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Abstract

In this paper, we present a novel and robust Bayesian approach for autonomous active exploration of unknown objects

using tactile perception and sensorimotor control. Despite recent advances in tactile sensing, robust active exploration

remains a challenging problem, which is a major hurdle to the practical deployment of tactile sensors in robots.

Our proposed approach is based on a Bayesian perception method that actively controls the sensor with local small

repositioning movements to reduce perception uncertainty, followed by explorative movements based on the outcome

of each perceptual decision making step. Two sensorimotor control strategies are proposed for improving the accuracy

and speed of the active exploration that weight the evidence from previous exploratory steps through either a weighted

prior or weighted posterior. The methods are validated both off-line and in real-time on a contour following exploratory

procedure. Results clearly demonstrate improvements in both accuracy and exploration time when using the proposed

active methods compared to passive perception. Our work demonstrates that active perception has the potential to

enable robots to perform robust autonomous tactile exploration in natural environments.

Keywords: Active tactile sensing, Bayesian perception, sensorimotor control, tactile exploration

1. Introduction1

Humans purposefully move their hands and fingers to enhance the perceptual characteristics of objects being2

touched, which is known as active exploration [1, 2, 3]. Different exploratory procedures (EPs) are performed ac-3

cording to the type of information that is desired – for instance, pressure, contour following and sliding are used for4

extracting hardness, shape and texture [4, 5]. Motivated by this, recent advances in tactile sensing technology have5

improved the capability of robots to interact with their surrounding environment. In particular, robots equipped with6

biomimetic fingertip sensors are able to detect, explore and manipulate objects [6, 7]. However, despite these advances7

in tactile sensing technology, robust computational methods for real-time active control of biomimetic sensors during8

an autonomous exploratory procedure have not been developed.9

This paper presents a novel and robust Bayesian approach for actively controlling a biomimetic fingertip during10

autonomous exploration of an unknown object. We consider a task of actively exploring object contours with two types11

of movement: 1) local repositioning to improve perception (fingertip position normal to contour), and 2) movements to12

accomplish the exploration task (edge orientation to move tangentially along the contour). We utilise a computational13

method for estimation of position and edge orientation based on Bayesian optimal decision making that reduces the14

uncertainty of the measurements from the tactile sensor. This method improves tactile perception by accumulating15
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evidence from the object being touched while moving the sensor to a good location for perception [8, 9, 10, 11]. Here16

we have designed this active perception method to achieve real-time control during the discrimination of a very large17

dataset of perceptual classes with a tactile robot. The theoretical novelty of the proposed method is that a successful18

autonomous exploration strategy emerges from a relatively simple sensor-centric control.19

In this work we define two types of sensorimotor control strategy motivated by how human decision making20

can be affected by prior knowledge and current expectations, according to the weight and reliability of each source21

of information [12, 13]. Inspired by this, we extend our methods for active exploration investigated in [14] with22

two sensorimotor control strategies that combine current sensory information with prior or predicted information23

to analyse their benefits on the exploration performance. The first sensorimotor control strategy called ‘weighted24

prior strategy’ takes the prior as the posterior from the previous exploration step combined with a flat prior; the25

second sensorimotor control strategy called ‘weighted posterior strategy’ combines instead the posterior during active26

perception with predicted observations. Accordingly, a forward model is developed to predict the observations by27

modifying the likelihoods from the active perception method. The benefits of these sensorimotor control strategies are28

observed in improvements to both the accuracy and speed of exploration.29

To validate our autonomous active exploration methods, we choose a contour following exploratory procedure30

inspired by how humans use touch to extract the shape of an unknown object. Our methods are first validated31

in a simulated environment using real data from a tactile fingertip, and then secondly in a real environment on a32

Cartesian robot to extract various shapes in real-time. These simulated and real-time validations demonstrate the33

benefits of active over passive perception to successfully accomplish an autonomous exploration task using tactile34

sensing. Furthermore, the implementation of the proposed sensorimotor control strategies indicates how the weight35

and reliability of the information improve the perceptual accuracy and speed during the exploration task. The findings36

of this investigation provide new robust and accurate computational methods to exploit the advances and integration37

of tactile sensing technology in robotics.38

The remainder of this article is organised in four sections. First, a literature review on tactile data processing,39

edge detection and tracking is presented. Second, the equipment, data collection and methods used for this study are40

described. Next, the results from simulations and robotic experiments are presented. Finally, the article provides a41

discussion of the findings, limitations and future research.42

2. Related work43

Artificial tactile sensors have been utilised in robots for many decades, enabling sensorised robots to interact44

physically with their surrounding environment. Planar tactile sensor technology has been widely used in robotic arms,45

hands and grippers. The geometry of this sensor technology means that measurements are gathered as a data matrix,46

which is commonly analysed with image processing algorithms [15, 16]. However, these imaging methods are not the47

most appropriate for biomimetic fingertip sensors, which given their rounded shape, small size and limited number of48

taxels cannot be treated as tactile images. Biomimetic sensor technology inspired by human fingertips is more suitable49

for enabling humanoid robots to manipulate, perceive and interact with objects in their environment [17]. A detailed50

review on advances in technology for design and fabrication of tactile sensors, and their applications in robotics is51

presented in [18].52
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Methods for tactile perception with biomimetic fingertip sensors can be distinguished into two types, known as53

passive and active perception [2, 3]. In passive perception, the fingertip interacts with an object to obtain tactile54

data for classification, but this data cannot affect the motion of the fingertip; conversely, in active perception, a55

sensorimotor feedback loop controls the fingertip to move to a better location for perception during the decision56

making process [14, 11]. Previous work has shown that passive tactile perception can be non-robust in unstructured57

environments where the position of objects is initially unknown, whereas active perception with a suitable control policy58

is able to correct for initially poor contacts [10]. In consequence, active perception can give an order-of-magnitude59

improvement in perceptual acuity over passive methods [19].60

In human behavioural experiments, active exploration with tactile sensing has been studied through a contour61

following exploratory procedure, given that this is a common exploration to extract object shape information [20, 21].62

