achieved (Section 5.4, Table 3). As expected, the
actual scalability is smaller than the theoretical due to
the overhead costs discussed in Apps. C.3 and E.1.

REFERENCES

[1] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-Scale Tran-
sient Stability Simulation of Electrical Power Systems on Parallel
GPUs,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 23, no. 7, pp. 1255 –1266, july 2012.

[2] M. Ten Bruggencate and S. Chalasani, “Parallel Implementa-
tions of the Power System Transient Stability Problem on Clus-
ters of Workstations,” in Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 Conference, 1995, p. 34.

[3] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Society
for Industrial and Applied Mathematics, 2003.

[4] D. Guibert and D. Tromeur-Dervout, “A Schur Complement
Method for DAE/ODE Systems in Multi-Domain Mechanical
Design,” Domain Decomposition Methods in Science and Engineering
XVII, pp. 535–541, 2008.

[5] B. Wohlmuth, Discretization methods and iterative solvers based on
domain decomposition. Springer Verlag, 2001.

[6] A. Toselli and O. Widlund, Domain decomposition methods–
algorithms and theory. Springer Verlag, 2005.

[7] CRSA, RTE, TE, and TU/e, “D4.1: Algorithmic requirements
for simulation of large network extreme scenarios,” Tech. Rep.
[Online]. Available: http://www.fp7-pegase.eu/download.html

[8] Z. Jackiewicz and M. Kwapisz, “Convergence of waveform relax-
ation methods for differential-algebraic systems,” SIAM Journal on
Numerical Analysis, vol. 33, no. 6, pp. 2303–2317, 1996.

7

[9] Y. Saad, “Schur complement preconditioners for distributed gen-
eral sparse linear systems,” Domain Decomposition Methods in
Science and Engineering XVI, pp. 127–138, 2007.

[10] D. Tylavsky, A. Bose, F. Alvarado, R. Betancourt, K. Clements,
G. Heydt, G. Huang, M. Ilic, M. La Scala, and M. Pai, “Parallel
processing in power systems computation,” Power Systems, IEEE
Transactions on, vol. 7, no. 2, pp. 629 –638, may 1992.

[11] J. E. Dennis Jr and J. J. Moré, “Quasi-Newton methods, motivation
and theory,” SIAM review, vol. 19, no. 1, pp. 46–89, 1977.

[12] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power
system stability analysis,” Power Systems, IEEE Transactions on,
vol. 8, no. 1, pp. 9–15, 1993.

[13] L. Yalou, Z. Xiaoxin, W. Zhongxi, and G. Jian, “Parallel algorithms
for transient stability simulation on PC cluster,” in Power System
Technology, 2002. Proceedings. PowerCon 2002. International Confer-
ence on, vol. 3, 2002, pp. 1592 – 1596 vol.3.

[14] K. Chan, R. C. Dai, and C. H. Cheung, “A coarse grain parallel
solution method for solving large set of power systems network
equations,” in Power System Technology, 2002. Proceedings. Power-
Con 2002. International Conference on, vol. 4, 2002, pp. 2640–2644.

[15] J. S. Chai, N. Zhu, A. Bose, and D. Tylavsky, “Parallel newton
type methods for power system stability analysis using local and
shared memory multiprocessors,” Power Systems, IEEE Transac-
tions on, vol. 6, no. 4, pp. 1539–1545, 1991.

[16] G. Kron, Diakoptics: the piecewise solution of large-scale systems.
MacDonald, 1963.

[17] M. Ilic’-Spong, M. L. Crow, and M. A. Pai, “Transient Stability

Simulation by Waveform Relaxation Methods,” Power Systems,
IEEE Transactions on, vol. 2, no. 4, pp. 943 –949, nov. 1987.

[18] M. La Scala, A. Bose, D. Tylavsky, and J. Chai, “A highly parallel
method for transient stability analysis,” Power Systems, IEEE
Transactions on, vol. 5, no. 4, pp. 1439 –1446, nov 1990.

[19] D. Fang and Y. Xiaodong, “A new method for fast dynamic
simulation of power systems,” Power Systems, IEEE Transactions
on, vol. 21, no. 2, pp. 619–628, 2006.

[20] J. Shu, W. Xue, and W. Zheng, “A parallel transient stability
simulation for power systems,” Power Systems, IEEE Transactions
on, vol. 20, no. 4, pp. 1709 – 1717, nov. 2005.

[21] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based Large-Scale Tran-
sient Stability Simulation on the Graphics Processing Unit,” Power
Systems, IEEE Transactions on, vol. 25, no. 3, pp. 1589 –1599, aug.
2010.

[22] D. Koester, S. Ranka, and G. Fox, “Power systems transient
stability-a grand computing challenge,” Northeast Parallel Archi-
tectures Center, Syracuse, NY, Tech. Rep. SCCS, vol. 549, 1992.

[23] A. Zecevic and N. Gacic, “A partitioning algorithm for the parallel
solution of differential-algebraic equations by waveform relax-
ation,” Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, vol. 46, no. 4, pp. 421 –434, apr 1999.

[24] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[25] D. Gove, Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

