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Bose-Einstein Entropy

Jianjia Wang, Richard C. Wilson, and Edwin R. Hancock

Department of Computer Science,
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Abstract. In this paper, we present a novel method for characterizing
networks using the entropy associated with bosonic particles in thermal
equilibrium with a heat-bath. According to this analogy, the normalized
Laplacian plays the role of Hamiltonian operator, and the associated
energy states are populated according to Bose-Einstein statistics. This
model is subject to thermal agitation by the heat reservoir. The physics of
the system can be captured by using a partition function defined over the
normalized Laplacian eigenvalues. Various global thermodynamic char-
acterizations of the network including its entropy and energy then can be
computed from the derivative of corresponding partition function with
respect to temperature. We explore whether the resulting entropy can be
used to construct an effective information theoretic graph-kernel for the
purposes of classifying different types of graph or network structure. To
this end, we construct a Jensen-Shannon kernel using the Bose-Einstein
entropy for a sample of networks, and then apply kernel principle compo-
nents analysis (kPCA) to map graphs into low dimensional feature space.
We apply the resulting method to classify fMRI activation networks from
patients with suspected Alzheimer disease.

Keywords: Bose-Einstein Statistics, Network Entropy, Jensen-Shannon
Divergence.

1 Introduction

Graphs are powerful tools for representing complex patterns of interaction in
high dimensional data[1]. For instance, in the application later considered in
this paper, graphs provide the activation patterns in fMRI data, which can be
indicative of the early onset of Alzheimer’s disease. On the other hand, kernel-
methods on graphs provide emerging and powerful set of tools to determine
the class-structure of different graphs. There are many examples in the liter-
ature where graph kernels have successfully exploited topological information,
and these include the heat diffusion kernel[2], the random walk kernel[3], and the
shortest path kernel[4]. Once a graph kernel is to hand, it provides a convenient
starting point from which machine learning techniques can be applied to learn
potentially complex class-structure[5]. Despite the success of existing graph ker-
nels, one of the main challenges that remains open is to capture the variations
present in different classes of graph in a probabilistic manner[6].
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Recently, statistical mechanics and information theory have been used to
understand more deeply variations in network structure. One of the successes
here has been to use quantum spin statistics to describe the geometries of com-
plex networks[7]. For example, using a physical analogy based on a Bose gas,
the phenomenon of Bose-Einstein condensation has been applied to study the
salient aspects network structure[8]. This has been extended to understand pro-
cesses such as supersymmetry in networks[9]. Although these types of analogy
are useful and provide powerful tools for network analysis, they are not easily
accommodated into the kernel-based approach to machine learning.

The aim in this paper is to bridge this gap in the literature. Our aim is to
develop a link between statistical mechanics and kernel methods. To do that we
define information theoretic kernels in terms of network entropy. The Jensen-
Shannon kernel is computed from the Jensen-Shannon divergence, which is an
entropic measure of the similarity between two probability distributions. To com-
pute the divergence, the distribution of data must be characterized in terms of a
probability distribution and the associated entropy must be to hand. For graph or
network structures, both the probability distribution and the associated entropy
can be elusive. To solve this problem, in prior work, they have computed the
required entropy using von Neumann entropy (essentially the Shannon entropy
of the normalized Laplacian eigenvalues)[5]. Here we aim to explore whether the
physical heat bath analogy and Bose-Einstein statistics can be used to furnish
the required entropy, and implicitly the underlying probability distribution.

We proceed as follows. We commence from a physical analogy in which the
normalized Laplacian plays the role as Hamiltonian (energy operator) and the
normalized Laplacian eigenvalues are energy states. These states are occupied
by bosonic particles (assumed the 0 spin) and the resulting system is in thermo-
dynamic equilibrium with a heat-bath, which is characterized by temperature.
The bosons are indistinguishable, and each energy level can accommodate an
unlimited number of particles. The effect of the heat bath is to thermalise or
randomise the population of energy levels. The occupation of the energy states is
therefore governed by Bose-Einstein statistics, and can be characterized using an
appropriate partition function. The quantities can be derived from the partition
function over the energy states in the network when the system of particles is
in thermodynamic equilibrium with the heat bath. From the partition function,
we can compute the entropy of the system of particles, and hence compute the
Jensen-Shannon kernel. Once the kernel matrix is to hand, we use kernel princi-
ple components analysis (kPCA)[10] to embed the graphs into a low dimensional
feature space where classification is performed.