In robotics, edge detection has been investigated analysing the data from tactile images [22, 23]. These methods63

used image processing techniques to detect the edge and its orientation from the data array. Estimation of curvature64

for contour following was implemented by controlling the contact force, position and orientation of planar tactile65

sensors [24, 25, 26]. However, these methods did not consider uncertainty in the measurements and the control66

was based only on information from the current tactile contact during the exploration task. A superior control67

framework for tactile exploration using a planar sensor array was presented in [27]. This approach was based on68

geometrical moments from tactile images; however, such methods apply only to planar sensors composed of large69

arrays of taxels, not biomimetic tactile fingertips as discussed at the beginning of this section. Some methods based on70

active exploration of deformable objects, deformation of rounded fingertip sensor, sliding and rolling the sensor over71

an object being touched were implemented with a contour following exploration task [28, 29]. Active perception for72

edge detection, based on sensor palpations, was investigated and validated in simulated and in real-time experiments73

using a probabilistic approach and a biomimetic fingertip [9, 14].74

There are several related probabilistic methods for extracting object features with tactile fingertips. The approach75

used here is built on an evidence accumulation framework for optimal decision making utilising tactile sensors [30,76

31, 32], later extended to actively repositioning the tactile sensor during perception [8, 10, 11]. Another method for77

exploration of shape and extraction of local environment properties was implemented using force sensors applied to78

surgical robots [33]. Meanwhile, a probabilistic approach for object localisation using touch has been proposed in [34],79

providing good accuracy but not including active behaviour to move the sensor to better locations for perception.80

A related formalism termed Bayesian exploration [35] has superficial similarities to that used here, but there are81

important differences in the active perception method. The approach in [35] concerns selecting explorative movements82

that maximally disambiguate potential perceptual hypotheses. Conversely, here we adopted a method that uses small83

corrective movements during active perception to approach a preset good location for decision making [14, 9, 11], which84

is more analogous to feedback control and therefore suited to a contour following task. Here, the feature identification85

is used to guide the exploration with simple fixed rule, so that the exploration emerges from the perception. For86

example, a simple strategy of moving perpendicularly to an edge, once the edge angle has been perceived, will lead to87

a contour-following exploration of that edge.88
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3. Methods89

3.1. Biomimetic fingertip sensor90

For this work, we used a biomimetic fingertip sensor that is part of the tactile sensory system of the iCub humanoid91

robot [36]. This tactile sensory system provides the iCub humanoid robot with capabilities to interact with its92

environment [37]. The tactile sensor resembles a human fingertip, given its rounded shape and dimensions (14.5mm93

long by 13mm wide; shown in Figure 1).94

The tactile fingertip is built around a capacitive technology containing an array of twelve taxels (tactile elements)95

of ∼4mm diameter each. These taxels cover the inner core of the fingertip with a flexible printed circuit board96

(PCB), with a ∼2mm dielectric layer of silicone foam placed above the PCB. The flexible and conductive outer layer97

is composed of a carbon black silicone material, which also allows deformations of the surface of fingertip sensor,98

analogous to those that occur with the human fingertip. The capacitive measurements read from the taxels are99

digitised locally using a capacitance-to-digital converter (CDC) placed in the PCB above the inner core of the tactile100

sensor. The digital measurements from the CDC are sent to a computer through a CAN-bus to be processed. The 12101

capacitance measurements obtained with a sample rate of 50 Hz are digitised with 8 bit resolution (0–255 values).102

There is a resemblance between the technology used in the tactile sensor and the mechanical and sensory structure103

of the human fingertip that allows perception of pressure, curvature and edge orientation [38]. In particular, the taxels104

in the tactile sensor respond analogously to human mechanoreceptors to brief and sustained response from tactile105

stimuli.106

(a) (b) (c)

Figure 1: Biomimetic iCub fingertip sensor. (A) Arrangement of circular taxels on flexible PCB covering the inner support. (B) Outer

conductive layer in a standalone fingertip. (C) Physical dimensions of the tactile sensor.

3.2. Robot107

A robot was constructed to provide mobility to the fingertip sensor that is composed of two different robot com-108

ponents: (1) a Cartesian robot arm (YAMAHA XY-x series) with 2-DoF (degrees of freedom) in the x- and y-axes,109

and (2) a Mindstorms NXT Lego robot built with 1-DoF. The NXT robot is mounted on the Cartesian robot arm in110

a proper manner to generate movements in the x-, y- and z-axes (see Figure 2).111

We mounted the tactile sensor on the robot to perform precise positioning movements in the x- and y-axes with112

an accuracy of ∼20µm. The capabilities of the NXT robot do not allow very precise movements, but these are good113

enough to perform upwards and downwards movements along the z-axis. Robot movements in x-, y- and z- axes114

are controlled by tactile feedback that, based on pressure measurements from the fingertip sensor, allow to perform115

a tactile exploration task. Figure 2 shows the fingertip sensor mounted on the robot platform. This configuration of116

the robot and the degrees of freedom do not allow rotations around the z-axis of the tactile sensor. Therefore, the117

fingertip sensor keeps the same orientation during all experiments.118
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Figure 2: (A) Different shaped and sized objects used for active Bayesian perception applied to sensorimotor control. Two of these objects

have diameters of 2 cm, 4 cm, while the third object with irregular shape has various radii of curvature. All the objects have a height of

1 cm. (B) Biomimetic fingertip sensor in contact with the edge of an object at one angle and position. (C) Tactile sensor mounted on

a Cartesian robot allowing mobility in x-, y- and z- axes. (D) Mechanism of the NXT robot built to perform upwards and downwards

movements along the z-axis with the fingertip sensor.

A tactile exploration based on taps was chosen for two main reasons. First, to reduce damage to the sensor because,119

in contrast, a sliding motion could deteriorate the outer conductive layer after repeating the experiments several times.120

Second, to utilise tactile exploration movement through repetitive palpations, useful for robotic system that are not121

able to slide their sensors. Even though tactile fingertips are different in form to rats’ whiskers, a palpating exploratory122

procedure with a fingertip is analogous to the whisking movements that rats use to explore their environment. Humans123

typically slide their fingertips during exploration of shape; however, in situations where there is an expectation that124

damage may occur or for inspection of delicate objects (e.g. medical diagnosis), we can also perform a palpating125

exploratory procedure.126

Figure 3: Data collection procedure from an edge stimulus of a plastic object. The fingertip sensor collects data based on taps along the

z-axis and displacement movements along x- and y-axes. The data are collected at 5 deg steps with taps along 18mm at 0.2mm steps

perpendicular to the edge. For visualisation, we show only three examples of data collection with the fingertip sensor. In total we collected

data from 72 angles and 18mm positions each.
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3.3. Data collection127

