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ABSTRACT: Existing lower-bound shakedown solutions for pavement problems are generally 

obtained by assuming that materials obey associated flow rules, whereas plasticity of real 

materials is more inclined to a non-associated flow. In this paper, a numerical step-by-step 

approach is developed to estimate shakedown limits of pavements with Mohr-Coulomb materials. 

In particular, influences of a non-associated flow rule on the shakedown limits are examined by 

varying material dilation angle in the numerical calculations. It is found that the decrease of 

dilation angle will lead to accelerated reduction of pavement shakedown limits, and the reduction 

is most significant when the material friction angle is high. Furthermore, existing lower-bound 

shakedown solutions for pavements are extended, in an approximate manner, to account for the 

change of material dilation angle and the shakedown results obtained in this way agree well with 

those obtained through the numerical step-by-step approach.  An example of pavement designs 

using shakedown theory is also presented. 

Keywords: shakedown; pavements; non-associated flow rule; Mohr-Coulomb materials; lower-

bound 

1 INTRODUCTION 

Current mechanistic-empirical design methods for flexible pavements are usually conducted by 

relating pavement life with elastic stress/strain at critical locations considering several principle 

failure modes. However, one of the failure modes, excessive rutting, is mainly caused by an 

accumulation of permanent deformation under repeated traffic loads. Therefore, a plastic design 

method using shakedown theory is considered more rational [1, 2]. The shakedown theory can 
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distinguish the long-term elastic-plastic responses of a pavement to different levels of traffic 

loads. If the load level is high, pavements may fail in a form of excessive rutting as a result of 

accumulated permanent deformation. Alternatively, if the load level is low, the pavement may 

deform plastically in the first number of load passes, then respond purely elastically to 

subsequent traffic loads. The latter phenomenon is called ‘shakedown’, and the load below 

which shakedown can occur is termed as ‘shakedown limit’. In the design of flexible pavements, 

the shakedown limit can be calculated and checked against the design traffic loads to ensure very 

small permanent deformations of pavements throughout their service lives.  

The shakedown limit can be determined by either numerical elastic-plastic analysis (e.g. [3, 4]) 

or two fundamental shakedown theorems. Melan’s static (lower-bound) shakedown theorem [5] 

states that an elastic-perfectly plastic structure under cyclic or variable loads will shakedown if a 

time-independent residual stress field exists such that its superposition with load-induced elastic 

stress field does not exceed yield criterion anywhere in the structure. Koiter’s kinematic (upper-

bound) shakedown theorem [6] states that shakedown cannot occur for an elastic-perfectly 

plastic structure subjected to cyclic or variable loads if the rate of plastic dissipation power is 

less than the work rate of external forces for any admissible plastic strain rate cycle. In the past 

few decades, solutions for shakedown limits of pavements were developed mainly based on 

these two fundamental shakedown theorems. Several different approaches based on Melan’s 

static shakedown theorem were developed for pavements subjected to two-dimensional (2D) and 

three-dimensional (3D) moving surface loads [1, 3, 7-19]. Furthermore, kinematic shakedown 

analyses were carried out by using Koiter’s shakedown theorem for 2D and 3D pavement [20-

25]. It should be noted that the static and kinematic shakedown solutions provide lower and 

upper bounds to the true shakedown limit of a pavement respectively. This is because the lower-

bound shakedown theorem satisfies internal equilibrium equations and stress boundary 

conditions, while the kinematic shakedown theorem satisfies compatibility condition for plastic 

strain rate and boundary conditions for velocity. Nevertheless, some identical upper and lower 
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bound solutions have been obtained. For instance, when a 2D Mohr-Coulomb half-space is 

subjected to a moving pressure, the lower-bound shakedown solutions (as obtained by Wang [3]) 

are identical to the upper-bound shakedown solutions (as obtained by Collins and Cliffe [21]).  