The remainder of paper is organised as follows. Section 2 briefly reviews
the preliminaries of graph representation in the statistical mechanical domain.
Sections 3 and 4 respectively describe the underpinning concepts of how entropy
is computed from the Bose-Einstein partition function, and how the Jensen-
Shannon kernel is constructed from the resulting entropy. Section 5 presents our
experimental evaluation. Finally, Section 6 provides conclusions and directions
for future work.
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2 Graph in Quantum Representation

In this section, we give the preliminaries on the graph representation in quantum
domain. We specify the density matrix as the normalized Laplacian matrix. We
then introduce the idea of a Hamiltonian operator on a graph and its relationship
with the normalized Laplacian, which associated von Neumann entropy.

2.1 Density Matrix

The density matrix, in quantum mechanics, is used to describe a system whose
state is an ensemble of pure quantum states |ψi〉, each with probability pi . It is

defined as ρ =
∑V

i=1 pi|ψi〉〈ψi|.
With this notation, Severini et al. [11] have extended this idea to the graph

domain. Specifically, they show that a density matrix for a graph or network
can be obtained by scaling the normalized discrete Laplacian matrix by the
reciprocal of the number of nodes in the graph.

When defined in this was way the density matrix is Hermitian i.e. ρ = ρ
† and

ρ ≥ 0,Trρ = 1. It plays an important role in the quantum observation process,
which can be used to calculate the expectation value of measurable quantity.

2.2 Hamiltonian Operator

In quantum mechanics, the Hamiltonian operator is the sum of the kinetic en-
ergy and potential energy of all the particles in the system, and it dictates the
Schrödinger equation for the relevant system. The Hamiltonian is given by

Ĥ = −∇2 + U(r, t) (1)

Here we specify the kinetic energy operator to be the negative of the normal-
ized adjacency matrix, and the potential energy to be the identity matrix. Then,
the normalized form of the graph Laplacian can be viewed as the Hamiltonian
operator Ĥ = L̃.

In this case, the eigenvalues of the Laplacian matrix can be viewed as the
energy eigenstates, and these determine the Hamiltonian and hence the rele-
vant Schrödinger equation which govern a system of particles. The graph as a
thermodynamic system specified by N particles with energy states given by the
network Hamiltonian and immersed in a heat bath at temperature T .

2.3 von Neumann Entropy

The interpretation of the scaled normalized Laplacian as a density matrix opens
up the possibility of characterizing a graph using the von Neumann entropy from
quantum information theory.

The von Neumann entropy is defined as the entropy of the density matrix
associated with the state vector of a system. As noted above, the von Neumann
entropy can be computed by scaling the normalized discrete Laplacian matrix
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for a network[11]. As a result, it is given in terms of the eigenvalues λ1, ....., λV
of the density matrix ρ,

S = −Tr(ρ logρ) = −
V
∑

i=1

λ̂i
V

log
λ̂i
V

(2)

Since the normalized Laplacian spectrum has been proved to provide an
effective characterization for networks or graphs[12], the von Neumann entropy
derived from the spectrum may also be anticipated to be an effective tool for
network characterization.

In fact, Han et al.[13] have shown how to approximate the calculation of
von Neumann entropy in terms of simple degree statistics. Their approximation
allows the cubic complexity of computing the von Neumann entropy from the
Laplacian spectrum, to be reduced to one of quadratic complexity using simple
edge degree statistics, i.e.

S = 1− 1

V
− 1

V 2

∑

(u,v)∈E

1

dudv
(3)

This expression for the von Neumann entropy allows the approximate entropy
of the network to be efficiently computed and has been shown to be an effective
tool for characterizing structural property of networks, with extremal values for
cycle and fully connected graphs.

3 Quantum Statistics and Network Entropy

In this section, we describe the statistical mechanics for particles with quantum
spin statistics. We then explain how the Laplaican eigenstates are occupied by a
system of bosonic particles in equilibrium with a heat bath. This can be charac-
terized using the Bose-Einstein partition function. From the partition function,
various thermodynamic quantities, including entropy, can then be computed.