We collected two distinct sets of tactile data for training and offline validation, exploring a single flat circular object128

in a systematic and well-controlled procedure. The object was rigidly attached to the table to prevent slippage. Data129

were collected by tapping against the object over different locations in the x-y plane sampled in polar coordinates.130

That is, given a fixed orientation angle w the object is tapped along a line radially extending from the inside of the131

object (with full contact), passing over the edge (with partial contact), and ending outside the object (with no contact)132

(Figure 3). Along this line, taps were performed in 0.2mm steps over a distance of 18mm, generating a total of 90133

taps for each edge orientation. The orientation angle was changed in steps of 5 deg yielding 72 direction measurements134

for a full 360 deg coverage. A single tap had a duration of 2 sec, yielding a dataset of 12×100 pressure measurements135

from the fingertip sensor (sampling frequency 50Hz and 12 taxels). Figure 4 shows an example of the pressure signals136

obtained by a single tap at full contact on the object, over the edge and outside the object.137
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Figure 4: Tactile data at flat surface, edge and air for the fingertip sensor tapping with an angle orientation of 0 deg. (A) Tap on flat

surface, where the pressure is spread to most of the taxels. (B) Tap on edge where the pressure is concentrated in a small number of taxels.

(C) Tap on air, where the sensor is not in contact with the stimulus. (D) Coloured taxels layout that allows to visualise which parts of the

fingertip sensor are activated for data collection at flat surface, edge and air regions.

Figure 5 shows examples of the normalised tactile data collected with the fingertip sensor. The pressure of the138

taxels in contact with the object gradually changes along the trajectory of data collection. These variations in the139

pressure are related to the orientation and positioning of the fingertip with respect to the object. Hence, from the140

tactile data we are able to perceive both the angle and position of the fingertip sensor relative to the edge of the object.141

Note also the present of noise — for example, the peaks just outside the object are from mechanical jerking of gears142

in the robot.143

We built position classes using groups of 5 taps per class, from the 90 taps performed for each edge orientation, and144

were each group represents a position class. Then, we obtained a total of 18 position classes of 1mm span each. These145

were used to construct the classifier based on histograms [30] (Section 3.4), and moreover gave classes representing146

a span of locations rather than a single position. In total, we formed a large dataset composed of 72 angles × 18147

positions = 1296 perceptual classes. As mentioned earlier, the complete process was repeated twice to collect one148

dataset for testing and one for training, with differences between these sets being characteristic of the accuracy and149

repeatability of the robot.150
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Figure 5: Tactile data collected using the method described in Section 3.3. The data collection was at 5 deg steps around a plastic object

with displacement steps of 0.2mm perpendicular to the edge of the object. This was repeated 72 times covering the 360 deg of a circle.

For each angle step, we took 90 contacts each within 2 seconds of data (100 samples per taxel) across the 18mm range of positions, taking

72×90 = 6480 contacts. The colouring of the figures denote the distinct taxels. For visualisation, here we show only 17 figures (of the

72) with data collected every 20 deg. All data within each figure are shown, but only the envelopes of the peak taxel readings are visible

because of the density of contacts displayed.

3.4. Active Bayesian perception151

Perception can be considered as either active for situations where sensory data affects the control of the sensor,152

or passive when the sensory data does not affect the motion of the sensor relative to the stimulus [1, 2]. The ability153

to control sensor movements using active perception based on previous sensory data, for example to explore areas of154

apparent interest, gives an improvement to the perceptual performance, such as the decision speed and perceptual155

accuracy.156

Our active exploration framework is based on methods for active Bayesian perception, which have been validated157

with various stimuli such as textures and shapes using the biomimetic iCub fingertip [9, 11]. These validations have158

shown the versatility of these methods over a range of tactile robotic applications. The methods implement Bayes’159

rule through a technique of sequential analysis [39], which recursively updates the posteriors with likelihoods obtained160

from a measurement model of the tactile data until reaching a decision threshold.161

Here, we applied active exploration to follow the unknown contour of various object shapes with a tactile fingertip162

sensor. The sensor performs active repositioning movements to make better perceptual decisions about its location163

and orientation (angle) relative to edge being followed. Once a decision is made, the sensor uses this information to164

move along the contour, so that it may continue the exploration and thus extract the complete contour of the object.165

Therefore, we use active perception for two reasons: 1) to improve classification performance by moving the fingertip to166

good positions for angle perception; and 2) to provide feedback into a sensorimotor architecture to control movements167
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b bin index wi angle class wdec angle decision

Nbins number of bins zt contact at time t xloc position decision

Nsamples number of samples z1:t contact history at time t xfix target position

Ntaxels number of taxels P (cn) uniform prior π movement policy

Nloc number of position classes P (zt|cn) location likelihood Pflat(cn) uniform prior

Nid number of angle classes P (zt|z1:t−1) marginal probability Pfwd(cn|z̃T ) forward model

hkn(b) sample histogram P (xl|z1:t) position belief Pprior(cn|z0) weighted prior

cn location class P (wi|z1:t) angle belief Pposterior(cn|zt) weighted posterior

xl position class θdec belief threshold decision time T

Table 1: Terms and definitions

of the tactile sensor during the exploration task. Overall, the active Bayesian perception method consists of five layers,168

which are described in the following paragraphs.169

3.4.1. Sensory layer170

The first part of the algorithm is the acquisition of tactile measurements. In this process a dataset composed171

of 12×100 pressure measurements is collected by the fingertip sensor with sampling frequency of 50Hz. The data172

collection is based on taps (palpations).173

3.4.2. Perception layer174

Active perception is implemented as an estimation of contact location and orientation, in which active control of175

location aids identification of edge orientation. Position is thus treated as ‘location’ and the angle as ‘identity’, so that176

procedure may be thought of as simultaneous localisation and identification (SOLID) [8]. The classification is over177

Nloc position classes xl and Nid angle classes wi, with a total of N = NlocNid ‘position-angle’ classes cn = (xl, wi).178

The tth tactile contact is represented by zt and z1:t−1 the tactile contact history.179

Measurement model and Likelihood estimation: From each tap (zt) we obtain a (2 second) time series with Nsamples