Although some converged shakedown limits have been obtained by using the static and 

kinematic shakedown theorems, they are calculated based on the assumption of an associated 

flow rule (i.e. the plastic strain rate is normal to the yield surface). It is well known that granular 

materials, such as soil and pavement materials, exhibit a non-associated plastic behaviour [26, 

27]. Until now, very limited results have been reported on this topic. Boulbibane and Weichert 

[28] proposed a theoretical framework for shakedown analysis of soils with a non-associated 

plastic flow. It was reported by Nguyen [29] that this framework can be applied to shakedown 

analysis of footing problems. With the use of linear matching method, Boulbibane and Ponter 

were able to give 3D upper-bound shakedown solutions for Drucker-Prager materials with zero 

dilation angle, but did not evaluate the influence of the change of dilation angle [22]. Numerical 

studies of Li [25] extended the 2D upper-bound shakedown solutions of Li and Yu [24] to the 

materials with non-associated plastic flow and suggested that the pavement upper-bound 

shakedown limit is reduced due to the use of non-associated flow rule.  For practical pavement 

design, the influence of material plastic flow rule on lower-bound shakedown limits needs to be 

assessed. 

In this paper, first, shakedown limits for 2D pavement problems will be captured by using a step-

by-step numerical approach. Both associated and non-associated flow rules will be considered 

for pavement materials. Then a direct method will be developed based on the previous work of 

Yu and Wang [16] to estimate the lower-bound shakedown limits of pavements using a non-

associated plastic flow rule.  
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2 PROBLEM DEFINITION 

It is considered that a pavement is repeatedly subjected to a rolling long cylinder, as shown in 

Figure 1. This can be simplified as an idealised plane strain pavement model with a moving 

contact load P. The normal load distribution p (refer to Figure 2) can be assumed as: 

),x'(   )/x'(1 2

0 aaapp ≤≤−−=      (1) 

where a is half of contact length; p0 (= 2P/πa) is the maximum vertical stress located at x’ = z’ = 

0. This load distribution is also known as 2D Hertz load distribution [1, 30]. 

3 NUMERICAL APPROACH 

In this section, a numerical step-by-step approach for pavement shakedown problem is presented 

and validated. Results including shakedown limits, residual stresses and plastic strains are 

discussed in detail. 

3.1 Method description 

3.1.1 Numerical approach 

Shakedown solutions based on the lower-bound (static) shakedown theorem were obtained by 

assuming statically-admissible residual stress fields. It means the actual residual stress fields 

developed in pavements were not considered. In the present study, finite element (FE) elastic-

plastic analyses are carried out to obtain the actual residual stresses developed in pavement 

structures under repeated moving traffic loads. By using finite element software ABAQUS, 

shakedown limits of pavements can be obtained through a step-by-step approach: 

(1) As illustrated in Figure 2, for a given pavement structure, the load moves on the pavement 

surface repeatedly from point B to point C. At the end of each load pass, the applied load is 

removed thoroughly to investigate stresses remaining in the pavement (known as residual 

stresses).  
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(2) After a few numbers of load passes, a static load with the same magnitude of the moving 

load is applied in the middle on the pavement surface. If no yielding point can be found in 

the pavement (i.e. the total stress state of each point in the pavement does not violate the 

yield criterion), a steady state (termed as ‘shakedown state’) is achieved. In contrast, any 

yielding point would indicate that the applied load is above the shakedown limit of the 

pavement and the whole structure is in a non-shakedown state.  

(3) Several numerical simulations with different load magnitudes are performed to determine the 

shakedown limit of the pavement.  

It should be noted this numerical approach requires great computation efforts in order to obtain 

results with a reasonable accuracy. This problem has been solved to a great extent by using High 

Performance Computing (HPC) facilities in the University of Nottingham, UK. 

 

           Figure 1 Idealised pavement model  Figure 2 Model sketch and boundary conditions and 

2D Hertz load distribution  

 

3.1.2 Model description 

A pavement model is established using ABAQUS. During every load pass, the load is gradually 

applied at the start point, then translated in the horizontal direction at a constant speed, and 

finally removed at the end point. The loading process is controlled by a user subroutine DLOAD. 