3.1 Thermal Quantities

Based on the heat bath analogy, particles occupy the energy states of the Hamil-
tonian subject to thermal agitation. The number of particles in each energy state
is determined by a) the temperature, b) the assumed model of occupation statis-
tics, c) the relevant chemical potential.

When specified in this way, the various thermodynamic characterizations
of the network can be computed from the partition function Z(β,N), where
β = 1/kBT and kB is the Boltzmann constant. For instance, the Helmholtz free
energy of the system is

F (β,N) = − 1

β
logZ(β,N) = −kBT logZ(β,N) (4)

and the thermodynamic entropy is given by

S = kB

[

∂

∂T
T logZ

]

N

= −
(

∂F

∂T

)

N

(5)
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The incremental change in Helmholtz free energy is related to the incremental
change in β and N ,

dF =

(

∂F

∂β

)

N

dβ +

(

∂F

∂N

)

T

dN =
S

kB

1

β2
dβ + µdN (6)

where µ is the chemical potential, given by

µ =

(

∂F

∂N

)

T

= −kBT
[

∂

∂N
logZ

]

β

(7)

3.2 Bose-Einstein Statistics

Specified by the network Hamiltonian, each energy state can accommodate an
unlimited number of integral spin particles. These particles are indistinguishable
and subject to Bose-Enstein statistics. In other words, they do not obey the
Pauli exclusion principle, and can aggregate in the same energy state without
interacting.

Base on the thermodynamic system specified by N particles with the energy
states, the Bose-Einstein partition function is defined as the product of all sets
of occupation number in each energy state, and the matrix form is given as

Z
BE

= det
(

I − eβµ exp[−βL̃]
)−1

=

V
∏

i=1

(

1

1− eβ(µ−εi)

)

(8)

where the chemical potential µ is defined by Eq.(7), indicating the varying num-
ber of particles in the network. From Eq.(5), the corresponding entropy is

S
BE

= logZ + β〈U〉 = −Tr

{

log[I − eβµ exp(−βL̃)]
}

− Tr

{

β[I − eβµ exp(−βL̃)]−1(µI − L̃)eβµ exp(−βL̃)
}

= −
V
∑

i=1

log
(

1− eβ(µ−εi)
)

− β

V
∑

i=1

(µ− εi)e
β(µ−εi)

1− eβ(µ−εi)
(9)

Given the temperature T = 1/β, the average number of particles at the
energy level indexed i with energy εi is

ni = − 1

β

(

∂ logZ

∂εi

)

=
1

exp[β(εi − µ)]− 1
(10)

and as a result the total number of particles in the network is

N =

V
∑

i=1

ni =

V
∑

i=1

1

exp[β(εi − µ)]− 1
(11)
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The matrix form is

N = Tr

[

1

exp(−βµ) exp[βL̃]− I

]

(12)

where I is the identity matrix.
In order for the number of particles in each energy state to be non-negative,

the chemical potential must be less than the minimum energy level, i.e. µ <
min εi. Thus, the entropy derived from Bose-Einstein statistics is related to the
temperature, energy states and chemical potential.

4 Graph Kernel Construction

In this section, we show how to compute the Jensen-Shannon divergence between
a pair of graphs using the network entropy derived from the heat bath analogy
and Bose-Einstein statistics. Once the combined the idea from graph embedding,
we establish graph kernel associated with kernel principle component analysis
(kPCA) to classify graphs.

4.1 Jensen-Shannon Divergence

The Jensen-Shannon kernel[14] is given by

kJS(Gi, Gj) = log 2−DJS(Gi, Gj) (13)

where DJS(Gi, Gj) is the Jensen-Shannon divergence between the probability
distributions defined on graphs Gi and Gj .