= 100 samples of digitised pressure values from each of the Ntaxels = 12 taxels. The measurement model is constructed

off-line from these sensor values using a nonparametric (histogram) estimation approach commonly used for statistical

hypothesis testing. The measurement model is obtained from the frequency of (binned) sensor readings in the training

data for each class

Pk(b|cn) =
hkn(b)∑Nbins

b=1 hkn(b)
, (1)

where hkn(b) is the sample count in bin b for taxel k over all training data in class cn. The histograms were uniformly180

constructed by binning the sensor values into Nbins = 100 intervals. Then, for a test tactile contact z, the measurement181

model is built from the mean log likelihood over all samples, also taking into account the contribution from all taxels,182

logP (z|cn) =

Ntaxels∑

k=1

Nsamples∑

j=1

logPk(sk(j)|cn)

NsamplesNtaxels

, (2)

where sk(j) is the sample j in taxel k. The model treats all samples as independent and identically distributed for each183

tap and taxel. Although the independence assumption may be violated in practise, it gives a good first approximation184
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for constructing a simple likelihood model, with the caveat that results could be improved by utilising statistical185

dependence of the data. Technically, this measurement model becomes ill-defined if any histogram bin is empty, which186

is easily fixed by regularising the bin counts with a small additive constant [8].187

Priors: We assume uniformly distributed priors for all perceptual classes P (cn) = P (cn|z0) = 1/N . This defines188

the posteriors at time t = 0, which will be recursively updated with the likelihoods from each tap performed by the189

sensor.190

Bayesian update: For updating the posterior probabilities P (cn|z1:t), we use a recursive implementation of Bayes’191

rule over all N perceptual classes cn with the likelihoods P (zt|cn) of the measured tap zt. The prior takes the value192

of the posterior at tap t− 1 resulting in an update,193

P (cn|z1:t) =
P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)
. (3)

In order to give properly normalised values, the marginal probabilities are conditioned on the previous tap and194

calculated from the sum195

P (zt|z1:t−1) =
N∑

n=1

P (zt|cn)P (cn|z1:t−1). (4)

Marginal angle and position posteriors: Each class cn corresponds to an (xl, wi) pair where xl and wi are the196

position and angle for each perceptual class respectively. The posteriors are the joint distributions over these joint197

classes, then the beliefs over individual angle and position perceptual classes are given by the marginal posteriors198

P (xl|z1:t) =

Nid∑

i=1

P (xl, wi|z1:t), (5)

P (wi|z1:t) =

Nloc∑

l=1

P (xl, wi|z1:t), (6)

with the position beliefs summed over all angle classes and the angle beliefs summed over all position classes.199

3.5. Stop rule and decision layer200

A threshold crossing rule is used to stop accumulating evidence and make a decision about the angle and position201

class. The maximum a posteriori (MAP) estimate is used to decide the angle and position perceptual class when the202

angle belief exceeds a threshold203

if any P (wi|z1:t) > θdec

then wdec = argmax
wi

P (wi|z1:t),
(7)

where wdec is the angle class estimated after tap t. The estimated angle wdec is employed in the contour following204

exploration presented in Section 4.2 to move the tactile sensor along the edge of an object. We use the angle decision205

threshold θdec ∈ [0, 1] to set the trade-off between decision speed and accuracy. The use of the angle class as the stopping206

criterion is appropriate for our chosen task of contour following because it is the angle decision that determines the207

direction of the next exploration step along the contour, as presented in Sections 4.2 and 4.3.208
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Figure 6: Active perception algorithm. The sensory layer reads the tactile measurements from the sensor. The perception layer is responsible

for updating the evidence accumulated based on Bayes’ rule. The decision-making based on the MAP estimate once the belief threshold is

crossed is performed in the decision layer. The active layer permits to the sensor to be repositioned for improvement of perception. The

output from the decision-making process is used by the control layer for enacting the corresponding action.

3.5.1. Active layer209

In previous work, we have found that for this biomimetic fingertip sensor the perception is improved towards its210

centre [8, 9]. Also, as we will see later, this is supported by our results (Section 4.1). Therefore, for active perception211

we assume that there is a preset target position xfix at the centre of the sensor that the active control seeks to attain212

from an initially unknown fingertip location. The movement policy represented by π is then determined from the213

current position estimation xloc,214

xloc = argmax
xl

P (xl|z1:t), (8)

x← x+ π(xloc), π(xloc) = xfix − xloc, (9)

where π(xloc) updates the value of x which is the new position of the sensor.215

The number of updated or repositioning movements performed by the sensor is related to the belief threshold. Low216

belief thresholds are exceeded quickly, not allowing the repositioning of the sensor to a good location for perception xfix217

to result in fast but low accuracy decisions. Conversely, high belief thresholds require a large number of repositioning218

movements, because the position estimate may be incorrect, which allows a gradual repositioning of the sensor to a219

good location for perception to result in accurate but slow decisions. The flowchart in Figure 6 shows the sequence of220

steps required to perform our active perception algorithm.221

3.5.2. Control layer222

The decision about the location of the tactile sensor is used to calculate the next location to move the sensor along223

the object contour being explored. The estimated angle wdec is used to calculate the next exploratory movement of224

the sensor in Cartesian coordinates:225

MOVE = (d coswdec, d sinwdec) (10)
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defined by moving a fixed distance d = 2mm (Figure 7) along the perceived angle of the edge. Once the robot moves226

the fingertip sensor to the new position, the complete active Bayesian perception process is repeated.227

The length of translation for each exploratory movement, after each angle decision, is set to a fixed value (of 2mm).228

In principle, the translation step could vary along the exploration path, but this would require forward models that229

are adaptive and hence go significantly beyond the present treatment.230

Figure 7: Calculation of the next position along the object contour based on the current position and perceived angle wdec. After moving,

the active perception process is repeated, ensuring that the fingertip follows the object contour.

