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Structured spatial point patterns appear in many applications within the natural sciences. The points often record the location of key
features, called landmarks, on continuous object boundaries, such as anatomical features on a human face. In other situations, the
points may simply be arbitrarily spaced marks along a smooth curve, such as on handwritten numbers. This paper proposes novel
exploratory methods for the identification of structure within point datasets. In particular, points are linked together to form curves
which estimate the original shape from which the points are the only recorded information. Nonparametric regression methods
are applied to polar coordinate variables obtained from the point locations and periodic modelling allows closed curves to be fitted
even when data are available on only part of the boundary. Further, the model allows discontinuities to be identified to describe
rapid changes in the curves. These generalizations are particularly important when the points represent shapes which are occluded
or are intersecting. A range of real-data examples is used to motivate the modelling and to illustrate the flexibility of the approach.

The method successfully identifies the underlying structure and its output could also be used as the basis for further analysis.

1. Introduction

Many scientific investigations involve the recording of spa-
tially located data. This data might summarize objects within
an image as digitized versions of continuous curves. Once the
data are collected often the original context is lost and the aim
of the analysis is to identify which points are associated with
each other and to link the points to reconstruct the original
shape. These can then be seen as estimates of continuous
curves and object outlines. If the original scene contains
multiple structures, then the analysis must also divide the
points into groups with separate curves used to describe the
points in each group. It is important to note that this is likely
to form only the first part of an analysis and hence can be seen
as exploratory data analysis.

This paper looks at the use of smoothing splines to
identify and describe geometric patterns in sets of points. It
is assumed that the points lie on smooth curves but that a
dataset may contain multiple intersecting curves. It is vital
that this be done in a nonparametric way so that the widest

possible range of patterns can be highlighted. In general, these
are closed, or nearly closed, curves and so a transformation to
polar coordinates is used to simplify the analysis. Intersecting
curves are described by allowing discontinuities in the fitted
curves. These procedures are illustrated using simulated data
and varied real datasets describing human faces, gorilla skulls,
handwritten number 3’s, and an archaeological site. These
provide a wide variety of point patterns and reinforce the gen-
eral usefulness of the proposed methods. For mathematical
detailed description and applications of shape-based analysis
of points, refer to, for example, Batschelet [1], Bookstein [2],
Dryden and Mardia [3], and Lele and Richtsmeier [4].

To allow for this wide variety of possible curves a
nonparametric fitting approach, such as splines, can be used
(see, e.g., [5, 6]). The flexibility is helpful in the exploratory
statistical analysis of a dataset, and the results can be used
to suggest parametric equations for later analysis. Nonpara-
metric regression is the general name for a range of curve
fitting techniques which make few a priori assumptions about
the true shape. In nonparametric regression, several different



families of basis functions can be used to describe curves;
one of the common kinds of basis for smooth curves is the
spline. Splines are generally defined as piecewise polynomials
in which curve, or line, segments are joined together to
form a continuous function. The spline smoothing approach
to nonparametric regression is discussed, for example, by
Silverman [7] and extended to deal with branching curves
by defining a roughness penalty by Silverman and Wood [8].
For an introduction to natural cubic spline see Green and
Silverman [9]. For more review of spline methods in statistics
see Wegman and Wright [10], Silverman [11], Silverman [7],
Nychka [12], and Wahba [13].

It is important to note that there are many existing gen-
eral frameworks for performing spline-based regression. For
example, multivariate adaptive regression splines (MARS)
[14] or its more robust generalizations, RMARS [15] and
RCMARS [16], with a good overview and comparison in
[17]. These follow the general approach of general additive
modelling [18] and give a formal framework for fitting and
model selection.

A brief introduction to splines, along with the extension
to circular data, is given in Section 2. The main results of
this paper are given in Section 3 by considering modelling
for single curves with occlusions and multiple intersecting
curves. Although simulated examples are used to illustrate,
the main real-data examples are given in Section 4. General
discussion appears in Section 5.