We now apply the kernel method of Jensen-Shannon divergence to construct
a graph kernel between pairs of graphs. Suppose the graphs are represented by
a set G = Gi, i = 1, ..., n, where Gi = (Vi, Ei). Vi is the set of nodes on graph Gi

and Ei ⊂ Vi × Vi is the set of edges.
For a pair of graphs Gi and Gj , the union graph is defined as Gi⊕Gj , which

has the nodes on both graphs Gi and Gj , that is GU = Vi ∪ Vj . It also contains
the edge sets between pairs of nodes, such that if (k, l) ∈ Ei, and (k, l) ∈ Ej , then
((k, l), (k, l)) ∈ EU , which means the union graph contains the combined edges
of two graphs. With the union graph to hand, the Jensen-Shannon divergence
for a couple of graphs Gi and Gj is

DJS(Gi, Gj) = H(Gi ⊕Gj)−
H(Gi) +H(Gj)

2
(14)

where H(Gi) is the entropy associated with the graph Gi, and H(Gi ⊕ Gj) is
the entropy associated with the corresponding union graph GU .

Using the Bose-Einstein entropy in Eq.(9) for the graphs Gi, Gj and their
union Gi⊕Gj , we compute the Jensen-Shannon divergence for the pair of graphs
and hence the Jensen-Shannon kernel matrix.
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With the graph kernel to hand, we apply kernel-PCA to embed the graphs
into a vector space. To compute the embedding, we commence by computing
the eigen decomposition of the kernel matrix, which will reproduce the Hilbert
space with a non-linear mapping. In such a case, graph features can be mapped
to low dimensional feature space with linear separation. So the graph kernel can
be decomposed as

kJS = UΛUT (15)

where Λ is the diagonal eigenvalue matrix and U is the matrix with eigenvectors
as columns. To recover the matrix X with embedding co-ordinate vectors as
columns, we write the kernel matrix in Gram-form, where each element is an
inner product of embedding co-ordinate vectors

kJS = XXT (16)

and as a result X =
√
ΛUT .

5 Experiments

In this section, we present experiments on fMRI data. Our aim is to explore
whether we can classify the subjects on the basis of similarity of the activation
networks from the fMRI scans. To do this we embed the network similarity data
into a vector-space by applying kernel-PCA to the Jensen-Shannon kernel. To
simplify the calculation, the Boltzmann constant is set to unity through the
experiment.

5.1 Dataset

The fMRI data comes from the ADNI initiative [15]. Each patient lies in the MRI
scanner with eyes open. BOLD (BOLD: Blood-Oxygenation-Level-Dependent)
fMRI image volumes are acquired every two seconds. The fMRI signal at each
time point is measured in volumetric pixels over the whole brain. The voxels
here have been aggregated into larger regions of interest (ROIs), and the blood
oxygenation time-series in each region has been averaged, yielding a mean time-
series for each ROI. The correlation between the average time series in different
ROIs represents the functional connectivity between regions.

We construct the graph using the cross-correlation coefficients for the average
time serial pairs of ROIs. To do this we create an undirected edge between two
ROI’s if the cross-correlation co-efficient between the time series is in the top
40% of values. The threshold is fixed for all the available data, which provides
an optimistic bias for constructing graphs. Those ROIs which have missing time
series data are discarded. Subjects fall into four categories according to their
degree of disease severity, namely full Alzheimer’s (AD), Late Mild Cognitive
Impairment (LMCI), Early Mild Cognitive Impairment (EMCI) and Normal.
The LMCI subjects are more severely affected and close to full Alzheimer’s, while
the EMCI subjects are closer to the healthy control group (Normal). There are
30 subjects in the AD group, 34 in LMCI, 47 in EMCI and 38 in the Normal
group.
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5.2 Experimental Results

Now we describe the application of the above methods to investigate the struc-
tural dissimilarity of the fMRI activation networks, which is used to distinguish
different groups of patients. We compute the Jensen-Shannon kernel matrix us-
ing the Bose-Einstein entropy and compare the performance with that obtained
from von Neumann entropy. Given the spectra of a graph and the total number
of particles, the chemical potential can be derived from Eq.(11), which is used
to calculate the entropy. Fig.1 shows the results of mapping the graphs into a
3-dimensional feature space obtained by kernel principal components analysis
(kPCA). We use first three eigenvectors to show the cluster of each group. The
common feature is that both the Bose-Einstein and von Neumann entropies sep-
arate the four groups of subjects. In the case of Bose-Einstein statistics, the
clusters are better separated than those obtained with von Neumann entropy.
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Fig. 1. Kernel PCA performance of Jensen-Shannon Divergence in Bose-Einstein en-
tropy (Fig.1(a)) and von Neumann entropy (Fig.1(b)). Temperature β = 10 and par-
ticle number N = 1.