3.6. Sensorimotor control strategies231

We extend the above active perception method by combining it with two sensorimotor control strategies (Figure 8).232

The strategies are based on a weighted combination of present and preceding information, where the weight parame-233

terises the reliability of each source [40]. We will examine later how these strategies affect the speed and accuracy of234

the exploration.235

3.6.1. Weighted prior236

Our first sensorimotor control strategy is called ‘weighted prior strategy’, and modifies the prior used in the active237

angle perception according to the perceptual decision from the previous exploratory step. Previous works [9, 14]238

have used a flat prior, which is equivalent to treating each decision as independent. However, the preceding posterior239

probability represents an important source of knowledge that if properly used by the forward model can improve240

predictions for the next angle observation.241

Here we consider a prior for the current perceptual decision as a weighted combination of the preceding poste-242

rior with a uniform distribution. Denoting this preceding posterior by Pfwd(cn|z̃T ) and the uniform distribution by243

Pflat(cn) = 1/N , the prior is244

Pprior(cn|z0) = αPfwd(cn|z̃T ) + (1− α)Pflat(cn), (11)

with α ∈ [0, 1] parameterising the importance of preceding information. Thus α = 0 corresponds to discarding245

preceding information, so each decision is independent; α = 1 ensures that perceptual decisions are made only from246

preceding information (since the prior is always above decision threshold).247

In the above, the probability distribution Pfwd(cn|z̃T ) is taken from a forward model applied to the posteriors

P (cn|z̃T ) from the preceding exploration step. For this study, we assume that the forward model is a ∆ = 5deg

increment (one angle class) for each exploration step, compatible with the angular resolution of the training data (see

Section 3.3). Hence

Pfwd(cn|z̃T ) = Pfwd(xl, wi|z̃T ) = P (xl, wi +∆|z̃T ), (12)
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Figure 8: (A) Sensorimotor control based on a weighted prior. The posterior from active perception from the previous decision is used

as a prior weighted by a confidence factor. This prior is also shifted by a parameter ∆ = 5deg. (B) Sensorimotor control strategy based

on a weighted posterior. The decision making is based on the weighted combination of the posterior from active perception and predicted

observations. The updated posterior is shifted by a parameter ∆ = 5deg and used for prediction of the current decision.

where wi +∆ are the angle observations shifted by ∆.248

The movement of the tactile sensor along the contour of the object being explored is performed by the ‘Control249

layer’, which uses the estimated angle class to accomplish the exploration task. Thus, the forward model is designed to250

affect only angle classes wi. Position classes xl, which are not affected by the forward model, are still locally controlled251

based on active repositions (equations 8 - 9). The weighted prior strategy is shown in the diagram of Figure 8a.252

3.6.2. Weighted posterior253

Another approach is to combine the posterior from the preceding exploration step with the posterior from the254

current exploration step, to obtain a weighted posterior that can be compared with the threshold criterion for decision255

termination. Technically, this is equivalent to using information from the preceding exploration step to modify the256

decision thresholds for the perceptual choices, but is easier to implement with the posteriors.257

Thus the ‘weighted posterior’ sensorimotor control strategy uses a posterior

Pposterior(cn|zt) = αPfwd(cn|z̃T ) + (1− α)P (cn|zt), (13)

that combines the present posterior P (cn|zt) at tap t with the predicted posterior Pfwd(cn|z̃T ). (All notation is the258

same as the weighted prior strategy, above, including the same forward model (12).) The parameter α ∈ [0, 1] again259

represents the importance of preceding information: α = 0 corresponds to discarding preceding information, and α = 1260

ensures decisions are made only from preceding information.261

The resulting posterior (13) then provides position Pposterior(xl|zt) and angle Pposterior(wi|zt) probabilities from262

analogous equations to (5) and (6). In consequence, the final angle decision for each exploration step is given by263

if any Pposterior(wi|zt) > θdec

then wdec = argmax
wi

Pposterior(wi|zt).
(14)

Note the active perception is also affected via the location estimate xloc = argmaxxl
Pposterior(xl|zt). The weighted264

posterior strategy is shown in the diagram of Figure 8b.265
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4. Results266

4.1. Off-line validation of passive and active perception267

Passive angle and position perception: First, we investigate how evidence accumulation across successive taps can268

lead to successful perception, with no feedback from perception into the control of the sensor. A tapping process269

without repositioning the sensor was repeated until the belief for one of the angle classes crossed a threshold, which270

then triggered a decision about the angle and position where the fingertip is located. This approach is known as passive271

Bayesian perception, meaning that the tactile fingertip is not able to move to another location to improve perception.272

The validation was based on an off-line Monte Carlo method with 10,000 iterations per belief threshold taken over273

the range θdec ∈ [0.0, 0.05, . . . , 0.95, 0.99]. For each iteration of the simulation process, data was randomly sampled274

with replacement from one of the 1296 (72 angle by 18 position) test classes until reaching decision threshold, using275

the validation and training data described in Section 3.3. This experiment was based on the flowchart in Figure 6,276

removing the modules in the red dashed-line box and considering only the inner loop.277

Figure 9 shows the results for passive angle (top panel) and position (bottom panel) perception over 72 angle classes278

with the smallest mean classification error of 3.7 deg, measured as the mean absolute difference between the perceived279

and actual angle class averaged over simulation trials. The bottom of Figure 9 shows the number of taps required280

to make a decision for each belief threshold. The decision time was averaged over the number of taps required for281

0°

30 °

60 °

90 °

120 °

150 °

180 °

210 °

240 °

270 °

300 °

330 °

Angular acuity
angle error

     (deg)
42.9

38.9

35

31.1

27.2

23.3

19.3

15.4

11.5

7.6

3.7 

 

 

 

 

 

 

fingertip position (mm)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 

m
ea

n
 a

b
so

lu
te

 e
rr

o
r 

in
 a

n
g
le

 (
d
eg

)

0

5

10

15

20

25

30

35

40

45
Acuity averaged over angles

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1
2

3
4

5
6

7
8

positions

Figure 9: Angle acuity based on a passive Bayesian perception. The top ‘ring’ figure shows the accuracy classification over 72 angles and

18 position perceptual classes. Acuity is measured by mean absolute angle error, with large and small errors shown as red and white

respectively, corresponding to values presented in the colour bar. The bottom figure shows the results for position dependency averaged

over the angles.