2. Nonparametric Curve
Estimation and Periodic Splines

A smoothing spline is a nonparametric curve estimator that is
defined as the solution to a minimization problem. It provides
a flexible smooth function for situations in which a simple
polynomial or nonlinear regression model is not suitable. For
a set of n observations y = {(x;, ¥;), i = 1,2,...,n} consider
a regression problem where the observations are assumed to
satisfy

yi=f(x;)+e, i=12,...,n (1)
where the errors ¢; are uncorrelated with zero mean and
constant variance, o>. Then the spline smoothing method
uses the data to construct a curve f by minimizing the
objective function

n
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where f™ represents the mth derivative of f, with m
being a positive integer, and A is a smoothing parameter.
For more details of smoothing splines see, for example,
Eubank [19], Eubank [6], and Cantoni and Hastie [20]. An
alternative definition of the level of smoothing is in terms
of an equivalent degrees of freedom, Df, which describes the
amount of information in the data needed to estimate the
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residuals. The function smooth.spline [21] allows A or Df to
be specified, but the degrees of freedom have been used in
what follows as this gives a more intuitive interpretation.

The above objective function consists of two parts: the
first measures the agreement of the function and the data
and the second is a roughness penalty reflecting the total
curvature—this can also be interpreted in a Bayesian setting
as the likelihood and prior. Hence, for given Df, the estimate
of f is given by

]A‘(x,Df):mfin](f;X,Df), x €R. (3)

If Df is large then the function is rough but closely fits the
data, whereas when Df is small then the function is smooth
but may not fit the data well. Here the choice of Df is made
automatically using standard leave-one-out cross-validation
[22]; that is,

2
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where f '(,Df) is the fitted spline curve, for given parameter
Df, and with the ith data point, (x;, y;), being removed. Then
f(-,Df) is the fitted curve using the cross-validation estimate
of the degrees of freedom.

Figure 1 shows fitted curves using splines with different
degrees of freedom, Df. The true curve is a sine function with
noise level 0 = 1/4 which corresponds to a signal to noise
ratio (SNR = 0/0) of about 2. In (a) Df is about half the
value found using cross-validation which is used in (b), with
(c) using double the cross-validation degrees of freedom. The
small degrees-of-freedom value gives a smoother fitted curve
that ignores many of the points in the data whereas a large
value produces a rougher fit which more closely follows the
data. The automatic choice was Df = 5.5 which gives a very
good fit to the data reproducing the sin curve well.

For this dataset, the periodic nature of the sin function
has, so far, been ignored, and it is clear that the extreme left
and right do not match exactly. For such datasets, made up
of angles or directions, ignoring the periodic nature of the
measurements when smoothing may produce unacceptable
edge effects. A simple approach for dealing with this issue will
now be considered.

Suppose that the dataset is made up of paired angles and
distances which will be denoted as 9 = {(0,,1;) :i=1,...,n}
for a sample of size n. A simple approach for periodic data
measured in the interval (0,27m), say, is to repeat the data.
That is, for each angle 0;, the corresponding new angular
values are (0, — pm,...,0,—m, v, 0, +m,...,0; + pr), where
p = 1,2,..., and similarly repeat the corresponding radial
distances r; to be (r;,...,7;). This produces a dataset, 9 =
{B,,1;) 11 = L...,n'}, withn' = (2p + 1) x n data values,
and even for small p (e.g, p = 1 or 2) this gives a very
good approximation to the full periodic spline. Cogburn and
Davis [23] present the theory of periodic smoothing spline
with application to the estimation of periodic functions and
the R function periodicSpline from the package splines
might provide an alternative computational approach.
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FIGURE 2: Periodic spline fits to sin data: (a) Df = 7; (b) Df oy = 15; (¢) Df = 30.

As illustration consider Figure 2 which shows fitted
curves equivalent to those in Figure 1 but with p = 1. The solid
circles are the original data with open circles representing
the copied data points. Similarly, the solid line is the spline
fitted curve over the original interval with the dashed line
showing the fitted curve over the copied data points. In all
cases the fit is better than in Figure 1, with the periodic nature,
reproduced well, and as before the cross-validation choice of
smoothing has produced an excellent reconstruction of the
true sin curve.