To place our analysis on a more quantitative footing, we apply Fisher’s linear
discriminant analysis to classify graphs with the kernel features, and compute
the classification accuracy. Since the number of sampling in the datatset is small,
we apply the leave-one-out cross-validation and use all the graphs as the testing
data. Table 1 summaries the results of classification accuracy obtained by Jensen-
Shannon kernels computed from the two entropies. Compared to the accuracy
with von Neumann entropy, that obtained with Bose-Einstein entropy exhibits
a higher classification accuracy. The Maxwell-Boltzmann entropy outperforms
the von Neumann entropy on three classes of data presented by a margin of
about 10%. This reveals that the proposed graph kernel computed with Jensen-
Shannon Divergence and Bose-Einstein entropy improve the performance for the
fMRI data classification.
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Table 1. Classification Accuracy for Entropy from Bose-Einstein Statistics and von
Neumann Entropy

Classification Accuracy Alzheimer LMCI EMCI Normal

Bose-Einstein Statistics 93.33% (28/30) 100% (34/34) 89.36% (42/47) 92.11% (35/38)
von-Neumann Entropy 93.33% (28/30) 88.24% (30/34) 82.98% (39/47) 86.84% (33/38)

5.3 Discussion

The main parameters of the Bose-Einstein entropy are the temperature and
number of particles in the system. In this section, we discuss the effects of the
temperature on the energy level occupation statistics and hence upon the en-
tropic kernel performance at low and high temperatures. We first focus on the
average number of particles given the temperature β at each energy level εi from
Eq.(10). In Fig.2(a), we plot the occupation number for the different normalised
Laplacian energy states with different values of temperature.
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Fig. 2. Average occupation number for energy state set different temperature for
Bose-Einstein statistics (Fig.2(a)). Classification accuracy changes with temperature
in Jensen-Shannon Divergence with entropy from Bose-Einstein statistics (Fig.2(b)).

As shown in this figure, with fixed temperature and increasing energy, the
number of particles in each energy level decreases. As a result the lower energy
levels are occupied with the largest number of particles. Furthermore, as the
temperature decreasing, the number of particles in each energy state decreases.
From Eq.(10), it should be noted that the number of particles in each state is
determined by two factors, namely a) the Bose-Einstein occupation statistics,
and b) the number of particles as determined by the chemical potential.

In order to evaluate how temperature effects the performance of the Jensen-
Shannon kernel, we compare its behaviour at low and high temperature. For the
fMRI brain activation data, we set β = 1 and β = 0.1, leaving the total particle
number N = 5 unchanged. Compared to the low temperature case (β = 10) in
Fig.1, increasing temperature makes the four classes of graphs more densely clus-
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Fig. 3. Kernel PCA performance of Jensen-Shannon Divergence with entropy from
Bose-Einstein statistics at different values of temperature.

tered in feature space, shown in Fig.3(a) and Fig.3(b). This is term which reduces
the performance of kernel PCA. Fig.2(b) shows the performance of classification
changes with temperature. As the temperature increasing, the occupation num-
ber at each energy level increases and particles become to propagate at the high
energy states. The probabilities of energy states in the system become identical
to each other, reaching the uniform distribution as the temperature approach-
ing to infinite. So all the groups with the same number of states, in statistical
perspective, are rather similar to each other at high temperature. This reduces
the performance of classification accuracy.

6 Conclusion

In this paper, we show how to compute an information theoretic graph-kernel
using Bose-Einstein entropy and the Jensen-Shannon divergence. This method
is based on quantum statistics associated with bosonic population of the nor-
malized Laplacian eigenstates.

By applying kernel PCA to the Jensen-Shannon kernel matrix, we embed sets
of graphs into a low dimensional space. In order to evaluate the performance of
thermal entropies, we use discriminant classifier analysis to assign the graphs to
different groups. Experimental results reveal that the method improves the clas-
sification performance for graphs extracted from fMRI data. The kernel method
combined Bose-Einstein entropy and the Jensen-Shannon divergence provides
an effective and efficient method in fMRI network analysis. Further work maybe
focus on investigating the confusion matrix to evaluate the performance of clas-
sification.
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