The simulation is processed by means of ‘automatic incrementation control’ with a given 

maximum increment of 0.1. According to ABAQUS Analysis User’s Guide [32], the stiffness 

matrix of the materials following associated plastic flow is automatically selected by the solver 

(symmetric or unsymmetric), while for non-associated cases, it is set to be unsymmetric 
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compulsively. Figure 2 shows a sketch of a two-layered pavement used in this study. A restraint 

on horizontal movement is applied at two vertical boundaries, and a restraint on vertical 

movements is applied on the bottom boundary.  In order to minimise the influence of two 

vertical boundaries on numerical results, no load is applied near the vertical boundaries. Eight-

noded, reduced-integrated, quadratic elements (CPE8R) are selected to avoid hour-glassing and 

interlocking problems. Material properties of each layer are described by linear elastic 

parameters (Young’s modulus E and Poisson’s ratio ν) and Mohr-Coulomb criterion parameters 

(cohesion c, friction angle ϕ and dilation angle ψ). The materials are assumed to be homogenous, 

isotropic, and elastic-perfectly plastic with the associated plastic flow (i.e. ϕ = ψ) or a non-

associated plastic flow (i.e. 0 ≤ ψ < ϕ). In this paper, subscript ‘n’ of E, ν, c, ϕ and ψ represents 

the n
th

 layer. For single-layered pavement problems, identical materials are assigned to both 

layers. In addition, tension is positive in the following results. It should be noted that the Mohr-

Coulomb model in ABAQUS uses a smooth plastic flow potential proposed by Menétrey and 

Willam [31] which is very close to the classical Mohr-Coulomb model with faced flow potential, 

especially when mean pressure is high [32]. 

The Drucker-Prager model with corresponding parameters transformed from Mohr-Coulomb 

parameters was also used to investigate the influence of material plasticity model. Results 

showed that these two models provide almost the same shakedown limits. For example, when ϕ 

= ψ = 20°, the shakedown limits are 7.5c in the case of Mohr-Coulomb materials and 7.4c in the 

case of Drucker-Prager materials. Therefore, the Mohr-Coulomb model was selected in the 

following study.  

3.1.3 Validation 

Table 1 shows different model dimensions used for sensitivity study and their corresponding 

results. Model A was used by Wang and Yu [4] for homogenous half-space but required lots of 

computation efforts. From Model B and Model C, it can be seen that some reductions in height 

and length of the model only slightly change the shakedown limit while saving a lot of 
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computation time. Therefore, model dimensions of 40a (length of loading area L) × 25a (depth H) 

are selected. As mentioned before, the no-loading areas were applied near vertical boundaries. 

Their influences were checked by Model D in which the moving load gradually entered through 

the left boundary and finally exited through the right boundary, and Model E in which the length 

of the no-loading area L’ is increased from 3a to 10a. The results demonstrate the length of the 

no-loading area barely affects shakedown limits. However, for some two-layered cases, it was 

found that L’ = 3a was not enough to prevent yielding near the vertical boundaries. Therefore, 

Model E is finally chosen. 

Sensitivity studies on mesh density were also carried out to ensure that mesh distribution can 

obtain numerical results with a reasonable accuracy. High mesh density is applied in the first 

layer and near the interface between two layers due to high stress and strain gradient. As shown 

in Table 2 , the shakedown limit barely changes when the number of elements exceeds 16000 for 

both single-layered and multi-layered model. Therefore, the mesh density in case 3 is selected. In 

this case, elements are distributed uniformly along 10a ≤ x ≤ 50a (the loading area) and small 

elements (0.25a × 0.1a) are applied in the region near the surface (z ≤ 2a). The mesh is also fine 

just beneath the interface, and it becomes coarser with increasing depth. 

 
Table 1 Influence of model dimension (! = ψ = 20º,  ν = 0.3) 

Model No. L H L’ 
Theoretical 

shakedown limit 

Numerical 

shakedown limit 

Average elapsed time per 

load pass (s) 

A 78a 30a 3a 

7.56c 

7.5c 13854 

B 40a 30a 3a 7.4c 3607 

C 40a 25a 3a 7.4c 3576 

D 40a 25a 0 7.5c 3480 

E 40a 25a 10a 7.5c 3475 

 

Table 2 Influence of mesh density 

 
Case 

No. 