Once fitted a residual sum of squares, RSS, calculated
on the original data values, can be used as a measure of
goodness-of-fit. Here this will be calculated using the radial
distances with definition

RSS = i (r, - 7(6,,D%))’ (5)
i=1

but other versions could be used, for example, the Euclidean
distance between fitted and observed points.

Of course, the approach could lead to a poor fit if the data
is not periodic, but to prevent this it is possible to allow for
a discontinuity in the relationship. Here the approach of Gu

[24], who considered discontinuities in cubic splines with a
jump at a known location, will be extended to the periodic
case and with an unknown discontinuity location.

Suppose that the points 9 = {(r;,0;) : i = 1,...,n} are
partitioned into two groups with the first, 9;, containing all
the points with angles up to and including the change point
and 9, those with angles above. Assuming that the points are
ordered in increasing value of the angle, so that 0, <--- <0,
then let 9, = {(0;,r;); i = 1,...,k} be the data before the
change pointand 9, = {(6;,7;); i = k+1,...,n} the remaining
data. For change point at 0, two curves are fitted to the data
such that

- min J (r;9,,Df,), for 6 <6,
7(0,Df) =1 ’ _ (6)
min J (r;9,,Df,), for 6> 6,

where cross-validation is used separately on the two parts
leading to two degrees of freedom, Df = (Df,,Df,). The
significance of the change point could be assessed through
a chi-squared test, but here a change point influence graph is
considered based on the goodness-of-fit.

Consider the sin data shown in Figure 3(a) which has a
change point of size about 1 introduced at 6 = 6;5; = 2.3.
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FIGURE 3: (a) Data from sin function with a discontinuity; (b) best two-part curve; (c) residual sum of square for two-part curves.

The curve in Figure 3(a) is fitted using a smoothing spline, but
ignoring the change point, it is possible that the curves in Fig-
ure 3(b) are fitted using smoothing splines with change point
at the estimated location. The automatically chosen value for
the degrees of freedom, Df, for the single curve in (a) is 14.5
whereas for the two-part curve the overall degrees of freedom
are Df, + Df, = 11. Figure 3(c) shows the residual sum of
squares, RSS, for each possible change point location with a
very clear minimum. The RSS for the curve in Figure 3(a) is
1.3 while, in (b), it has reduced to 0.45, which is substantially
smaller and provides a much better description of the data.
Hence this approach provides an intuitive approach to finding
change points in data automatically.

3. A Model for Multiple Overlapping Curves

3.1. Motivation. To motivate the modelling, consider an
unobserved true scene containing a few objects of various
shape and sizes, with possible overlap. However, instead of
the scene being recorded faithfully, only partial information
is taken and, in particular, only points along the edges of the
objects are recorded. These points might be chosen to identify
features with special significance or they might simply be at
equal or random locations along the edge. Further, due to
overlaps, points from the full edge may not be in the dataset.
Once collected, there is no record of which points are from
which object, and no record is kept of possible object shapes
nor even the number of objects. Hence, let the dataset consists
of a collection of n points, y = {(xi,yy) Qo= 1,...,n},
recorded within some small region in 2D.

Figure 4 shows example datasets which will be analysed
later. Panel (a) shows a human face profile with the forehead,
eyes, nose, mouth, and chin clearly identifiable on the left—
the points on the right locate the back of the neck and the
hairline. Panel (b) shows points located along a handwritten
number 3 at approximately equally spaced intervals.

3.2. Modelling a Single Curve with Occlusion. Before the peri-
odic smoothing spline approach can be applied it is necessary

for the data to be first transformed to polar coordinates.
First define a centre, (§,(), which can be estimated using the

data centroid (E, Z) = (x,y) and then use the one-to-one
transformation

= (-2 (0i-97)",

0, = tan”" ( ),

This gives rise to an alternative data representation via the
centre (%, y) and polar coordinates ¢ = {(r,,0;) : i =1,...,n}.
Note that although this representation contains n+2 pieces of
information, by construction, the polar coordinate variables
are not independent. Of course, other estimates of centre
could be considered, such as the point which minimizes the
variance of the radii. In particular, this measure should be
more robust to presence of occlusions.