13



decision time (# taps)

0 1 2 3 4 5 6

m
ea

n
 a

b
so

lu
te

 e
rr

o
r 

in
 a

n
g
le

 (
d
eg

)
0

5

10

15

20

25
Angle error vs decision time

A

passive perception

active perception

θ
dec

 = 0.2

θ
dec

 = 0.9

decision time (# taps)

0 1 2 3 4 5 6m
ea

n
 a

b
so

lu
te

 e
rr

o
r 

in
 p

o
si

ti
o
n
 (

m
m

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Position error vs decision time

B

Figure 10: Angle and position acuity for active (green) and passive (red) perception, using an off-line Monte Carlo method. (A) Angle and

(B) position errors are plotted against mean decision time. These errors are obtained by computing the mean absolute difference between

the perceived and actual classes over all trials and for each belief threshold. One typical low decision threshold θdec = 0.2 (◦) and high

threshold θdec = 0.9 (+) are shown.

making a decision over the 10,000 iterations. We observe that the best position class for perception is at 0mm, at the282

mid-point of the considered position range and roughly at the centre of the fingertip sensor.283

Active angle and position perception: Next, we examine active perception with a sensorimotor control loop that284

moves the fingertip to improve perception based on tactile feedback (Figure 6). We used the training and testing285

datasets collected previously (see Section 3.3).286

Our active perception method requires a target fixation position to move to. The results in Figure 9 indicate that287

the target fixation position class 0mm provides the smallest classification error, ensuring the optimal perception. The288

angle and position acuity for passive perception (red curve) and active perception (green curve) plotted against mean289

decision time are shown in Figures 10A,B, measured by the mean absolute error averaged over all trials for each belief290

threshold in the range [0.0, 0.05, . . . , 0.95, 0.99]. We observe the smallest angle and position errors of 12.2 deg and291

0.8mm for passive perception. In contrast, angle and position errors of 3.3 deg and 0.2mm were obtained with active292

perception, showing considerable improvement over passive perception. We observe that ∼5 taps is sufficient to obtain293

angle and position errors close to the minimum, giving the best decisions using active perception.294

4.2. Off-line validation of sensorimotor architecture295

Our sensorimotor architecture is now used to implement object shape extraction in a simulated environment using296

the data analysed in the previous section. The implementation is composed of the modules shown in Figure 6. The297

simulated environment is based on a circular shaped object, corresponding to the data collected from the fingertip298

sensor with angle resolution of 5 deg (shown in Figure 5).299

For the off-line validation we used active perception with a target position class 0mm chosen according to the active300

and passive perception results from Section 4.1. The circular shaped object and the results of the autonomous active301

exploration with passive and active perception are shown in Figure 11. Black solid lines represent the boundaries of302

the exploration, whilst the contour to be traced by the fingertip sensor is shown as a black dotted line, with each303

dot representing an angle at 5 deg. The small green and red circles represent the locations explored by the fingertip304

sensor for active and passive perception. Note that in this off-line task it is not possible for the exploration to fail305

catastrophically, in that the sensor cannot completely lose track of the contour as it can do on the real-time task306

considered in Section 4.3. Instead, we quantify the quality of the contour following exploration.307
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Passive perception

low threshold high threshold

Active perception

low threshold high threshold

Figure 11: Traced contours with active and passive exploration (off-line validation). The black dotted line represents the contour to be

traced and the black solid line represent the boundaries of the exploration. The results for passive and active perception are shown for

low (θdec = 0.2) and high (θdec = 0.9) decision thresholds. The small circles represent the locations explored by fingertip sensor. Multiple

circles for high decision threshold represent the multiple taps required before making a decision. In contrast, only one tap is needed for low

decision threshold.

For passive perception with low decision threshold θdec = 0.2, we observe that the contour following is fast but has308

large angle and position errors, consistent with only small beliefs being necessary to make a decision. At high decision309

threshold θdec = 0.9 the errors are decreased, but only slightly, even though the fingertip makes more taps on each310

angle decision, slowing the time to trace the contour.311

For active perception with low decision threshold θdec = 0.2, the fingertip sensor is actively repositioned but not312

able to perform enough active movements to improve perception. In contrast, active perception with high decision313

threshold θdec = 0.9 clearly shows an improvement in angle and position perception, successfully accomplishing the314

contour following task. Underlying these results, if the method makes a bad initial angle and position perception315

(as in passive perception or active perception with low threshold), the sensor will not be able to follow the contour316

of the object. Conversely, for moderately inaccurate initial perception (as in active perception with high threshold),317

the accuracy of the angle and position perceived is corrected along the exploration, and the contours are successfully318

traced. Thus, our approach for active perception ensures that the exploration method will achieve good performance319

by correcting its perception during the task.320

Summary results for passive and active exploration around the entire contour are shown in Figure 12, where the321

position and angle acuity is evaluated by averaging over 5000 complete loops of the contour (in contrast with Figure 10,322

where perceptual decisions are considered independently of contour following). For each contour, the initial location323

(angle and position) were randomly drawn to prevent biasing. The belief thresholds used for this validation were set to324

the range [0.0, 0.05, . . . , 0.95, 0.99]. Position and angle acuity is again measured by the mean absolute errors between325

their perceived and actual values, and displayed per decision around the contour. Evidently, the mean angle and326

position errors for active (green curves) perception are much improved over those for passive (red curves) perception,327

consistent with the qualitative observations from Figure 11 for a single contour. We observe that the smallest angle328

and position errors for active perception are ∼4 deg and ∼0.2mm, averaged over a contour, which are considerably329

improved over the values ∼27 deg and ∼6mm for passive perception.330

Active perception and weighted prior: We analysed the effects of a weighted prior applied to active perception with331

the contour following task described in the previous section. The algorithmic implementation is based on the diagram332

shown in Figure 8a and equations (11) and (12) for weighting and shifting the prior knowledge obtained from our333

active perception method. The weighting α of preceding information is considered over values [0.0, 0.05, . . . , 0.95,334

0.99]. Results are obtained by averaging over the individual decisions comprising the exploration around a contour335

for each weighting value. Again, the belief thresholds were taken over the range [0.0, 0.05, . . . , 0.95, 0.99], averaging336
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Figure 12: Contour-averaged angle and position acuity while performing a simulated contour following task using a circle shape constructed

with real data. (A) Angle and (B) position errors for passive (red curves) and active (green curves) perception are plotted against mean

decision time. All results are averaged over 5000 contour exploration loops, contrasting with Figure 10 where results are over individual

decisions. One typical low decision threshold θdec = 0.2 (◦) and high threshold θdec = 0.9 (+) are shown

results over 5000 contours with randomly chosen initial conditions.337

Results are considered over the range of the prior weighting α ∈ [0, 1] (Figure 13). For α = 0 (lightest curve),338

the control strategy corresponds to the flat prior case considered earlier, and accordingly is identical to the results339

in the previous section (Figure 12). For α = 1 (darkest curve), the prior corresponds to the complete posterior from340

the preceding time step, thereby crossing the threshold at time zero after every step of the exploration after the first341

decision, and not being able to use new data after the first decision.342

Overall, the speed and accuracy for angle and position exploration do not depend greatly on values of α 6= 0, with343

a slight performance improvement in changing from zero (flat prior) to non-zero values of α. Curiously, there is a344

minimum in the error-decision time curve for angle perception (Figure 13A), rather than monotonically decreasing as345

is usually the case; we interpret this as a simulation artefact due to having an exactly known forward model, so that346

quick estimates will maintain good decisions. The smallest angle and position errors are 2.6 deg and 0.15mm for a347

decision time just above 1 tap and weighting α anywhere from 0.1-1. These results are improved over the performance348