Number of 

Elements 

Theoretical 

shakedown limit 

Numerical 

shakedown limit 

Average elapsed time per 

load pass (s) 

Single-layered 

(! = ψ = 20º,  ν = 0.3) 

1 1500 

7.56c 

7.2c 125 

2 2500 7.2c 320 

3 16000 7.5c 3475 

4 18000 7.4c 3603 

5 21600 7.4c 4714 

Multi-layered 

(E1/E2=0.5, ν	1=0.2, ν2 =0.49, 

!1=ψ1=30º,!!2=ψ2=0º, c1/c2=1) 

2 2500 

8.48c2 

8.5c2 344 

3 16000 8.5c2 4279 

6 20000 8.5c2 4561 

 

Table 3 Comparison of numerical shakedown limits 
Case No. Load Layer ! (º) ψ (º) ν E1/E2 c1/c2 Shakedown limit Difference 
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distribution No. This study References (%) 

1 Hertz \ 0 0 0.4 \ \ 4.0c 4.0c
[1, 3, 7]

 0 

2 Hertz \ 30 30 0.3 \ \ 10.6c 10.8c
[1, 3, 13, 21]

 1.8 

3 Trapezoidal
*
 \ 0 0 0.4 \ \ 3.7c 3.8c

[15]
 2.6 

4 Trapezoidal
*
 \ 15 15 0.3 \ \ 5.9c 6.2c

[15]
 4.8 

5 Trapezoidal
*
 

1
st
 40 40 0.3 

5 5 11.6c2 11.7c2
[10]

 0.8 
2

nd
 0 0 0.4 

6 Hertz 
1

st
 30 30 0.2 

10 1 3.3c2 3.2c2
[17]

 3.0 
2

nd
 0 0 0.49 

*
b/a=0.5 where a and b are the lengths of the lower and upper sides of trapezoid; Cases 1-4 are for single-layered pavements and cases 5-6 are for 

two-layered pavements 
 

 

Shakedown limits obtained by the current approach are also compared with shakedown solutions 

of other researchers. Those shakedown solutions were developed based on the classical 

shakedown theorems and they all assumed that an associated plastic flow rule is applied to 

pavement materials. Table 3 demonstrates that the differences between shakedown limits of the 

current study and those in references are within 4.8%. 

 

3.2 Single-layered pavements 

Table 4 presents numerical results for single-layered pavements and compares them with the 

shakedown limits of Wang [3]. If an associated flow rule (ϕ = ψ) is assumed, the shakedown 

limits are only slightly lower than those in Wang [3] with a maximum difference of 2.0%. 

However, if a non-associated flow rule (ψ < ϕ) is used in the numerical model, the difference can 

be as high as 13.1%. Therefore, the effect of plastic flow rule cannot be neglected, especially 

when the friction angle is high. Also,  Table 4 exhibits that the dimensionless shakedown limit 

(defined as the shakedown limit normalised by material cohesion ‘c’) accelerated reduces with 

decreasing dilation angle, and the maximum reduction occurs when the dilation angle ψ drops 

from 30º to 0º (friction angle ϕ remains 30º). 

 
Table 4 Material parameters and shakedown limits for single-layered pavements 

Case No. ϕ (°) ψ (°) ν Theoretical shakedown limit Numerical Shakedown limit Difference (%) 

1 30 30 0.3 10.82c 10.6c 2 

2 30 20 0.3 
 

10.4c 3.8 

3 30 10 0.3 
 

10.0c 7.6 

4 30 0 0.3 
 

9.4c 13.1 

5 20 20 0.3 7.56c 7.5c 0.8 

6 20 10 0.3 
 

7.4c 2.1 

7 20 0 0.3 
 

7.2c 4.8 

8 15 15 0.3 6.58c 6.1c 7.3 

9 15 7.5 0.3 
 

6.1c 7.3 

10 15 0 0.3 
 

6.1c 7.3 
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According to the lower bound shakedown theorem, residual stress field σij
r
 (i and j denote x axis 

or z axis) plays an important role in helping structures reach the shakedown state. Ideally, 

elements at the same depth should experience the same loading history; therefore the resulting 

residual stress distribution should be independent of x axis [16]. Johnson [7] noted that σxz
r
 and 