To illustrate the transformation and the subsequent spline
smoothing consider the simulated data in Figure 5. Panel (a)
shows the given points along with the sample centre marked
with a “+7; the points in (b) are the corresponding polar
coordinates relative to this centre. Also shown in (b) are
the nonperiodic smoothing spline (continuous black line)
and the period smoothing spline (dashed red line). These
are all closely aligned except at the extreme angles. Once
transformed back into Cartesian coordinates, as shown in
panel (c), the slight discrepancies between the fitted splines
are more clearly visible. At the far right of the plot, the
periodic spline curve is closed and more naturally represents
a possible object, whereas the nonperiodic spline is not closed
making it difficult to interpret if this were part of the edge of
a real object.

Figure 6 shows a second elliptical dataset but where part
of the ellipse is missing. The Cartesian data are shown in
(a) and (c), with the polar transformed data in (b). Panel
(b) shows the nonperiodic spline and the period spline with
dramatic differences which are even more obvious when the

(y; =)

(x; = X)

7)

i=1,...,n
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FIGURE 4: Real datasets: (a) human face and (b) handwritten number 3.
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the solid curves use standard splines, whereas the dashed use the periodic spline.



fitted curves are transformed back into Cartesian coordinates,
as shown in panel (c). The periodic smoothing spline has
done a very good job of interpolating the missing part of
the curve and the results can easily be relied upon in further
analysis. In particular, slight changes in the position of a
few critical point will lead to very different shapes for the
nonperiodic spline.

To summarize, application of smoothing splines to peri-
odic point data has proved very successful. The modification
of the duplicated data is a simple, yet effective way to create
closed curves and to interpolate where data are missing. The
approach has provided a robust and informative reconstruc-
tion of the unknown curve from the data.

3.3. Modelling Multiple Intersecting Curves. To allow for inter-
secting and overlapping curves the points are partitioned into
m groups, S;, where j = 1,2,...,m. That is, § 5 c(1,...,n)
with §;NS; = 0 wheni # jand S, U---US,, (,... n). To
record group membership a matrix W, = (w;;) is deﬁned
wherew;; = 1if point i belongs to group j (i € §; )andw
otherwise. Then, };w;; = 1 and },w;; = rzj, where #; is
the number of points in the jth group; that is, n; = [S,]. For
each group, working in polar coordinates, there is a centre,
(&. ,C ), and coordinates relative to the centre, 9 = {(r;;,6; )
i= 1 ..»n;}, with the full set of parameters denoted as
{9;: j =1,...,m}. The corresponding Cartesian coordinates
can be written as I'; = {(s;,v;j) : i = 1,...,n;}, with

Hij =& +1; cos(@l]),
Vi = (j + 1y 8in (Gij) , (8)

fori=1,...,n, j=1,...,m

and the full collection of data as T = {l"j cj=1,...,m}
Further, it is assumed that the point locations are recorded
with error giving observed measurements

Xij = Wij T €ij>
Yij = Yij * &ijs 9)

fori=1,...,n, j=1,...,m,

where € and ¢ are independent Gaussian random variables
with zero mean and constant variance 0.

In what follows the full dataset will, without further
explanation, be referred to using either y = {(x;;, y;;) : i =

L...,n; j=1,...,mland 9 = {(0,], ti= L...,nj j=
1,...,m} or equivalently, but w1th0ut explicit reference to
the group membership, y = {(x;,y) : i = 1,...,n} and
9={6,r,):i=1,...,n}asis most convenient and intuitive.