∼4 deg and ∼0.2mm when information from preceding decisions is not used.349

Active perception and weighted posterior: The application of a weighted posterior to active perception is now exam-350

ined with the contour following task used in the previous section on the weighted prior strategy. The implementation351

is based on the diagram shown in Figure 8b and equations (13 - 14); all other aspects of the analysis are unchanged352

from those above.353
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Figure 13: Contour-averaged angle and position acuity using sensorimotor active control with a weighted prior strategy. Mean absolute

angle (A) and position (B) errors are plotted against decision time, with the weighting of the prior (α) denoted by a colour in the heat-map

range from [0, 1]. Note that the results in Figure 12C,D correspond to the α = 0 (flat prior) case here.
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Figure 14: Contour-averaged angle and position acuity using sensorimotor active control with a weighted posterior strategy. Mean absolute

angle (A) and position (B) errors are plotted against decision time, with the weighting of the posterior (α) denoted by a colour in the

heat-map range from [0, 1]. The speed and accuracy of angle and position perception is improved as alpha increases until just less than 1.

Results are considered over the range of the posterior weighting α ∈ [0, 1] (Figure 14). For α = 0 (lightest curve),354

the control strategy corresponds to the flat prior case considered earlier (Figure 12). For α = 1 (darkest curve), the355

strategy corresponds to using the posterior from the preceding decision, which thus crosses the threshold on the initial356

contact. Figures 14A,B show an improvement in angle and position perception as the weighting increases for α > 0,357

but then deteriorates again as α reaches 1. Both the speed and accuracy not only show a clear dependency on α but358

also an improvement over the original strategy considered earlier (α = 0). The smallest angle and position errors are359

1.4 deg and 0.04mm at a reaction time of 2-3 taps for a weighting α just below 1. These results are improved over360

those of the weighted prior strategy and the original perception process when information from preceding decisions is361

not used.362

For sub-optimal values of the weighting α, the results are more varied between the two control strategies, with the363

weighted prior strategy sometimes better than the weighted posterior strategy depending on α and the decision time.364

Meanwhile, for the best value of α (just below unity), the weighted posterior strategy shows a superior performance365

in speed and accuracy over the weighted prior strategy, and overall is the best sensorimotor control strategy.366

4.3. Real-world validation367

Sensorimotor architecture and active perception: We implemented a real-time contour following around a circular368

shaped object using our method for autonomous exploration (see Sec. 3.2 for details of the robot). In this task, the369

fingertip sensor performs one tap, evaluating if the belief for the current location exceeds the belief threshold. If the370

belief threshold is exceeded, then a decision is made, allowing the fingertip to move along the edge of the object to371

continue with the exploration task. If more evidence is required to make a decision, the tactile sensor is actively moved372

to a better position for perception, accumulating evidence until the belief threshold is exceeded.373

Passive perception

low threshold high threshold

Active perception

low threshold high threshold

Figure 15: Traced contours of a circular object with active and passive exploration (real-time validation). Passive perception with low

(θdec = 0.2) and high thresholds (θdec = 0.9) did not accomplished the exploration task. This behaviour was similar for active perception

with low threshold. Conversely, active perception with high threshold was able to successfully trace the contour of the object.
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We first assess whether successful contour following is achieved for either passive or active exploration with low374

or high decision thresholds (Figure 15). The tactile fingertip was not able to follow the contour of the object for375

either passive perception or active perception with a low decision threshold, since both of these cases did not permit376

movements to superior positions for edge classification. For active perception with high decision threshold, the fingertip377

sensor successfully accomplishes the contour following task, making a complete path around the object. Note that378

locations where active perception moved the tactile fingertip to improve angle perception are visible with multiple379

contacts (green circles). These are mainly visible on the left-side region of the object, and were evidently necessary380

for successful tracing of the complete contour.381

We also validate the active exploration with various other shapes. Figure 16A shows three plastic objects used for382

the exploration task: two circles of 2 cm and 4 cm diameters and an irregular object (sellotape holder) with different383

curvatures. The height for all the objects is of 1 cm. These objects provide a good test scenario for exploration based384

on the wide range of angles and radii of curvature. The decision threshold θdec = 0.85 is set at a high value to give385

a few taps per decision before making the next exploration movement. We observe in Figure 16B that the contour of386

the three test objects is successfully traced, which validates the robustness of our methods.387

Figure 16: Contour following task using active exploration and tactile sensing. (A) Circles with 2 cm, 4 cm diameter and an asymmetric

object (sellotape holder) used for real-time contour following. (B) Contours traced as result of active perception with high decision threshold.

Sensorimotor control strategies: We repeated the preceding real-time contour following procedure to validate our388

two proposed sensorimotor control strategies: the weighted prior and weighted posterior strategies. For these exper-389

iments, the weighting factor α between the appropriate probabilities (see Section 3.6) was set to 0.0, 0.7 and 1.0, to390

observe their different effects on the perception during exploration.391

The results for angle and position perceptual accuracy against reaction time for both strategies are shown in392

Figure 17. For α = 0, the angle and position performance is similar, as expected because the two control strategies393

then coincide with the unmodified case considered above. The angle performance is also worse than at non-zero α,394

as consistent with the off-line validation results found earlier in the paper. For α > 0, both sensorimotor control395

strategies show a similar best angle accuracy with a minimum error of 1.98 deg. However, the performance of the396

two sensorimotor control strategies differs in the position errors, where the weighted posterior strategy has superior397

performance to the weighted prior strategy, and also in the reaction times where the weighted posterior strategy is398

apparently slower than the weighted prior strategy.399

We interpret the observed change in trend of the curves in Figure 17 as related to the effects of the initial prior400
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Figure 17: Comparison of weighted prior and weighted posterior strategies over a contour following task in real-time mode. The confidence

factor (α) is set to values 0.0, 0.7 and 1.0 to compare their effects during the exploration task. (A) Angle and (B) position errors against

decision time for the α values.