σzz
r
 should be zero for the 2D pavement problem due to the self-equilibrium condition. This was 

verified by Wang [3] by numerical approach. Previous researches [3, 4, 34] demonstrated that 

residual stresses in pavements under moving surface loads barely change after several load 

passes, no matter the load applied is at or above the shakedown limit. It coincides with the test 

report of Radovsky and Murashina [33] in which the measured residual stresses cease to increase 

after 12 wheel passes. In consideration of the non-associated plastic flow, similar phenomenon is 

also observed (Figure 3). Lower load level results in smaller amounts of residual stresses. When 

the load magnitudes remain the same, the fully-developed residual stresses are also compared in 

Figure 4(a) for the case of ϕ = 30° and p0 = 10.6c. Wang [3] also noted that the actual horizontal 

residual stress field σxx
r
 should lie between two critical residual stress fields (referred to as 

‘minimum larger root (MLR)’ and ‘maximum smaller root (MSR)’) when the applied load is no 

larger than the shakedown limit.  Figure 4(b) further compare those residual stresses with MLR 

and MSR when 0 ≤ z/a ≤ 1. It is evident that the numerical residual stresses are completely 

bracketed by MLR and MSR when the materials obeying the associated flow rule. It can also be 

observed that the use of smaller dilation angle drifts some residual stresses further away from the 

safe region bracketed by two curves. Therefore there are some critical depths below the 

pavement surface representing locations for unlimited increasing plastic strains (Figures 5(a), 

6(a)). If the load magnitude is higher than the shakedown limit, the structure will eventually fail 

due to excessive cumulative permanent deformation. However, if the load magnitude is reduced 

to the shakedown limit, plastic strains will cease to accumulate after a few load passes (Figures 
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5(b), 6(b)). This is because smaller load magnitude will result in wider safe region between two 

curves, so that the fully-developed horizontal residual stress field can be well contained.   

 
 

Figure 3 Development of horizontal residual stress field 

(a)                                                                                     (b)

 

Figure 4 Influence of dilation angle on horizontal residual stress field when φ! = 30º, p0 = 10.6c 

 
Figure 5 Development of plastic normal strains 
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Figure 6 Development of plastic shear strains 

 

3.3 Multi-layered pavements 

A two-layered pavement structure with h1 = 2a, �1 = 30°, ν1 = 0.2, �2 = ψ2 = 0°, ν2 = 0.49 is 

taken as an example for analyses. Results are obtained by using materials with either an 

associated flow rule (ϕ1 = ψ1 = 30º) or a non-associated flow rule (ϕ1 = 30º ψ1 = 0º). A direct 

comparison between these two cases is made in Figure 7 for various stiffness ratios E1/E2. 

Shakedown limits calculated through lower-bound approach of Wang and Yu [17] are also 

presented in this figure as a dash line. In the present study, shakedown limit of any layer in a 

multi-layered pavement is normalised by the cohesion of the second layer c2. It is noteworthy 

that there exists an optimum stiffness ratio at around E1/E2 = 1.4 at which the shakedown limit is 

maximised. The turning point also indicates the change of pavement failure mode from second 

layer failure to first layer failure. As can be seen, numerical results for cases with associated flow 

rule agree well with the lower-bound shakedown limits. However, when the non-associated flow 

rule is applied, numerical results are lower than the lower-bound shakedown solutions when 