3.4. Estimation with Multiple Intersecting Curves. Now con-
sider estimation of the model unknowns from observed data.
Start by supposing that a dataset is available but that the group
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membership information is intact; then the group centres
could be estimated as

E-x% = Tt Wi
! ! 2 W;j ’
) (10)
Z o Yict W;; Yi
! ! 2 W;;

and, although some of these are unimportant, corresponding
polar coordinate representation of point i relative to group
centre j is

N _\2 _\2 1/2

Tij = ((xz‘ %) +(n-7)) ) > ()

éij = tan | (yi _ {j ) , (12)
wherei=1,...,nand j = 1,...,m. The overall residual sum

of squares is then the sum of the separate components

RSS = ZRSS = ZZ( 7(0,.08,)). (1)

j=li=1

Now consider the case when the group membership is
unknown and must be inferred from the data. The aim is
to find linked points by fitting curves. Some datasets have
more than one curve and some have intersecting curves. Then
classifying the points into groups may help to fit the correct
curves that represent the data.

In general, this can be thought of as a change point prob-
lem, as already discussed, to address the lack of stationarity in
the values. A change point occurs at some point in the data if
all of the values up to and including it share a common curve
while all those after the change point share another. This is
exactly the same situation as the discussion in Section 2 and
hence the same method of solution is applied.

4. Application to Real Data

4.1. General. The previous sections have illustrated the pro-
posed exploratory data analysis tools on simulated example,
whereas in this section the success of the approach is
demonstrated on a varied range of real datasets. There is no
wish to construct formal equations to define the shape but to
stimulate further analyses.

4.2. Example I1: Face Data. The first experiment is conducted
on data extracted from the human face [25] in a study looking
at changes in shape due to growth in children. Figure 7(a)
shows the data with points joining the points; then (b) shows
the points transformed to polar coordinates along with fitted
spline curves. Figure 7(c) shows the data set with back-
transformation fitted values, and the solid curve shows those
from the standard spline while the dotted curve shows those
from the periodic spline. It is clear from the fitted curves
that there is not much difference between the periodic and



Journal of Probability and Statistics

5 o——‘“-_—x
/ 5 4
4 ////° ; 4 -
0 °\°
\0
3 4 / o 3 1
y oo #
21 ’ < 2 1
o o/
14 \’ /o/ 14
\o o\
01 — 01
1.0 15 20 25 30 35 0.5 1.0 1.5 2.0 25 3.0 35 4.0
X

(a)

(b) ()

FIGURE 7: (a) Face data; (b) polar coordinate data with fitted spline curves; (c) back-transformed fitted curves. In (b) and (c) the solid curves
use standard splines, whereas the dotted use periodic splines.

(a)

140 -

120 A

100 -

80 1

60 1

40 A

/2

0
(b)

n'/2

100+

50 A

0

50
(c)

100 150 200

FIGURE 8: (a) Schematic diagram of a gorilla skull with anatomical landmarks for a male gorilla; (b) landmarks in polar coordinate and spline
curves; (c) landmarks along with back-transformed fitted spline curves. In (b) and (c) the solid curves use standard splines, whereas the

dotted use the periodic spline.

the standard smoothing splines. Both produce well fitted
curves for the face. It is worth noting that the fitted curve
can be evaluated at arbitrarily close locations, not only at the
data points, and hence a smoothly interpolated curve can be
drawn.

4.3. Example 2: Gorilla Skulls. 'This dataset, taken from Dry-
den and Mardia [3], is composed of 8 anatomical landmarks
from the skulls of 29 male and 30 female gorillas. A landmark
is defined as a point of correspondence on each object that
matches between and within populations [3]. Figure 8(a)
shows a schematic diagram of a typical skull with the
landmarks indicated.

Figure 8(c) shows landmarks for one of the male gorillas
and Figure 8(b) the corresponding points in polar coordi-
nates along with spline fitting to the dataset and in Figure 8(c)
after back-transforming. For both, the fits are good but at the
expense of low smoothing in the spline. This fitting procedure
was repeated for the other gorilla skulls and surprisingly the
smoothed curves give good summaries allowing the skulls to
be easily categorised into four main groups covering mainly
male skulls which are rather elongated and two covering
mainly female skulls which appear more rounded. The males

lead to generally larger values of the degrees of freedom
(6 < Df < 8) than the females (Df = 2). In fact, the automatic
choice of the degrees-of-freedom parameter can be used as
a simple discrimination variable giving only 8 out of 59
incorrectly classified skulls. It is important to note that this
was not a preconceived discriminator but was identified by
the exploratory analysis. This has highlighted the usefulness
of simple and flexible tools as a preliminary step in a more
wide-ranging investigation.