and belief threshold on the accuracy and decision time. For the weighted prior strategy, the larger the prior the less401

the time required to exceed the belief threshold to make a decision; conversely, the weighted posterior strategy takes402

more time to make a decision for large belief thresholds given that its initial prior is uniformly distributed. Overall, we403

observe how the real-time exploration of an unknown object using these sensorimotor control strategies has benefited404

by improvements in accuracy and speed, compared to the results achieved with no effect from preceding observations405

during the exploration task.406

5. Discussion407

This study presented an investigation of autonomous active exploration using sensorimotor control of a biomimetic408

tactile fingertip. This research demonstrated first how active movements of a tactile fingertip improve the classification409

accuracy over passive perception. Secondly, it also demonstrated how the use of sensorimotor control strategies based410

on the combination of information from past and future states with active perception provide benefits for the speed411

and accuracy of perception, hence improving the performance of the autonomous exploration of unknown objects.412

We found that active Bayesian perception can achieve accurate classification in edge orientation angle and po-413

sition by utilising active movements to reposition the tactile sensor to a better location for perception [9, 32]. This414

demonstrates its superiority over passive perception, where the sensor is not actively controlled. For biomimetic tactile415

fingertips, this approach makes possible edge detection with fine angular resolution, providing an alternative to image416

processing techniques [15, 16] that work only for planar sensors with high taxel densities (unlike common biomimetic417

sensors). Moreover, in principle, our method is not only applicable to edge detection but other stimuli such as texture418

and curvature [8, 10]. We validated our methods with a tactile data set of 72 angle and 18 position classes, forming a419

very large set of 1296 perceptual classes. The benefits of active perception were observed in the ∼3.3 deg and ∼0.2mm420

angle and position errors achieved, compared with ∼12.2 deg and ∼0.8mm for passive perception. It is interesting421

that our results are superior in accuracy for angle discrimination to those found in both sighted and blind humans422

under psychophysical studies using active touch [20, 21].423

A new sensorimotor architecture controlled by tactile feedback was developed to provide mobility to the fingertip424

sensor and validate our active perception method. During an exploration task, the tactile sensor reacts (reflex move-425

ment) whenever a contact is detected to move away as a protection behaviour, and then perceive and make a decision426

using active Bayesian perception, performing either a local repositioning movement for accumulating evidence or an427
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exploratory movement to next state of the exploration task. We used taps (palpations) for the exploration task for428

two reasons: 1) inspiration from humans in situations when they prefer to palpate rather than slide over a surface429

given the possibility of hurting oneself or damaging the explored object (as in medical inspection), and 2) to reduce430

damage to the artificial tactile sensor over multiple repetitions of the experiments.431

Our tactile perception method enables a biomimetic fingertip sensor to accurately perceive edge orientation and432

utilise this information to perform higher level tasks, e.g. tactile exploration. This process bears analogy with studies433

from neuroscience that suggest that first-order tactile neurons in human fingertips are responsible for extracting434

geometric features (for instance, edge-orientation detection) and signal them via both temporal and rate codes [41].435

Moreover, to extract object shape, humans rely on a contour following exploratory procedure using their fingers [4, 42].436

This is considered an active rather than a passive exploration, meaning that the fingers need to be controlled to provide437

better perception.438

We validated our methods for autonomous active exploration with a contour following task, and repeated this ex-439

periment with various shapes to cover a large set of angles and radii of curvature to demonstrate robustness (Figure 16).440

The successful shape extraction in both off-line and real-time experiments shown in Figures 11 and 15 reinforces the441

benefits of active over passive perception. In addition, not only is active perception necessary for task completion,442

but also the perception needs to be highly reliable, which is attained only for high decision thresholds. Setting a high443

decision threshold also increases the decision time, which slows the exploration. This is reasonable, given that humans444

not only explore actively but also employ the appropriate timing until sufficient belief about the object being explored445

is reached [43].446

Finally, we investigated the effects on exploration accuracy and time of modifying the active exploration with447

sensorimotor control strategies that combine present sensory information with preceding or predicted information.448

First, we found that using a weighted prior as input to active perception produced a reduction in the angle and449

position errors, whilst improving the exploration time. This finding is coherent bearing in mind that less evidence450

would then be required to achieve faster decisions, since evidence is already present in the prior. Second, for the451

weighted posterior strategy, combining the output of the active perception method with predicted observations also452

gave improved performance accuracy and exploration. These sensorimotor control strategies show that the combination453

of information sources improves the performance of the autonomous active exploration. They also demonstrate that454

this improvement depends on the weight assigned to each information source, which corresponds to the theory of motor455

control in [40] and human studies of the decision making process during a discrimination task [12].456

Our proposed approach for autonomous tactile exploration has been validated in two dimensions; however, we457

expect the methods are scalable to explore edges in three dimensions or potentially other types of path. Applying the458

method to more dimensions and other realistic scenarios would require a robot with more degrees of freedom, such as459

rotating the fingertip sensor around any axis and controlling better the height of the sensor. The systematical data460

collection would also need to be extended to the added degrees of freedom.461

Overall, we presented a study of autonomous active exploration with sensorimotor control strategies using a462

biomimetic fingertip sensor. This work shows how reliability is important for tactile sensing and how this can be463

achieved with active perception. In robotics, this aspect of active perception can be combined with control to result464

in improved performance for autonomous exploration. Overall, we have demonstrated that our methods give robust465

autonomous tactile exploration of unknown objects, which can take advantage of the many advances taking place in466
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robotic sensing technology to extend to natural, complex and unstructured environments.467

6. Conclusion468

In this work we presented a novel and robust method, composed of active Bayesian perception and sensorimotor469

control strategies, for autonomous exploration of unknown object shapes using tactile sensing. Our method not470

only allowed a fingertip sensor to perceive and make decisions about where to move next to reduce uncertainty,471

but also it permitted to improve the accuracy and speed of an exploration task. Our method was validated in off-472

line and real-time modes, successfully exploring and extracting the contours of various object shapes. Undoubtedly,473

development of robust tactile perception methods, like the one presented in this work, are essential to achieve intelligent474

and autonomous robots that safely interact, make decisions and behave accordingly to what they perceive from its475

surrounding environment.476
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Highlights

1. Active tactile sensing with biomimetic and soft fingertip sensor

2. Bayesian  perception  for  intelligent  control  of  robot  movements  under  the  presence  of

uncertainty

3. Sensorimotor control strategies that improve tactile perception accuracy and speed 

4. Action-perception loop for exploration of unknown object shapes using robot touch and an

exploratory procedure