E1/E2 ≥ 0.8. More results for multi-layered pavements with materials following associated flow 

rule can be found in Liu et al. [34].  
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Figure 7 Comparison of numerical and theoretical shakedown limits for layered pavements when φ1 = 30º, φ2 = 0°, 

c1/c2 = 1 

Residual stresses also develop in multi-layered pavements. Taking a two-layered pavement as an 

example, the fully-developed horizontal residual stress field exists not only in the first layer, but 

also at the top of the second layer, as shown in Figure 8(a). This means that the top of the second 

layer can also be critical. This agrees with the current pavement design approach (e.g. [35]) in 

which the top of soil subgrade is considered as one of the critical locations. Again, with the use 

of non-associated flow rule, some fully-developed residual stresses cannot reach the safe region 

bracketed by MLR and MSR. Therefore, shakedown limits of the non-associated cases are 

smaller than those using ϕ1 = ψ1. Further studies show that for the pavement with ϕ1 = 30º ψ1 = 0º, 

if the load is decreased from 6.7c2 to 5.5c2, the numerical residual stresses can totally lie within 

the safe region, as shown in Figure 8(b), and therefore the pavement will shake down to a steady 

state. 

In sum, the numerical approach is a valid way to obtain shakedown limits of pavements with the 

assumptions of either an associated or a non-associated plastic flow rule. More numerical 

solutions considering different load cases, strength ratios and layer configurations will be 

presented in the following section in comparison with theoretical solutions. 
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Figure 8 Comparison between FE calculated residual stress field and critical residual stress fields 

when φ1 = 30º, φ2 = ψ2 = 0°, E1/E2 = 3 

4 LOWER-BOUND SHAKEDOWN SOLUTIONS 

The classical shakedown theorems follow the principle of maximum plastic work. Therefore, 

shakedown solutions using classical shakedown theorems were based on the assumption of 

associated flow rule. However, as explained in the previous section, ignorance of non-associated 

plastic flow may overestimate the real shakedown limits of pavements thus lead to an unsafe 

pavement design. The numerical approach developed in the previous section has been devoted to 

overcome this issue. Despite much effort, very limited results have been reported in this aspect 

due to computation cost. A direct method to address this issue would be more appealing for 

practitioners. For this purpose, lower-bound shakedown solutions of Yu and Wang [16] will be 

further developed in this section to obtain approximate shakedown limits for pavements 

assuming non-associated plastic flow. 

4.1 Shakedown analyses 

Shakedown solutions of Yu and Wang [16] were developed based on Melan’s lower-bound 

shakedown theorem. Assuming Mohr-Coulomb materials following associated flow rule, 

shakedown condition of the pavement problem can be written as[16]: 
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0,NM)(σ 2r

xx ≤++=f                                                             (2) 

where )λλλ φφ tanσ(ctan2σσM e
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e
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e

xx −+−= ; ];)tanσ(c)σ)[(tan4(1N 2e
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xz

2 φφ λλ −−+=  

r

xx
σ is self-equilibrated residual stress field; λ is a scale parameter; e

ijσ is the elastic stress field 

due to applied unit pressure 
0u
p ; f is Mohr-Coulomb yield function. This problem then can be 

solved by using a mathematical formulation developed in Yu and Wang [16]. 

In consideration of non-associated plastic flow, the dilation angle ψ (0 ≤ ψ < φ) should be used. 

Davis [36], Drescher and Detounay [37], Sloan [38] suggested the use of reduced strength (φ*
 

and c
*
) for the calculation of limit loads of structures in the case of materials obeying non-

associated flow rule. And it has been used for stability analysis of plane strain footing problem 

(e.g. [37, 39-41]) in which: 

 ,tantan
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* η=   (4) 

 .
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η

−
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By replacing φ and c in Eq. (2) with φ*
 and c

*
 and using a similar solution procedure in Yu and 

Wang [16], shakedown limits of pavements 
0usd
pλ  with Mohr-Coulomb materials following 

non-associated flow rule (defined by φ, ψ, c) can be found by searching through every point i at 

each depth z = j in the half-space for the maximum value of λ in the following mathematical 

formulation: 