4.4. Example 3: The Number 3. Another dataset, again taken
from Dryden and Mardia [3], is made up of 13 landmarks
from 30 handwritten number 3’s; see Figure 9(a). Suppose the
data are divided into two subsets with 7, and n, observations,
respectively. The best partition is made according to the
minimum value of the overall residual sum of squares, RSS,
which is displayed in panel (c). Each subset is transformed
to polar coordinates using the different centres marked “+”
in panel (a). Each subset is indicated by different marks
along with their fitted spline curves as plotted in panel (b)
with the back-transformed fitted curves in panel (a). Clearly,
this has described the two-part curves very well. Again, this
demonstrates the flexibility of the procedure.
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spline curve; (c) polar coordinates and fitted two-part spline curve.

4.5. Example 4: Archaeological Site Data. The data in Fig-
ure 10(a) shows part of a typical image dataset (supplied by
Alistair Marshall of the Guiting Power Amenity Trust; see
Aykroyd et al. [26] for details) from a magnetic survey of an
archaeological site. As well as linear features, which represent
ditches, there are also several drifts of pits, but blurring and
noise tend to camouflage the exact locations. Panel (b) shows
the locations of some of these pits, appearing as small circles,
and panel (c) shows the corresponding polar coordinates
relative to the two data centres (marked “+” in (b)). According
to the minimum value of the residual sum of squares, RSS, the
observations can be classified automatically into two groups.

The data centres are calculated for each subset, the small
circles are the data in the first subset, and “x” are the
data in the second subset, with the fitted curves plotted in
Figure 10(c). Then the fitted curves are back-transformed
into Cartesian coordinate as shown in panel (b). The solid
curve is for the first subset while the dotted curve is for the
second subset. The aim of the analysis is to identify which
points are associated with each other and to fit curves to the
points, and this has been achieved well. The resulting linked
points might then form part of further analysis or aid physical
excavation.

5. Discussion

Making sense of clouds of points, apparently randomly placed
across a 2D region, is a key task in many statistical investiga-
tions. When the points are recorded without additional infor-
mation, the first task is to infer structure by linking points
using a data-driven approach. This paper has proposed and
investigated a simple, yet effective method based on change
point identification and nonparametric spline smoothing. It
provides an intuitive explanatory tool to identify patterns in
the point locations. When it is assumed that the structures
form lines and curves, the change points divide the data into
subsets, with the splines providing a flexible method to infer
the shape of the structures. The method has easily dealt with
occlusions and intersections in scenes with multiple curves.
Similar results might be achieved by applying more general
modelling approaches, such as MARS, RARS, RCMARS; for
details see, for example, [17], but we believe that a more
straightforward and intuitive approach can have equal impact
by bringing a range of easy-to-use tool to a wider audience.
Further, for all users the methods considerations can be
used to suggest further analyses based on more sophisticated
approaches.
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There is scope for extending the approach to include
larger numbers of curves where it is not possible to divide
the curves with a single change point. The nature of the
problem is closely related to classification where the group
membership is missing. This strongly suggests that a prob-
abilistic approach might be considered based on statistical
distribution models. This would then fit into the general
framework where the EM algorithm has proven very useful.
Also, there is a need to extend the approach to deal with
unordered points and ones which are not star-shaped. These
are areas of possible future work. Further, it is of interest
to develop a similar procedure which would allow more
formal modelling and model section, perhaps following the
approach of general additive modelling [18].

The applications are various and varied with an illustra-
tive example of the method when the data points are anatomi-
cal landmarks defined by geometrical features, equally spaced
but blindly placed points along smooth curves and from
extreme intensity points in grey-scale images. Further, the
results of the analysis have provided new variables which
could be the starting point for other analyses. Hence there is
potential for this to be a valuable exploratory data analysis
method in the tool-kit of applied statisticians and applied
scientists.
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