 ( )( )
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In the above formulation, )NM(max
*

i

*

i
jz

−−−
=

 and )NM(min
*

i

*

i
jz

−+−
=

 are termed as ‘maximum 

smaller root (MSR)’ and ‘minimum larger root (MLR)’ respectively. Any residual stress field 

lying on or within the region bracketed by the MSR and MLR is a necessary condition for this 

shakedown problem, because they are obtained by satisfying the equilibrium and boundary 

conditions only. The actual residual stress field in a pavement should also be related with 

material plastic deformation which is affected by loading history. It is also interesting to notice 

that (e.g. Figure 4(b) and Figure 8), the actual residual stresses within the plastic region are very 

close to the compressive (negative) MLR rather than MSR. This implies that the structure tends 

to make a minimum plastic work (i.e. as small plastic deformation as possible) subject to a 

certain level of load in order to achieve the shakedown state. Outside the plastic region, the 

actual residual stresses are almost zero; whereas the MLR are positive. This is because the 

assumption of yielding at all depths [16] yields some positive artificial residual stresses. In 

reality, actual stress states at some depths will not touch the yield surface, reflected as zero 

residual stresses. 

4.2 Results and comparison 

4.2.1 Single-layered pavements 

A homogeneous half-space subjected to a moving 2D Hertz load is considered in this section and 

the shakedown limit is usually denoted as a dimensionless parameter k = λsdp0u/c. Figure 9 

compares dimensionless lower-bound shakedown limits with those obtained from numerical 

approach and upper-bound solutions of Li [25] for various values of friction angle and dilation 

angle. The results generally agree except the cases with high friction angle and low dilation 

angle. This kind of discrepancy is also noted by other researchers (e.g. [38, 41]) when using the 

modified Mohr-Coulomb parameters (φ*
 and c

*
) to solve limit state problems. 
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Figure 9 Comparison of theoretical and numerical shakedown limits for single layered pavements 

Table 5 Dimensionless lower-bound shakedown limit parameters 

φ ψ = 0° ψ = 5° ψ = 10° ψ = 15° ψ = 20° ψ = 25° ψ = 30° ψ = 35° ψ = 40° ψ = 45° 

0° 4.00 

         5° 4.64 4.66 

        10° 5.34 5.42 5.45 

       15° 6.08 6.25 6.36 6.40 

      20° 6.84 7.14 7.36 7.51 7.56 

     25° 7.58 8.03 8.43 8.73 8.93 9.00 

    30° 8.25 8.90 9.50 10.02 10.44 10.72 10.82 

   35° 8.81 9.67 10.51 11.31 12.03 12.62 13.02 13.16 

  40° 9.21 10.28 11.39 12.51 13.60 14.60 15.44 16.02 16.24 

 45° 9.41 10.68 12.05 13.51 15.03 16.53 17.96 19.19 20.06 20.39 

 

More dimensionless shakedown limit parameters are shown in Table 5 for the problem of 

homogeneous Mohr-Coulomb half-space subjected to moving pressure. They can be expressed 

as an analytical form: 

.

tanσσ
e

zz

e

xz
φ

η

η
k

+
=                                                    (7) 

If this fictitious material (Eqs. (3)-(5)) is also applied to the upper bound shakedown solution of 

Collin and Cliffe [21] where a tangential velocity jump φcosv  is assumed, their solutions will 

give the same shakedown limits. 

4.2.2 Multi-layered pavements 

Comparisons between lower-bound shakedown limits and numerical results for layered 

pavements (with h1 = 2a) with various stiffness ratios also show good agreements in Figure 10. 

Materials of the first layer have a friction angle � = 30° and a dilation angle ψ = 30° or 0°, while 

the second layer is Tresca material (i.e. � = ψ = 0°). It should be noted: (1) shakedown limit of 
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the pavement structure is the minimum one among shakedown limits of all layers, and therefore 

the turning point indicates the change of failure mode from one layer failure to another layer 

failure; (2) The change of first layer dilation angle only changes static shakedown limits of the 

first layer. When the first layer dilation angle is decreased from 30° to 0°, lower-bound 

shakedown limits of the first layer are well reduced. Since theoretical shakedown limits of the 

second layer does not change, the turning points of non-associate cases are deviated from those 

of associated cases. Therefore, the shakedown limits for non-associated cases are smaller than 

those for associated cases when E1/E2 is relatively large (E1/E2 ≥ 0.8 in Figure 10), but remain 

the same when E1/E2 is small enough or c1/c2 is large enough. 

Two more models with h1 = 3a and 5a were established to evaluate the effect of layer 

configuration on shakedown limits. As shown in Figure 11, the numerical shakedown limits 

show good agreements with lower-bound shakedown limits when an associated plastic flow rule 

is assumed. For non-associated cases, the numerical shakedown limits generally agree with the 

lower-bound shakedown limits when h1/a = 2 and h1/a = 3. When the first layer is relatively 

thick (i.e. h1/a = 5), the difference between theoretical and numerical solutions become obvious 

with decreasing dilation angle.  Indeed, the increase of the first layer thickness leads to even 

more similar results to the homogeneous case.  

In sum, when the dilation angle is at or above one third of the friction angle or the friction angle 

is relatively low, the numerical and theoretical results generally agree well. Noticeable 

discrepancy occurs when the friction angle is high while the dilation angle is very small in a 

homogeneous or homogenous-like structure. 
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Figure 10 Comparison of theoretical and numerical shakedown limits with varying stiffness ratio when φ1 = 30°, φ2 

= ψ2 = 0°, c1/c2 = 1 
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Figure 11 Comparison of theoretical and numerical shakedown limits in two-layered pavements with varying first 

layer thickness when φ1 = 30°, φ2 = ψ2 = 0°, E1/E2 = 3, c1/c2 = 1 

4.2.3 Pavement design 

Design of layered pavements can be carried out through a thickness chart such as Figure 12. 

Given elastic and plastic parameters of materials (En, νn, φn, ψn, cn), shakedown limits for 

different first layer thicknesses can be determined from this chart and compared against the 

design load. Finally, the thicknesses which can provide sufficient resistance to the maximum 

design load (i.e. the shakedown limit is higher than the maximum design load) should be selected. 

Compared with the results obtained using the assumption of φn = ψn, to sustain the same traffic 

load, thicker pavement layers are required. 
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Figure 12 Contour of dimensionless shakedown limits as an example chart for the thickness design of a two-layered 

pavement when φ1 = 44°, ψ1 = 25°, φ2 = ψ2 = 0°, E1/E2 = 3

5 CONCLUDING REMARKS 

In this paper, a numerical step-by-step approach and a lower-bound (static) shakedown approach 

have been developed to obtain shakedown limits of single-layered and multi-layered pavements 

assuming either an associated or a non-associated flow rule. Some important findings are 

summarised as follows: 

(1) The numerical approach presented in this paper is capable of obtaining shakedown limits of 

single-layered or multi-layered pavements with either an associated or a non-associated flow rule.  

(2) Compared with associated cases, the use of a non-associated flow rule obviously affects the 

distribution of residual stress fields and therefore leads to a smaller shakedown limit. If the 

friction angle is small or the difference between friction angle and dilation angle is small, the 

variation of dilation angle will only slightly change the shakedown limit of the pavement. 

Otherwise, the induced difference can be as high as 20.7%. Therefore, the influence of non-

associated plastic flow on the shakedown limit cannot be neglected, especially for materials with 

zero dilation angles.  

(3) The fully-developed residual stress field obtained from the numerical approach is bound by 

two critical residual stress fields (i.e. MLR and MSR) when the pavement is in the shakedown 

state. In both associated and non-associated cases, the fully-developed residual stress field is 
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very close to MLR rather than MSR in the plastic region. This implies that a principle of 

minimum plastic work may be applied when the structure tries to reach a shakedown state. 

(4) Static shakedown solutions for pavements with materials obeying non-associated flow rule 

have been developed by assuming fictitious materials with reduced strength. The results agree 

with most shakedown limits obtained from the numerical approach and upper bound solutions of 

Li [24]. When the dilation angle is much smaller than the friction angle (e.g. φ = 30° and ψ = 0°), 

the present shakedown solutions may underestimate shakedown limits of pavements. 

Nevertheless, as a method to solve the pavement shakedown problem, the direct static 

shakedown solutions can be very useful for conservative pavement design. 
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